hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/research/2561/(5)...

13
Evolutionary Applications. 2018;1–13. | 1 wileyonlinelibrary.com/journal/eva Received: 16 November 2017 | Accepted: 15 February 2018 DOI: 10.1111/eva.12621 ORIGINAL ARTICLE Hurdles in the evolutionary epidemiology of Angiostrongylus cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants, and cryptic lineages Sirilak Dusitsittipon 1,2 * | Charles D. Criscione 3 * | Serge Morand 4 | Chalit Komalamisra 5 | Urusa Thaenkham 1 * This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2018 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd *These authors contributed equally to this work. 1 Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 2 Departments of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand 3 Department of Biology, Texas A&M University, College Station, TX, USA 4 CNRS ISEM-CIRAD ASTRE, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand 5 Mahidol-Bangkok School of Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Correspondence Charles D. Criscione, Department of Biology, Texas A&M University, College Station, TX, USA. Email: [email protected] and Urusa Thaenkham, Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Email: [email protected] Funding information Development and Promotion of Science and Technology Talents Project (DPST); Agricultural Research Development Agency, Grant/Award Number: CRP5705020410 Abstract Angiostrongylus cantonensis, the rat lungworm, is a zoonotic pathogen that is one of the leading causes of eosinophilic meningitis worldwide. This parasite is regarded as an emerging pathogen with a global range expansion out of southeastern Asia post- WWII. To date, molecular systematic/phylogeographic studies on A. cantonensis have mainly used two mitochondrial (mtDNA) markers, cytochrome c oxidase 1 (CO1) and cytochrome b (CYTB), where the focus has largely been descriptive in terms of report- ing local patterns of haplotype variants. In order to look for more global evolutionary patterns, we herein provide a collective phylogenetic assessment using the six avail- able whole mtDNA genome samples that have been tagged as A. cantonensis, A. ma- laysiensis, or A. mackerrasae along with all other GenBank CO1 and CYTB partial sequences that carry these species identifiers. The results reveal three important complications that researchers will need to be aware of, or will need to resolve, prior to conducting future molecular evolutionary studies on A. cantonensis. These three problems are (i) incongruence between taxonomic identifications and mtDNA vari- ants (haplotypes or whole mtDNA genome samples), (ii) the presence of a CYTB mtDNA pseudogene, and (iii) the need to verify A. mackerrasae as a species along with other possible cryptic lineages, of which there is suggestive evidence (i.e., A. canton- ensis could be a species complex). We provided a discussion of how these complica- tions are hurdles to our understanding of the global epidemiology of angiostrongyliasis. We call for future studies to be more explicit in morphological traits used for identifi- cations (e.g., provide measurements). Moreover, it will be necessary to repeat prior morphological and life-history studies while simultaneously using sequence data in order to assess possible associations between critical epidemiological data (e.g., bio- geography, virulence/pathology, host species use) and specific lineages. KEYWORDS Angiostrongylus cantonensis, Angiostrongylus mackerrasae, Angiostrongylus malaysiensis, cryptic lineages, cytochrome b (CYTB) gene, cytochrome c oxidase 1(CO1) gene, pseudogene, species complex

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

Evolutionary Applications. 2018;1–13.  | 1wileyonlinelibrary.com/journal/eva

Received:16November2017  |  Accepted:15February2018DOI: 10.1111/eva.12621

O R I G I N A L A R T I C L E

Hurdles in the evolutionary epidemiology of Angiostrongylus cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants, and cryptic lineages

Sirilak Dusitsittipon1,2* | Charles D. Criscione3* | Serge Morand4 |  Chalit Komalamisra5 | Urusa Thaenkham1*

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.Evolutionary ApplicationspublishedbyJohnWiley&SonsLtd

*Theseauthorscontributedequallytothiswork.

1DepartmentofHelminthology,FacultyofTropicalMedicine,MahidolUniversity,Bangkok,Thailand2DepartmentsofParasitologyandEntomology,FacultyofPublicHealth,MahidolUniversity,Bangkok,Thailand3DepartmentofBiology,TexasA&MUniversity,CollegeStation,TX,USA4CNRSISEM-CIRADASTRE,FacultyofVeterinaryMedicine,KasetsartUniversity,Bangkok,Thailand5Mahidol-BangkokSchoolofTropicalMedicine,FacultyofTropicalMedicine,MahidolUniversity,Bangkok,Thailand

CorrespondenceCharlesD.Criscione,DepartmentofBiology,TexasA&MUniversity,CollegeStation,TX,USA.Email:[email protected],DepartmentofHelminthology,FacultyofTropicalMedicine,MahidolUniversity,Bangkok,Thailand.Email:[email protected]

Funding informationDevelopmentandPromotionofScienceandTechnologyTalentsProject(DPST);AgriculturalResearchDevelopmentAgency,Grant/AwardNumber:CRP5705020410

AbstractAngiostrongylus cantonensis,theratlungworm,isazoonoticpathogenthatisoneoftheleadingcausesofeosinophilicmeningitisworldwide.ThisparasiteisregardedasanemergingpathogenwithaglobalrangeexpansionoutofsoutheasternAsiapost-WWII.Todate,molecularsystematic/phylogeographicstudiesonA. cantonensis have mainlyusedtwomitochondrial(mtDNA)markers,cytochrome c oxidase 1(CO1)andcytochrome b(CYTB),wherethefocushaslargelybeendescriptiveintermsofreport-inglocalpatternsofhaplotypevariants.Inordertolookformoreglobalevolutionarypatterns,wehereinprovideacollectivephylogeneticassessmentusingthesixavail-ablewholemtDNAgenomesamplesthathavebeentaggedasA. cantonensis,A. ma-laysiensis, or A. mackerrasae along with all other GenBank CO1 and CYTB partialsequences that carry these species identifiers. The results reveal three importantcomplicationsthatresearcherswillneedtobeawareof,orwillneedtoresolve,priortoconductingfuturemolecularevolutionarystudiesonA. cantonensis.Thesethreeproblemsare (i) incongruencebetweentaxonomic identificationsandmtDNAvari-ants (haplotypes or whole mtDNA genome samples), (ii) the presence of a CYTB mtDNApseudogene,and(iii)theneedtoverifyA. mackerrasaeasaspeciesalongwithotherpossiblecrypticlineages,ofwhichthereissuggestiveevidence(i.e.,A. canton-ensiscouldbeaspeciescomplex).Weprovidedadiscussionofhowthesecomplica-tionsarehurdlestoourunderstandingoftheglobalepidemiologyofangiostrongyliasis.Wecallforfuturestudiestobemoreexplicitinmorphologicaltraitsusedforidentifi-cations(e.g.,providemeasurements).Moreover, itwillbenecessarytorepeatpriormorphologicalandlife-historystudieswhilesimultaneouslyusingsequencedata inordertoassesspossibleassociationsbetweencriticalepidemiologicaldata(e.g.,bio-geography,virulence/pathology,hostspeciesuse)andspecificlineages.

K E Y W O R D S

Angiostrongylus cantonensis,Angiostrongylus mackerrasae,Angiostrongylus malaysiensis,crypticlineages,cytochrome b(CYTB)gene,cytochrome c oxidase1(CO1)gene,pseudogene,speciescomplex

Page 2: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

2  |     DUSITSITTIPON eT al.

1  | INTRODUC TION

Angiostrongylus cantonensis,theratlungworm,isazoonoticpathogenthatisoneoftheleadingcausesofeosinophilicmeningitisworldwide(Barrattetal.,2016).Thisparasiteisregardedasanemergingpatho-genwith a global range expansionout of southeasternAsia post-WWII(Kliks&Palumbo,1992;Wang,Lai,Zhu,Chen,&Lun,2008).DespitecasesofhumaninfectioninmanyoftheareaswhereA. can-tonensishasexpandeditsrange(Wangetal.,2008),therehasbeenlittle attempt to usemolecular evolutionarymethods to elucidatetheglobalepidemiologyofthisimportantpathogen.Indeed,theuseofDNAdataonlycameaboutinthe2000s.Forexample,ribosomalDNAsequenceswereusedtoassessmetastrongylidnematodere-lationships(Carreno&Nadler,2003)ortohelpsurveylarvaefrommolluskintermediatehosts(Fontanilla&Wade,2008;Qvarnstrom,Sullivan,Bishop,Hollingsworth,&daSilva,2007;Qvarnstrometal.,2010),and~360-bpregionofthecytochrome c oxidase 1(CO1)genewasusedtoassessrelationshipstootherspeciesofAngiostrongylus (Eamsobhanaetal.,2010).Todate,molecularsystematic/phylogeo-graphic studiesonA. cantonensishavemainlyused twomitochon-drial (mtDNA) markers,CO1 and cytochrome b (CYTB), where thefocushas largely beendescriptive in termsof reporting local pat-ternsofhaplotypevariants(Aghazadehetal.,2015;Dalton,Fenton,Cleveland,Elsmo,&Yabsley,2017;Dusitsittipon,Criscione,Morand,Komalamisra, & Thaenkham, 2017; Dusitsittipon, Thaenkham,Watthanakulpanich, Adisakwattana, & Komalamisra, 2015;Eamsobhana,Song,etal.,2017;Eamsobhana,Yong,etal.,2017;Lvetal.,2012;Monteetal.,2012;Moreiraetal.,2013;Nakayaetal.,2013;Okano etal., 2014;Rodpai etal., 2016; Simoes etal., 2011;Tokiwa etal., 2012, 2013; Vitta etal., 2016; Yong, Eamsobhana,Song,Prasartvit,&Lim,2015;Yong,Song,Eamsobhana,Goh,&Lim,2015;Yong,Song,Eamsobhana,&Lim,2016).

ComparisonsamongmolecularsystematicstudiesonA. canton-ensiswouldbeuseful to look forevolutionarypatterns that couldaid in epidemiological inference (e.g., biogeographic patterns andsources of introductions, host-associated or disease-associatedlineages).Unfortunately,because studiesdidnot concurrentlyusetheCO1 and CYTBmarkers,suchcomparisonsaredifficulttomake.However, the availability of recent whole mitochondrial genomesequences of A. cantonensis, A. malaysiensis, and A. mackerrasae provides a chance to “anchor”CO1 and CYTB clades because themtDNAdoesnotgenerallyrecombine(Ballard&Whitlock,2004).

Inordertolookformoreglobalevolutionarypatterns,wehereinprovideacollectivephylogeneticassessmentusingthesixavailablewholemtDNAgenomesamplesthathavebeentaggedasA. canton-ensis,A. malaysiensis,orA. mackerrasaealongwithallotherGenBankCO1 and CYTBpartialsequencesthatcarrythesespeciesidentifiers.Ourstudyfocusesonthesethreespeciesduetotheirmorpholog-ical and life-history similarities (Spratt, 2015; details given in theDiscussion).Our results reveal three important complications thatresearcherswillneedtobeawareof,orwillneedtoresolve,priortoconductingfuturemolecularevolutionarystudiesonA. cantonensis.

Thesethreeproblemsare(i)incongruencebetweentaxonomiciden-tifications andmtDNA variants (haplotypes or wholemtDNA ge-nomesamples),(ii)thepresenceofaCYTBmtDNApseudogene,and(iii)theneedtoverifyA. mackerrasaeasaspeciesalongwithotherpossiblecrypticlineages,ofwhichthereissuggestiveevidence(i.e.,A. cantonensis couldbea speciescomplex).Weprovidedadiscus-sionofhowthesecomplicationsarehurdles toourunderstandingoftheglobalepidemiologyofangiostrongyliasis.Wecallforfuturestudiestobemoreexplicitinmorphologicaltraitsusedforidentifi-cations(e.g.,providemeasurements).Moreover,itwillbenecessarytorepeatpriormorphologicalandlife-historystudieswhilesimulta-neouslyusingsequencedatainordertoassesspossibleassociationsbetweencriticalepidemiologicaldata(e.g.,biogeography,virulence/pathology,hostspeciesuse)andspecificlineages.

2  | MATERIAL S AND METHODS

2.1 | Assembly of CYTB and CO1 datasets

Available in GenBank, there are five mitochondrial genomesidentified as either A. cantonensis (NC_013065=GQ398121, Lvetal., 2012; AP017672, BioProject: PRJEB493; KT186242, Yong,Song, etal., 2015; KT947978, Yong etal., 2016) orA. malaysiensis (KT947979=NC_030332;Yongetal., 2016).AwholemtDNAge-nomeidentifiedasA. mackerrasaewasdiscussedinAghazadehetal.(2015),butwheretheactualsequencewasobtainedfromtheap-pendixofthethesisbyAghazadeh(2015).Werefertothesesixsam-plesasthemtDNAgenomereferencesamples.Sampleinformation,forexample,geographiclocation,andhostspecies,ofthesixrefer-encesampleswasobtainedfromtheoriginalpublicationsoravail-ableinformationonGenBankandisincludedinTablesS1andS2.

As prior studies on A. cantonensis do not include both CO1 and CYTB, a primary goal was to determine the correspondencebetweenCO1 and CYTB clades that have been identified in priorwork. Because themtDNAdoes not generally recombine (Ballard&Whitlock, 2004), we used the CYTB and CO1 sequences fromthe above sixmtDNAgenome reference samples to anchorCYTB or CO1haplotypesobtainedfrompreviousstudies.FromGenBank,we assembled all available CYTB or CO1sequencesthathavebeentaggedasA. cantonensis,A. malaysiensis,orA. mackerrasaeandthathave associated publications. TablesS1 and S2 also contain thesample information for all these additional sequences obtainedfromGenBank.Foroutgroups,weusedCYTB and CO1sequencesfrom the mtDNA genome samples of A. costaricensis (NC013067,AP017675,andKR827449)andA. vasorum(NC_018602).

AlignmentswereconductedwithClustalWinBioEdit(Hall,1999)alongwithmanualcorrectionsmadebyeye.Inaligningsequences,ahaplotypefromaparticularstudymayhavebeensubsumed(i.e.,therewasanidenticalmatchintheoverlappingregion)byalongersequencefromanotherstudy.Insuchcases,weonlyusedthelongersequenceinthephylogeneticanalyses.ThematchingGenBankhap-lotypesareindicatedinTablesS1andS2.

Page 3: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  3DUSITSITTIPON eT al.

The CYTB alignment consisted of approximately 852 nucle-otides. Primers that amplify this region ofCYTB are described in Dusitsittiponetal.(2017)(also,seebelow).Duetothepresenceofindels in a CYTBpseudogene(seeResults),theCYTBalignmentwasbasedonaminoacidtranslation(translationtable5,theinvertebratemtDNAcode,onGenBank)ofthemtDNAsequences.Subsequentnucleotide alignments (after back translation) were then kept incodonreadingframetofacilitatedownstreammolecularevolutionanalyses. The CYTB dataset contained 38 unique in-group haplo-types (including pseudogene haplotypes; see Results) and threeoutgroupsequences.TableS3containstheCYTBalignmentinfastaformat.

BecausemanyoftheavailableCO1sequenceswereshort(e.g.,~300bases),informationwithregardtotherelationshipsamongthesixmtDNAgenomereferencesampleswouldbelostifwetrimmedthealignment tomatch theshortest sequence.Asourprimary in-terestwasinassessingCO1haplotyperelationshipswithrespecttothesixmtDNAgenomereferencesamples, theCO1alignment re-tained the full-lengthsequencesof referencesamples.The result-inggappedsites(i.e.,sitesthatflanktheoverlappingregion)insuchan alignment are treated asmissing data in amaximum-likelihoodphylogeneticanalysis.WenotethatthereweretwoCO1sequences(MF000735andMF000736)fromDaltonetal. (2017)thatdidnotoverlapwith the regionofCO1thathaspredominatelybeenusedinstudiesofA. cantonensis.Asaresult, thephylogeneticpositionsof theCO1 haplotypes of Dalton etal. (2017) should only be in-terpretedwithrespecttothesixreferencesequencesandnottheremainingCO1haplotypes.The topologyof theCO1tree remainsthesameevenifthesequencesofDaltonetal.(2017)areexcluded(resultsnotshown).TheCO1datasetcontained41uniquein-grouphaplotypesandfouroutgroupsequences.TableS4containstheCO1 alignmentinfastaformat.TablesS1andS2containinformationonthe references fromwhichCO1 or CYTB haplotypesoriginated aswellasmatchinghaplotypes,namingconventions,andsampleiden-tifiersusedintheoriginalpapers.

2.2 | Phylogenetic analyses

PhylogeneticanalyseswereconductedinMEGA6software(Tamura,Stecher,Peterson,Filipski,&Kumar,2013)afterusingthemaximum-likelihoodmodel selection (with the “use all sites’ option”) to de-terminetheevolutionarysubstitutionmodel.ToconfirmthatboththeCO1 and CYTBhaplotypesfromthesixreferencesamplespro-videdthesamephylogeneticsignal,wefirstconductedmaximum-likelihood analyses using the TN93+G and HKY+G models,respectively.Forheuristicpurposesandtodeterminewhetherthetwo mtDNA markers provided similar information, we calculatedpairwisep-distancebetweenthesixreferencesamplesandtestedforacorrelationbetweentheCO1 and CYTBpairwisep-distancesusing a Mantel test. For the complete CO1 and CYTB datasets,maximum-likelihoodanalyseswiththeGTR+GandHKY+Gmod-els, respectively, were used for phylogenetic reconstruction. Onethousandbootstrapswereusedtoassessnodalsupport.Inourprior

study(Dusitsittiponetal.,2017),wefoundstrongassociationsbe-tweenninenuclearmicrosatelliteclustersandCYTBmtDNAclades.Wefollowthenamingconventionsoftheclustersandcladesidenti-fiedinDusitsittiponetal.(2017)tofacilitatediscussioninlinkingtoCO1 clades.

Ingeneral,welinkedCO1 and CYTBcladesbasedonthephylo-geneticpositionsofthereferencesamples.However,bootstrapsup-portwasexpectedtobelowinthecompleteCO1datasetbecauseofthepresenceofmanyshortsequences(e.g.,~300bases).Asaresult,itisimportanttorecognizethatthepositionsoftheshortCO1hap-lotypesaresubjecttochangependingacquisitionofnewsequencedata.Also, for the latter reason,weusedaconservativeapproachwherealinkintheCO1phylogenywasmadeonlybacktothenodethatcontainedthemostrecentcommonancestorofareferencese-quenceunlessacladehad>90%bootstrapsupport.Thereweretwoexceptionstothisrulewhereweusedtherelativephylogeneticpo-sitionsofclades;weconsidertheseexceptionstobehypothesizedclades(seeResults).

2.3 | Pseudogene analyses

Inourpriorstudy(Dusitsittiponetal.,2017),wedescribedhowtheCYTB primer pairs Cytb-F, 5′-TGAATAGACAGAATTTTAAGAG-3′and Cytb-R,5′-ATCAACTTAACATTACAGAAAC-3′ofDusitsittiponetal. (2015) would fail in some samples or produce sequencesthat translated with premature stop codons (henceforth referredto as untranslatable haplotypes). Upon the design of new prim-ers Cytb-F3 5′-ATGTTATCTTGATAAGGTAGAG-3′ and Cytb-R25′-AACCTAAATTCAATATACATACTAT-3′ (see Dusitsittipon etal.,2017),wewere able toobtain translatable sequences from speci-mensthatpreviouslyfailedorproduceduntranslatablehaplotypes.SpecimensamplingandsequencingprotocolsareexplainedindetailinDusitsittiponetal.(2017).Here,wenotethatuntranslatablehap-lotypeswereobtainedfrom41individuals(TableS1givestheindi-vidualidentifiersandlocationsofsamples)usingCytb-FandCytb-R.From30ofthese41individuals,wealsoobtainedtherealCYTB se-quenceusingCytb-F3andCytb-R2(Table1).

As pseudogenes are genes that have lost function, selectionpressures,especiallypurifying,willberelaxedandthepseudogenesmayaccumulateindelsresultinginframeshiftsandpossibleprema-turestopcodons.Also,substitutionrateswillbecomeequalamongcodonpositions;thatis,theratioofnonsynonymoustosynonymoussubstitution rates (dN/dS=ω) will approach 1 (Bensasson, Zhang,Hartl,&Hewitt,2001;Wertheim,Murrell,Smith,KosakovskyPond,& Scheffler, 2015). We used amino acid translated sequences toguide alignment between the CYTB of the six reference mtDNAsamples and the untranslatable haplotypes, that is, candidatepseudogene haplotypes. Manual corrections to nucleotide align-mentsweremadebyeye.Weinspectedthealignmentforindelsthatwouldcauseframeshiftsandprematurestopcodons.

Wethentestedforelevatedωandrelaxedselectioninthehy-pothesized pseudogene lineage. PAML v4.9d (Yang, 2007) via thePAMLX v1.3.1 GUI interface (Xu & Yang, 2013) was used to run

Page 4: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

4  |     DUSITSITTIPON eT al.

codeml. The CYTBalignmentfilewasthesameasforthephyloge-neticanalysisabove(TableS3).Gappedsites(i.e.,ambiguouscodons)areignoredintheanalyses.Alikelihoodratiotestofbranchmodelswasusedtodeterminewhethertherewaselevatedωonthehypoth-esizedpseudogenelineage.Thenullmodel(M0)ofoneωratioforallbrancheswascomparedtoanalternativemodeloftwoωratios:onefor the hypothesized pseudogene (foreground branches) and onefortheremainingbranches(backgroundbranches).Likelihoodratiotests1and2describedinZhang,Nielsen,andYang(2005)wereusedtodeterminewhethertheelevatedωwasduetorelaxedselectionasopposedtopositiveselection(e.g.,seePavlovaetal.,2017).Inbothtests,branch-siteModelAisthealternativehypothesis.Branch-siteModelAmodelassumesfoursiteclasses:sitesunderpurifyingse-lection(0<ω0<1);sitesunderneutrality(ω1=1);sitesunderposi-tiveselectionω2>1 intheforeground lineagebutunderpurifyingselection(0<ω0<1) inbackgroundlineages;andsitesunderposi-tiveselectionω2>1intheforegroundlineagebutunderneutrality(ω1=1)inbackgroundlineages.Test1usesasanullthesitesmodelM1a,whichassumestwositeclassesforallbranches:0<ω0<1andω1=1.RejectionofthenullinTest1hasgoodpowertodetectre-laxedselection,buthasahighfalse-positiverateforpositiveselec-tion(Zhangetal.,2005).Test2comparesbranch-siteModelAtoanullwherebranch-siteModelAhasω2=1inforegroundbranches.Test2hasanappropriatetypeIerrorwhentestingforpositivese-lection(Zhangetal.,2005).Thus,asignificantTest1alongwithfail-uretorejectinTest2wouldprovidesupportforrelaxedselection.

3  | RESULTS

3.1 | Phylogenetic analyses

CO1 and CYTBphylogenetictreesbasedonthesixmtDNAgenomereferencesampleswere identical in topology (datanotshown)andmatchedtheirrelationshipsobservedintheresultsbasedonthecom-pleteCO1 and CYTBdatasets(Figures1and2).Thereisasignificantandveryhighcorrelation inCO1 and CYTBpairwisep-distancesofthesixreferencesamples(r = .99;p < .001;Table2).Thus,aswouldbeexpectediftherewasnorecombination,thetwomtDNAgenesshowthesamephylogeneticsignalandareappropriatetouseasan-chorsfortheCYTB and CO1haplotypesobservedinpreviousstudies.

Atthebroadestlevel,twodivergentcladesareobservedintheboth theCO1 and CYTB datasets (Figures1 and 2). Clade I is an-choredby three referencemtDNAsamplesoriginally identifiedasA. cantonensis (NC_013065, AP017672, and KT947978) and thesampleidentifiedasA. mackerrasae,whichisverycloselyrelatedtoAP017672.Clade II isanchoredbyKT947979 (originally identifiedas A. malaysiensis;Yongetal.,2016)andKT186242(originallyiden-tifiedasA. cantonensis,Yong,Song,etal.,2015).Athirdclade,CladeIII, was also identified in theCYTB dataset. Evidence is providedbelowthatshowsCladeIII representsaCYTBpseudogene lineagewithinspecimensthatfallinCladeII.

Comparing the CO1 and CYTB phylogenetic trees, the refer-ence samples enabled the linking of four subclades and relative

phylogenetic positions provided hypothesized links between twoadditional subclades.Within Clade I, Subclade I.1 is anchored bythereferenceKT947978(=CYTBHaplotype6ofDusitsittiponetal.,2017; redclade inFigures1and2).Subclade I.2wasanchoredbybothAP017672andthemtDNAgenomesampleofA. mackerrasae (orangecladeinFigures1and2).ThereferenceNC_013065linkedSubclade I.4 (pink clade in Figures1 and 2). Subclades I.3 and I.5(aquaandblackclades,respectively,inFigures1and2)arethehy-pothesized clades based on relative phylogenetic positions; how-ever, additional reference samples (i.e., samples from which bothCO1 and CYTBhavebeenobtained)areneededtoverifytheselinks.WithinCladeII,theSubcladeII.1(lightgreencladeinFigures1and2)isanchoredbythereferencesamplesKT186242andKT947979(=CYTBHaplotype14ofDusitsittiponetal.,2017).

Generally,thesubcladedesignationshavestrongbootstrapsup-port(>90%)intheCYTBphylogeny(Figure1).Incontrast,bootstrapsupportforsubcladesisoftenlowintheCO1phylogeny(Figure2)becausemanyhaplotypesareshort(e.g.,<500nucleotides).Asare-sultofourconservativeapproach,severalCO1haplotypesthatweresister toSubclades I.1or I.2werenot included in thesesubclades(Figure2).Likewise,noadditional linkingwasmadeinCladeIIduetoalackofadditionalreferencesequencesandthelowphylogeneticresolutionamongtheCO1 or CYTBhaplotypesinthisclade.WealsonotethatinSubcladeII.1,afewhaplotypes(KY439008,KY439011,KY439012)areshort(~300nucleotides),butshowlargedivergence(i.e., long branches; Figure2); hence, their inclusion in this cladeshouldbeconsideredtentative.

3.2 | Pseudogene analyses

From prior studies (Dusitsittipon etal., 2015, 2017), the primersCytb-F andCytb-Rproduced sequenceswithuninterruptedaminoacidtranslations(i.e.,noprematurestopcodons)forspecimensthatonly fallout inClade I (Figure1). In thecurrentstudy, thesesameprimersyieldedfivehaplotypes(H22–H26)withinterruptedaminoacid CYTBtranslationsfrom41specimenscollectedfromvariouslo-cationsacrossThailand(TableS1).UponusingprimersCytb-F3andCytb-R2, we obtainedCYTB sequences with uninterrupted aminoacid translations from30of these41 specimens (Table1).Hence,bothtranslatableanduntranslatablehaplotypeswereobtainedfromthe same individuals. The translatable haplotypes (from primersCytb-F3andCytb-R2)fromall30oftheseindividualsfallinCladeII(Table1,Figure1).

We also highlight that the Cytb-F and Cytb-R primers wereused inastudybyYong,Eamsobhana,Song,etal. (2015)forsam-plesthey identifiedasA. cantonensis and A. malaysiensis.However,upondownloadingfromGenBank,itwasobservedthatallofYong,Eamsobhana,Song,etal.(2015)sequenceslabeledasA. malaysiensis weremarkedas“unverified”onGenBank(TableS1).Indeed,straighttranslation(i.e.,nogapsinthealignmentareinserted)ofthesese-quences revealed premature stop codons.One haplotypewe ob-served,H24,was thesameas theirAMM_1TAKsample (GenBank# KP732098) (Figure1, TableS1). Aligning these “unverified”

Page 5: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  5DUSITSITTIPON eT al.

sequenceswithourown samples showedeight different untrans-latablehaplotypes.AfteralignmentoftheseeighttothereferencemtDNA samples, the untranslatable haplotypes had four commonregionswithdeletionsofsix,one,one,andtwonucleotidesinlength.It is after the first twodeletion regions that there is a frameshiftthatleadstoseveralprematurestopcodonsintranslationoftheun-gappedhaplotypes.Theseeighthaplotypesarelargelydistinguishedfromoneanotherbyuniquesingleindelsorafewsinglenucleotidepolymorphisms (TableS3).Thephylogenetic analyses showed thatall eight of the untranslatable haplotypes fall into a single clade,Clade III, which is sister to Clade I (Figure1). Note that becausethemaximum-likelihoodanalysistreatsgapsasmissingdata,someuniqueuntranslatable haplotypes appear identical in thephyloge-netictreeastheironlydifferencesareindels(Figure1).

The branch test with two ω ratios (ωbackground=0.015, ωfore-ground=0.534, lnL=−3,033)was significantly favoredover theM0model of a single ratio (ω=0.019, lnL=−3,037) for all branches(χ2=8, df=1, p = .005). Hence, the hypothesized pseudogenebranchesshowelevatedω.Therewasnodifferenceinthebranch-siteModelA(lnL=−3,025)andModelAwithω2=1(lnL=−3,025),thatis,ω2wasestimatedtobe1inModelA(Test2,χ

2=0,df=1,p = 1).However,Test1wassignificantwereModelAwasfavoredoverM1a(lnL=−3,031;χ2=12,df=2,p = .002).TheresultsofTest1andTest2areconsistentwithrelaxedselectiononthehypothe-sizedpseudogenelineage.

4  | DISCUSSION

4.1 | Incongruence between taxonomic identifications and mtDNA lineages

In Dusitsittipon etal. (2017), we observed two divergent CYTB clades(>11%p-distance)amongwild-caughtlarvalsamplesoriginally

identified asA. cantonensis (based onmorphology of adultwormsfromexperimentallyinfectedrats).Atthetimeofourstudy,wehadusedtwomtDNAgenomesamplesasreferencesinourphylogeneticanalysesbecause theywere identified in their respectivepublica-tionsasA. cantonensis.ThesewereNC_013065(Lvetal.,2012)andKT186242(Yong,Eamsobhana,Lim,etal.,2015;Yong,Song,etal.,2015),bothofwhichoriginatedfromlaboratory-maintainedisolatesinChinaorThailand,respectively.CladeIcontainedNC_013065andCladeIIhadKT186242.Moreover,weobservedthesetwomtDNAcladeswerecompletelycongruentwithtwogeneticallydistantclus-tersthatwerebasedon12nuclearmicrosatelliteloci(Dusitsittiponetal.,2017).AsthemtDNAandmicrosatellitescamefromthesameindividuals,thecompletenon-randomassociationbetweenmtDNAcladesandmicrosatelliteclustersprovidedconclusiveevidencethatthese twoclades representeddistinct species (Dusitsittiponetal.,2017).InthecurrentstudyafteraddingadditionalCYTBhaplotypesalongwith fourmoremtDNA reference samples, these twoCYTB cladesremainedclearlydefined(Figure1).Furthermore,thesetwoclades,anchoredby thesix referencemtDNAsamples,areclearlyobservedintheCO1phylogeny(Figure2).

While the currentmolecular data show clear evidence of twospeciesas reflectedbythetwoclades (Figures1and2), thereareevident incongruencesbetween taxonomic identificationsof sam-plesandmtDNAcladeswhencomparingtheCYTB and CO1phylog-enies.WiththeexceptionoftheA. mackerrasaereference(discussedbelow),allhaplotypes (CYTB or CO1)that fall inClade Ioriginatedfrom samples originally identified asA. cantonensis (TablesS1 andS2).Incontrast,samplesthatfallinCladeIIwereidentifiedaseitherA. cantonensis or A. malaysiensis.

In theCO1 phylogeny, several haplotypes fromwild-collectedlarval samples thatwere identified asA. cantonensis inVitta etal.(2016) fall intoClade II (TableS2,Figure2).Vittaetal. (2016)alsousedKT186242asaCO1referenceintheirphylogeny.Haplotypes

TABLE  1 SamplesfromwhichboththepseudogeneandCYTBgenewereobtained(n=30)

Sample ID Provinces Coordinates Pseudogene haplotype CYTB haplotype

BKK6,7 BKK9

Bangkok 13°45′0″N100°31′1.20″E H22 H24

H14 H14

LB19–21 LopBuri 14°51′21″N100°59′24″E H24 H14

PCK2,5 PCK7,

PrachuapKhiriKhan 12°23′42″N99°55′0″E H22 H22

H13 H16

CTI1,2,16 Chanthaburi 12°36′3″N102°16′14″E H14 H14

CMI3 ChiangMai 18°47′43″N98°59′55″E H22 H18

NWT7 NWT9

Narathiwat 6°25′N101°49′E H22 H25

H16 H19

NKI1–3,6,7 NKI10

NongKhai 17°52′5″N102°44′40″E H26 H26

H19 H20

PNA2,4 PhangNga 8°27′52″N98°31′54″E H22 H14

RNG1–5,7 Ranong 9°57′43″N98°38′20″E H24 H14

KKN6 KhonKaen 16°26′N102°50′E H25 H19

GenBankaccessionnumbersareMG516589-MG516592forH22-H25,respectively.SampleCMI4hadH23(TableS4),butwedidnotobtainthecor-respondingCYTBhaplotypefromthissample.

Page 6: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

6  |     DUSITSITTIPON eT al.

from Rodpai etal. (2016), also from wild-caught larval samples,fell intoClade II. Rodpai etal. (2016) referred to their samples asA. malaysiensisinconjunctionwiththefindingoftwodivergedCO1 cladesthatcorrespondedtotwo18SribosomalDNA(rDNA)cladesthathadpriorspecies-designatedreferencesequences(seebelow).Eamsobhana,Yong,etal. (2017) identifiedadult,wild-caught sam-plesasA. malaysiensis,andtheirsamplesalsofallinCladeII(TableS2;Figure2).

Notably, we highlight that the reference sequence KT186242(Yong,Song,etal.,2015)wasbasedonthewhole-genomesequenceof a Thai laboratory isolate identified as A. cantonensis in Yong,Eamsobhana,Lim,etal. (2015).Thesamegroupinthesubsequentyear (Yong etal., 2016) published the mtDNA genome of a wild-caught adult sample fromMalaysia that they identified asA. ma-laysiensis (KT947979). Yong etal. (2016) and Eamsobhana, Yong,etal.(2017)donotcompareKT947979toKT186242.WenotethatthesetwomtDNAgenomes,whichcarrydifferentspeciesnamesinGenBank,fallinCladeII(Figures1and2)andareextremelysimilarattheCO1 and CYTB(<0.2%p-distance,Table2).

Selectiveinclusion/exclusionofhaplotypesamongstudiesalongwith possible misidentifications due to similar morphologies ofA. malaysiensis and A. cantonensis (discussedbelow)have likely ledtotheseincongruencesbetweentaxonomyofsamplesandphyloge-neticrelationshipsoftheirrespectivehaplotypes.Basedonthefact

thatallsamplesforCYTB and CO1 inClade Ihavebeen identifiedas A. cantonensisandthatEamsobhana,Yong,etal.(2017)identifiedwild-caughtadultwormsaprioriasA. malaysiensis,wehenceforthrefertoCladeIasA. cantonensisandCladeIIasA. malaysiensis.

Further support for assigning these species names to theseclades comes from Rodpai etal. (2016) in which they obtainedbothCO1 and 18S rDNA sequences from the same individuals.Rodpaietal.(2016)foundcompletecongruencebetweentwoCO1 clades and two 18S cladeswhere the two 18S clades had priorreferencesequencesdesignatingthemasA. cantonensis(GenBankAY295804;Carreno&Nadler,2003)orA. malaysiensis (GenBankEF514914;Fontanilla&Wade,2008).Tofacilitatefuturestudies,weprovidedTablesS5andS6,whichprovidesampleinformationlinking18ShaplotypesandCO1haplotypesaswell as thealign-mentoftheunique18ShaplotypesofA. malaysiensis and A. can-tonensisinfastaformat.Wealsonotethatthenuclear18Scladesof Rodpai etal. (2016) are completely congruent with the twomain diverged microsatellite clusters observed in Dusitsittiponetal.(2017),therebyreinforcingthespeciesdelimitationofcladesI and II. Of special note, because KT186242 (Yong, Song, etal.,2015)wouldnowbeclassifiedasbeingfromA. malaysiensis,thenthegenomesequenceinYong,Eamsobhana,Lim,etal.(2015)alsoneeds to be reclassified as coming fromA. malaysiensis and notA. cantonensis.

F IGURE  1 Maximum-likelihoodphylogenetictreeofthecompletemtDNACYTBdataset(TablesS1andS3).ThesixreferencemtDNAsamplesareindicatedbycircles.CladeIisanchoredbythreereferencemtDNAsamplesoriginallyidentifiedasAngiostrongylus cantonensis(NC_013065,AP017672,andKT947978)andthesampleidentifiedas A. mackerrasae.CladeIisreferredtoasA. cantonensis(seemaintextforjustification).CladeIIisanchoredbyKT947979(originallyidentifiedasA. malaysiensis;Yongetal.,2016)andKT186242(originallyidentifiedasA. cantonensis,Yong,Song,etal.,2015).CladeIIisreferredtoasA. malaysiensis (seemaintextforjustification).CladeIIIrepresentsaCYTBpseudogenelineagewithinspecimensthatfallinCladeII.OutgroupsincludeA. vasorum (NC_018602),andA. costaricensis (NC_013067,andAP017675).Subcladedesignations(discussedinmaintext)thatlinktheCYTBcladestoCO1 clades are denotedbydifferentcolors.Numbersatnodesindicatedbootstrapsupport(onlynodeswith>50%supportorthatareofparticularinterestareshown)

Page 7: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  7DUSITSITTIPON eT al.

4.2 | CYTB pseudogene

WefoundstrongevidenceforaCYTBpseudogenewithinindividu-als that are in the A. malaysiensis clade. First, from 30 individu-als (Table1), we obtained both an untranslatable haplotype thatresides inClade IIIanda translatablehaplotypethat falls inCladeII (Figure1).Second, theuntranslatablehaplotypesshowtheclas-sic signs of a pseudogenized gene in having indels, which causedframeshiftsandthus,downstreamprematurestopcodons.Thefourshareddeletionregions(TableS3)inalleighthaplotypesofCladeIII

suggest thedeletionshappened in theancestralhaplotypeof thisclade.Third,molecularevolutionanalysessupportedrelaxedselec-tionwithelevatedωonthepseudogenelineage.

Incorrect phylogenetic inferences can be drawn if thepseudogene is treated as an ortholog to the real mtDNA genes(Ballard&Whitlock,2004).Yong,Eamsobhana,Song,etal. (2015)usedtheCytb-FandCytb-RprimersonsamplesidentifiedasA. ma-laysiensis and recovered untranslatable haplotypes. As shown inour analyses, these haplotypes of Yong, Eamsobhana, Song, etal.(2015)fallintoCladeIII,thatis,thepseudogeneclade.Fortunately,

F IGURE  2 Maximum-likelihoodphylogenetictreeofthecompletemtDNACO1dataset(TablesS2andS4).ThesixreferencemtDNAsamplesareindicatedbycircles.CladeIisanchoredbythreereferencemtDNAsamplesoriginallyidentifiedasAngiostrongylus cantonensis (NC_013065,AP017672,andKT947978)andthesampleidentifiedasA. mackerrasae.CladeIisreferredtoasA. cantonensis(seemaintextforjustification).CladeIIisanchoredbyKT947979(originallyidentifiedasA. malaysiensis;Yongetal.,2016)andKT186242(originallyidentifiedasA. cantonensis,Yong,Song,etal.,2015).CladeIIisreferredtoasA. malaysiensis(seemaintextforjustification).Outgroupsinclude A. vasorum(NC_018602andNC_013067)andA. costaricensis(AP017675andKR827449).Subcladedesignations(discussedinmaintext)thatlinktheCO1cladestoCYTBcladesaredenotedbydifferentcolors.Numbersatnodesindicatedbootstrapsupport(onlynodeswith>50%supportorthatareofparticularinterestareshown)

Page 8: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

8  |     DUSITSITTIPON eT al.

nophylogenetic inferencesweregrosslymisrepresentedasA. ma-laysiensisisstillsistertoA. cantonensisusingtheorthologousCO1 or CYTBgenes(Figures1and2).Nonetheless,appropriategeneticdis-tancecomparisonswouldneedtobemadebetweencladesIandIIandnotcladesIandIII(e.g.,Rodpaietal.,2016;Yong,Eamsobhana,Song,etal.,2015).

4.3 | Need to verify cryptic lineages and A. mackerrasae as species

Another interestingpatternobtainedby collectively analyzing theCO1 and CYTBdataisthatthesamplemtDNAgenomefromA. mack-errasae(Aghazadehetal.,2015)isnestedwithinsamplesthathavebeen identifiedasA. cantonensis (Subclade I.2,Figures1and2). Inparticular, theA. mackerrasaesample isverycloselyrelatedtoandlessthan1%divergent (p-distance)at theCO1 and CYTB (Table2)fromAP017672 (Figures1 and 2), an unpublishedGenBank entrythat was part of the 50 Helminth Genomes Project (BioProject:PPRJEB493).AP017672wasidentifiedasA. cantonensisfromTaiwanwithnootherinformationgiven.

Recently Song, Yong, and Eamsobhana (2017) compared thewholemtDNA ofA. mackerrasae (Aghazadeh, 2015) to KT947978(Thailand isolate of A. cantonensis, Yong etal., 2016) and toNC_013065 (China isolate ofA. cantonensis, Lv etal., 2012). Theyfound across all protein coding genes the following pairwisep-distances: A. mackerrasae-KT947978=1.73%, A. mackerra-sae-NC_013065=3.7%, KT947978-NC_013065=3.52%. TheseoveralldistancesarereflectedintheaverageoftheCO1 and CYTB p-distancesgiveninTable2.Becauseofthegeneticsimilarity,theyconcluded“…thatA. mackerrasaemaybeconspecificwithA. canton-ensis(Songetal.,2017).ItremainstoberesolvedwhetherA. mack-errasae is conspecific with A. cantonensis or undergoing incipientspeciation.”Weagreewith their argument and in general suggestconcordanceinmultiplemarkersbeusedinspeciesdelimitationes-peciallywhenmtDNAdivergenceislow(Janzenetal.,2017).

Our prior study showed concordant patterns between nuclearmicrosatellitemarkersandCYTBlineages(Dusitsittiponetal.,2017).Affiliationsbetweenthesubcladesdesignatedherein,andthesemi-crosatellite clusters are given in Table3. The non-random associa-tions betweenmtDNAhaplotypes andnuclear clusters, alongwithp-distances upwards of 6% between some CYTB haplotypes (e.g.,betweenSubcladesI.1andI.5)withinCladeI,arestrongsuggestive

evidenceofcrypticspecieswithinwhatisregardedasthesinglespe-cies A. cantonensis(Dusitsittiponetal.,2017).Forexample,fromtheNanprovinceofThailand,Dusitsittiponetal.(2017)foundtwoCYTB haplotypes (H7andH9;Subclades I.2andI.3, respectively)eachofwhichcorrespondedtodistinctmicrosatelliteclusters(clusters6and5,respectively).Thus,insympatry,strongmtDNA–nuclearmarkeras-sociations remain intact.Asanotherexample,CYTBhaplotypes13,14,16,17(SubcladeII.1;Figure1)arefoundonlyinsamplesthatbe-longtomicrosatelliteCluster8,butyetthisclusterisdispersedacrosssevenprovinces inThailand(Dusitsittiponetal.,2017).Themainte-nanceofmtDNA–nuclearmarker associationswithin sympatry andacrossgeographyindicatesreproductiveisolation.Hence,wehypoth-esize thatA. cantonensismay in factbea recentlydiverged speciescomplexwhereinthefivesubclades inCladeImayreflectdifferentspecies.

ReturningtodiscussionoftheA. mackerrasaesample,wedrawparticular attention to CYTB Haplotype 7, which was reportedwithin Nakhon Si Thammarat and Nan, Thailand (Dusitsittiponetal.,2017).Haplotype7 is veryclosely related to theA. macker-rasaesample (differsby2of852bp;SubcladeI.2;Figure1).CYTB Haplotype7wasrestrictedtoindividualsthatwereinmicrosatelliteCluster6andnootherhaplotypewasfoundinthiscluster(n = 15;Dusitsittiponetal.,2017).Again,astherewas100%concordancebetween nuclear andmtDNA data, this is suggestive evidence insupport ofA. mackerrasae as a distinct species.Nevertheless, ad-ditionalmultilocusdata areneeded to confirmwhether there areindependentevolutionaryunits(i.e.,distinctspecies)withinCladeI.Forexample,basedonthecollectiveanalysesweconductedherein,wewouldpredictthatifA. mackerrasaeisindeedadistinctspecies,then samples of morphologically identified A. mackerrasae fromAustraliawouldhaveamicrosatelliteprofilethatwouldclusterthemwithCluster6.

4.4 | Evolutionary epidemiological inferences: gaps in linking the phylogenetic data to the life history and morphology

First,we highlight two caveats in linking theCYTB and CO1 sub-clades. (i)We are assuming that there is no effective recombina-tion in themtDNA.Mitochondrial recombination,whichhasbeendocumented ina fewanimalspecies (Ladoukakis&Zouros,2017),wouldprecludeanchoringthetwophylogenies.However,asnoted

TABLE  2 Pairwisep-distancebetweenthesixmtDNAreferencesamples.CO1isabovethediagonalandCYTB is below

AP017672 Aghazadeh KT947978 NC013065 KT947979 KT186242

AP017672 0.009 0.018 0.041 0.090 0.090

Aghazadeh 0.006 0.019 0.041 0.090 0.090

KT947978 0.014 0.014 0.038 0.091 0.091

NC013065 0.036 0.038 0.036 0.086 0.086

KT947979 0.110 0.108 0.109 0.117 0.001

KT186242 0.112 0.110 0.111 0.119 0.002

Page 9: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  9DUSITSITTIPON eT al.

inourresults,congruentCYTB and CO1topologiesandpairwisep-distancesamongthesixmtDNAreferencesamplessuggestrecom-binationwasnotpresentinappreciableamounts.(ii)ThemanysmallCO1haplotypesledtolowbootstrapsupportformanyofthesub-clades intheCO1tree.Hence,thesubclade linkswemadeshouldberegardedastentativehypothesesthatneedtobetestedwithad-ditionaldata.Ourgoalwastobeginmakingsenseof theavailablesequencedatainrelationtothebiologyofratlungworms;thus,thesubclade designationswere necessary to facilitate discussion andaddressfutureavenuesofstudy.Belowwerelateourphylogeneticresultstowhatisknownforthelifehistories,morphology,andgeo-graphicdistributionsofA. cantonensis,A. malaysiensis,andA. mack-errasae.Admittedly,weprobablyindicatemoregapsthanlinkstothephylogeneticdata,butbycallingattentiontothesegaps,wehopetohighlightcriticalareasforfuturestudy.Weonlybrieflysummarizesomekey traitsbelow.Foramoreextensivediscussionof the lifehistoriesofthesethreespecies,wereferreaderstoanexcellentre-viewbySpratt(2015).

Angiostrongylus cantonensis, A. malaysiensis, and A. mackerrasae have similar adult morphologies. These three species are largelydistinguished by the adultmale spicule lengths and separation orlengthofbursalrays(Bhaibulaya,1968,1979;Bhaibulaya&Cross,1971;Chen,1935).Bursalrayseparationandlengthareverysubtleand A. malaysiensis and A. cantonensisoverlapintherangeofspiculelengthswithA. cantonensisbeinglargeronaverage.Angiostrongylus mackerrasaehasthesmallestspiculelengthanddoesnotoverlaptheothertwo(Bhaibulaya,1979).Likewise,thelarvaehaveverysubtlemorphologicaldifferences (Bhaibulaya,1975). Inpart, thesesubtle

differencesoroverlap in traits has likely lead to someof the tax-onomic–mtDNA clade incongruences we noted above. Therefore,wecallonfuturestudiestobeexplicitinkeytraitssuchasspiculelength.

Also, A. cantonensis, A. malaysiensis, and A. mackerrasae have beendescribedashaving similar lifehistories.Theyall infect thepulmonaryarteriesandrightventricleofvariousrodents.However,differences in developmental rates and pathological affects inprimates have been reported (Bhaibulaya, 1979; Cross, 1979). Inparticular, Cross (1979) describes howexperimental infections ofmonkeyswith various geographic isolates ofA. cantonensis (mor-phologicallyidentified)resultedingreaterpathologicaleffectsanddeaththancomparedtoinfectionswithA. malaysiensis or A. mack-errasae (monkeys survived infections with the latter species). Inexperimental infections of rats, Cross (1979) recovered a statis-tically lower percentage of adults ofA. malaysiensis compared toA. cantonensis.

Weareawareofonlytwostudiesthathavelookedatmorphol-ogy and/or life history in relation tomtDNA isolates.Monte etal.(2014) examined the morphology of laboratory-maintained wormsthathadtheCO1ac8(SubcladeI.2,Figure2)andCO1ac9(SubcladeI.5,Figure2)haplotypes. Interestingly,CO1ac8 iscloselyrelatedtotheA. mackerrasae sample. They reported significant differences inthespiculelength(mm):1.29forwormswithac8and1.23forthosewithac9.However,bothof thesemeansfall in therangeofA. can-tonensis (1–1.46)andoutof the range forA. mackerrasae (0.4–0.56)(Bhaibulaya,1979).Futurestudiesareneededtodeterminewhetherspicule length (and other traits) is affected by environmental

TABLE  3 SubcladeaffiliationstomicrosatelliteclustersfromDusitsittiponetal.(2017),countrylocations,andhostspecies.Affiliationsweremadefromsampleinformation(TablesS1andS2)fromeithertheCO1 or CYTBhaplotypesthatfallwithintherespectiveclade.(L=laboratory-maintained,W=wild-collected,U=unknownorigin.Ifnosuperscriptisgiven,thenitwaswild-collected.)

Subclade I.1 I.2I.3, hypothesized I.4

I.5, hypothesized II.1

Microsatellitecluster

1–3 6 5 Nodata 4 8

Countries ThailandL,W TaiwanU

ThailandL,W

Australia Japan UnitedStates,mainland Brazil

Thailand ChinaL,W

UnitedStates,HawaiiL

Japan Taiwan Myanmar

Thailand ChinaL,W

Japan Brazil

ThailandL,W

Malaysia Taiwan

Molluschosts Achatina fulica Cryptozona siamensis

Achatina fulica Achatina fulica Achatina fulica Limax marginatus

Achatina fulica Achatina fulica Cryptozona siamensis

Mammalhosts

Rattus rattus Rattus exulans Bandicota indica

Rattus norvegicus Rattus fuscipes Rattus rattus Bandicota indica Diplothrix legata Dasypus novemcinctu Didelphis virginiana

Rattus rattus Rattus norvegicus Rattus rattus

Rattus norvegicus Rattus rattus

Rattus rattus diardii Rattus rattus Rattus norvegicus Bandicota savilei Rattus losea

DuetolowphylogeneticresolutionintheCYTBofCladeIIandduetoalackofadditionalreferencesequences(i.e.,samplesfromwhichbothCO1 and CYTBhavebeenobtained),itisnotpossibletolinktothemicrosatelliteclusters7and9ofDusitsittiponetal.(2017).

Page 10: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

10  |     DUSITSITTIPON eT al.

background(e.g.,intermediateordefinitivehostspecies).Monteetal.(2012)alsoreportgreaterlarvaloutputwithinfectionsofCO1ac9.InLeeetal. (2014),morphologyandpathogenicitywereexaminedbe-tweentwoCO1mtDNAisolates,Pingtung(P)andHualien(H),iden-tifiedasA. cantonensisfromTaiwan.Thereisdifficultyininterpretingtheir sequencedata (seeTableS2).Nonetheless, they reported sig-nificantlylowerrecoveryofadultwormsfromratsfortheHisolatecomparedtothePisolateandsmallerfemalebodysizeintheHiso-late.Leeetal.(2014)alsoreportedgreaterpathogenicityandsurvivalin rats infectedwith theP isolate.They indicatednodifferences inmalebodysize,bursalnumber,bursalshape,orspiculemorphology(thoughsizesnotgiven).

In some other interesting life-history studies, cross-breedingexperimentsbyBhaibulaya(1974)andCrossandBhaibulaya(1974)have shown that viable F1 hybrids could be generated betweenA. cantonensis × A. mackerrasae and A. cantonensis × A. malaysien-sis, respectively.However,while the F1 females appeared to pro-duceeggs (whichwe take tomeanoocytes), theF1malesdidnotproduce spermatozoa. In agreement,with the resultsof the lattercross,Dusitsittiponetal.(2017)foundanF1hybridbetweenCladeI (A. cantonensis) and Clade II (A. malaysiensis), usingmicrosatellitemarkers. The mtDNA–nuclear concordance for clades I and II in-dicates there is little tonobackcrossingofF1hybrids,which is inagreementF1sterilityfoundbyCrossandBhaibulaya(1974).

Table3 indicates both host (intermediate and definitive) andgeographiclocationsfromwhichcladeshavebeenrecorded.Somecautionisadvisedininterpretingthesereportsassamplingisnotequalamongstudies.Also,themolecular-basedidentificationsarebasedonthemtDNAresults inFigures1and2.TherearerDNA-basedsurveys.However,wedonotcovertherDNA-basedsurveyshereasthelackofvariationintherDNAprecludesassignmenttothesubcladelevel.Despitetheselimitations,someresultsconfirmpastmorphological-based surveys and some interesting patternshave also emerged. For example, although originally describedfromMalaysia,therearemorphological-basedreportsofA. malay-siensis in Thailand (Spratt, 2015). In particular, amixed infectionofA. cantonensis and A. malaysiensis hasbeen reported from ratsinBangkok,Thailand(Bhaibulaya&Techasoponmani,1972).Thesemorphological reports are now confirmed with the molecular-basedstudiesofRodpaietal.(2016)andDusitsittiponetal.(2017),whereininthelatterstudy,sympatricpopulationsofA. cantonen-sis and A. malaysiensiswere found in Thailand. In addition to thelocations reported for Subclade II.1 (Thailand,Malaysia, Taiwan),othercountrieswherethemtDNAdataindicatetheoccurrenceofA. malaysiensisincludeMyanmarandLaos(TablesS1andS2).Thus,there are nomtDNA-based identifications ofA. malaysiensis out-sideSouth-EastAsia.

In contrast,mtDNA-identified samplesofA. cantonensis,CladeI, havenotonly been found throughout South-EastAsia, but alsoin Japan, Brazil, and the continental United States. Subclades I.1and I.3 have only been reported from Thailand. Subclade I.4 islargelyrestrictedtoSouth-EastAsiaandJapan.TheHawai’ireport(GenBankKP721454inFigure1)inthissubcladeisfromaThailand

laboratory-maintained isolate by way of a Japan laboratory-maintainedisolate(TableS1).TheotherHawai’ireports,CO1haplo-typesac5bandac5(sistertoSubcladeI.2;Figure2),arealsobasedonlaboratory-maintainedisolatesinJapanorThailand(TableS2).AstheHawai’i isolatesarenot in thesamesubclades, itappears thattheremaybemorethanonetypeofHawai’ilaboratoryisolate.Themostgloballydistributed subcladesare I.2 and I.5. Subclade I.2 isinteresting in that it contains theA. mackerrasae sample,which isthesolesamplefromAustralia.Intriguingly,thelarvalsamplesfromDaltonetal.(2017)(GenBankMF000735andMF000736,Figure2)thatwerereportedfromwildlifeinthecontinentalUnitedStatesarecloselyrelatedtoA. mackerrasae(Figure2).Thus,ifSubcladeI.2rep-resentsA. mackerrasae,thencautionisadvisedininterpretingpastglobalreportsofA. cantonensisasitisclearthatSubcladeI.2hasalsobeenintroducedtotheAmericas(Table3).

5  | SUMMARY

OurstudyrepresentsaninitialattempttoconsolidatetheavailablemtDNA data to link the findings of past studies. Assimilating theavailablemtDNAhashighlightedthreecriticalfactorsthatinvestiga-torsneedtobeawareoforresolve infuturestudiesontheevolu-tionaryepidemiologyofA. cantonensis.First,thereareincongruencesbetweenspeciesidentificationsandmtDNAvariants.WeprovidedaresolutiontothisproblemaboveandTablesS1–S4toaidfuturestud-ies.Second,wepresentedstrongevidenceofaCYTBpseudogene.Theprimerswedesigned should enable avoidanceof this pseudo-gene. Third, currentmtDNA–nuclear concordant patterns stronglyhint at the presence of several cryptic species within Clade I andClade II (Dusitsittipon etal., 2017).Moremultilocus-based studiesareneededtoassessspeciesdelimitationsandtotestthevalidityofA. mackerrasae.

EosinophilicmeningitishasonlybeenattributedtoA. cantonen-sis (Barratt etal., 2016), and Spratt (2015) indicates there has notbeenunequivocalevidencetoshowthatA. mackerrasae or A. malay-siensis are zoonotics. However, as discussed above, morphologicalidentificationsofthesespeciesaredifficultduetotheirsimilarities.Thus,experimentsareneededtodeterminetraitdistributionswithinclades(orsubclades)andwherepossible,definitivelylinkmorpholog-icaltraitstothemolecular-basedphylogeneticlineages.Inaddition,currentmoleculardiagnostictoolsrelyonrDNA(Qvarnstrometal.,2010),whichdoesnothaveasmuchvariationasmtDNA.Thegeo-graphicaffiliationsofsubcladesgiveninTable3suggestglobaldistri-butionscouldbelimitedtojustsomesubclades.Finergeneticmarkerresolution is needed because existing studies suggest variation inlifehistoryorpathogenicityamonglineages(Leeetal.,2014;Monteetal., 2012). More studies are necessary to determine whethermtDNAsubclades(possiblyrepresentingaspeciescomplex)areasso-ciatedwithlife-history,infectivity,orpathogenicitytraits.Suchstud-ieswillprovideaclearerpictureoftheevolutionaryepidemiologyofA. cantonensisandcloselyrelatedspeciesaswellasenablemoleculardiagnosticswhenexaminingoutbreaksorvaryingpathologies.

Page 11: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  11DUSITSITTIPON eT al.

ACKNOWLEDG EMENTS

This work was supported by Agricultural Research DevelopmentAgency (CRP5705020410), and Development and Promotion ofScienceandTechnologyTalentsProject (DPST;RoyalGovernmentofThailandscholarship).WethankourcolleaguesinCriscioneLab(IsabelCaballero,EmilyKasl,andAndrewSakla)attheDepartmentof Biology, Texas A&MUniversity, TX, USA, for providing helpfulsuggestionsandtechnicalsupport,particularlyforthemicrosatellitework.WealsothanktheDepartmentofHelminthology,FacultyofTropicalMedicine,MahidolUniversity,Thailand, for technicalsup-port,particularlyforpartoftheDNAanalysis.

Dataforthisstudyareavailableat:NewlygeneratedpseudogenehaplotypesaredepositedinGenBank(MG516589–MG516592).Alldata,includingexplicitalignmentfilesandmatchinghaplotypeinfor-mationwithassociatedGenBankaccessionnumbers,areincludedinthesupplementalfiles.

CONFLIC T OF INTERE S T

None declared.

ORCID

Urusa Thaenkham http://orcid.org/0000-0003-0688-2422

R E FE R E N C E S

Aghazadeh, M. (2015). Molecular and pathological studies on Angiostrongylus species in southeast Queensland.DoctorofPhilosophy,TheUniversityofQueensland,StLucia,Qld.

Aghazadeh, M., Traub, R. J., Mohandas, N., Aland, K. V., Reid, S. A.,McCarthy,J.S.,&Jones,M.K.(2015).ThemitochondrialgenomeofAngiostrongylus mackerrasaeasabasisformolecular,epidemiologicalandpopulationgeneticstudies.Parasites & Vectors,8,473.https://doi.org/10.1186/s13071-015-1082-0

Ballard, J.W., &Whitlock, M. C. (2004). The incomplete natural his-toryofmitochondria.Molecular Ecology,13(4),729–744.https://doi.org/10.1046/j.1365-294X.2003.02063.x

Barratt,J.,Chan,D.,Sandaradura, I.,Malik,R.,Spielman,D.,Lee,R.,…Stark, D. (2016). Angiostrongylus cantonensis: A review of its dis-tribution, molecular biology and clinical significance as a humanpathogen.Parasitology,143(9),1087–1118.https://doi.org/10.1017/S0031182016000652

Bensasson,D.,Zhang,D.,Hartl,D.L.,&Hewitt,G.M.(2001).Mitochondrialpseudogenes:Evolution’smisplacedwitnesses.Trends in Ecology & Evolution,16(6),314–321.https://doi.org/10.1016/S0169-5347(01)02151-6

Bhaibulaya,M.(1968).AnewspeciesofAngiostrongylusinanAustralianrat, Rattus fuscipes. Parasitology, 58, 789. https://doi.org/10.1017/S0031182000069572

Bhaibulaya, M. (1974). Experimental hybridization of Angiostrongylus mackerrasae, Bhaibulaya, 1968 and Angiostrongylus cantonensis (Chen, 1935). International Journal for Parasitology, 4(6), 567–573.https://doi.org/10.1016/0020-7519(74)90020-4

Bhaibulaya, M. (1975). Comparative studies on the life history ofAngiostrongylus mackerrasae Bhaibulaya, 1968 and Angiostrongylus cantonensis (Chen, 1935). International Journal for Parasitology,5(1),7–20.https://doi.org/10.1016/0020-7519(75)90091-0

Bhaibulaya,M.(1979).Morphology and taxonomy of major Angiostrongylus species of Eastern Asia and Australia. Studies on Angiostrongylus in Eastern Asia and Australia.Taipei,Taiwan:USNavalMedicalResearchUnit,2.

Bhaibulaya,M.,&Cross,J.H.(1971).Angiostrongylus malaysiensis(Nematoda:Metastrongylidae), a new species of rat lung-worm from Malaysia.Southeast Asian Journal of Tropical Medicine and Public Health,2(4),527–533.

Bhaibulaya, M., & Techasoponmani, V. (1972). Mixed infections ofAngiostrongylus spp. in rats in Bangkok. Southeast Asian Journal of Tropical Medicine and Public Health,3(3),451.

Carreno, R. A., & Nadler, S. A. (2003). Phylogenetic analysis of theMetastrongyloidea(Nematoda:Strongylida)inferredfromribosomalRNAgenesequences.Journal of Parasitology,89(5),965–973.https://doi.org/10.1645/GE-76R

Chen,H.-T.(1935).Unnouveaunématodepulmonaire,Pulmonema can-tonensis, n. g., n. sp.Annales de Parasitologie Humaine et Comparée,13(4),312–317.https://doi.org/10.1051/parasite/1935134312

Cross, J. H. (1979). Studies on Angiostrongyliasis in Eastern Asia and Australia.Taipei,Taiwan:U.S.NavalMedicalResearchUnitNo.2.

Cross,J.H.,&Bhaibulaya,M. (1974).ValidityofAngiostrongylus malay-siensisBhaibulayaandCross,1971.Southeast Asian Journal of Tropical Medicine and Public Health,5(3),374–378.

Dalton,M. F., Fenton,H.,Cleveland,C.A., Elsmo, E. J.,&Yabsley,M.J.(2017).Eosinophilicmeningoencephalitisassociatedwithratlung-worm (Angiostrongylus cantonensis) migration in two-nine-bandedarmadillos (Dasypus novemcinctus) and an opossum (Didelphis vir-giniana) in the southeastern United States. International Journal for Parasitology: Parasites and Wildlife, 6(2), 131–134. https://doi.org/10.1016/j.ijppaw.2017.05.004

Dusitsittipon, S., Criscione, C. D., Morand, S., Komalamisra, C., &Thaenkham,U.(2017).Crypticlineagediversityinthezoonoticpatho-genAngiostrongylus cantonensis. Molecular Phylogenetics and Evolution,107,404–414.https://doi.org/10.1016/j.ympev.2016.12.002

Dusitsittipon,S.,Thaenkham,U.,Watthanakulpanich,D.,Adisakwattana,P., & Komalamisra, C. (2015). Genetic differences in the rat lung-worm, Angiostrongylus cantonensis (Nematoda: Angiostrongylidae),in Thailand. Journal of Helminthology, 89(5), 545–551. https://doi.org/10.1017/S0022149X14000388

Eamsobhana,P.,Lim,P.E.,Solano,G.,Zhang,H.,Gan,X.,&Yong,H.S.(2010).MoleculardifferentiationofAngiostrongylustaxa(Nematoda:Angiostrongylidae)bycytochrome c oxidasesubunitI(COI)genese-quences. Acta Tropica, 116(2), 152–156. https://doi.org/10.1016/j.actatropica.2010.07.005

Eamsobhana, P., Song, S. L., Yong, H. S., Prasartvit, A., Boonyong,S., & Tungtrongchitr, A. (2017). Cytochrome c oxidase subunit Ihaplotype diversity of Angiostrongylus cantonensis (Nematoda:Angiostrongylidae). Acta Tropica, 171, 141–145. https://doi.org/10.1016/j.actatropica.2017.03.020

Eamsobhana, P., Yong, H. S., Song, S. L., Prasartvit, A., Boonyong, S.,& Tungtrongchitr, A. (2017).Cytochrome c oxidase subunit I haplo-type reveals high genetic diversity of Angiostrongylus malaysiensis (Nematoda: Angiostrongylidae). Journal of Helminthology,92, 254–259.https://doi.org/10.1017/S0022149X17000244

Fontanilla,I.K.,&Wade,C.M.(2008).Thesmallsubunit(SSU)ribosomal(r)RNAgeneasageneticmarkerforidentifyinginfective3rdjuve-nilestageAngiostrongylus cantonensis. Acta Tropica,105(2),181–186.https://doi.org/10.1016/j.actatropica.2007.10.007

Hall,T.A.(1999).BioEdit:Auser-friendlybiologicalsequencealignmenteditor and analysis program forWindows 95/98/NT.Nucleic Acids Symposium Series, 41.

Janzen,D.H.,Burns,J.M.,Cong,Q.,Hallwachs,W.,Dapkey,T.,Manjunath,R.,…Grishin,N.V.(2017).Nucleargenomesdistinguishcrypticspe-ciessuggestedbytheirDNAbarcodesandecology.Proceedings of the National Academy of Sciences of the United States of America,114(31),8313–8318.https://doi.org/10.1073/pnas.1621504114

Page 12: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

12  |     DUSITSITTIPON eT al.

Kliks,M.M., & Palumbo,N. E. (1992). Eosinophilicmeningitis beyondthe Pacific Basin: The global dispersal of a peridomestic zoonosiscaused by Angiostrongylus cantonensis, the nematode lungwormof rats. Social Science and Medicine, 34(2), 199–212. https://doi.org/10.1016/0277-9536(92)90097-a

Ladoukakis,E.D.,&Zouros,E.(2017).EvolutionandinheritanceofanimalmitochondrialDNA:Rulesandexceptions.Journal of Biological Research (Thessaloniki),24,2.https://doi.org/10.1186/s40709-017-0060-4

Lee,J.D.,Chung,L.Y.,Wang,L.C.,Lin,R.J.,Wang,J.J.,Tu,H.P.,…Yen,C.M. (2014). Sequenceanalysis inpartial genesof five isolatesofAngiostrongylus cantonensis fromTaiwanandbiological comparisonin infectivity andpathogenicitybetween two strains.Acta Tropica,133,26–34.https://doi.org/10.1016/j.actatropica.2014.01.010

Lv,S.,Zhang,Y.,Zhang,L.,Liu,Q.,Liu,H.X.,Hu,L.,…Utzinger,J.(2012).Thecompletemitochondrialgenomeoftherodentintra-arterialnem-atodesAngiostrongylus cantonensis and Angiostrongylus costaricensis. Parasitology Research, 111(1), 115–123. https://doi.org/10.1007/s00436-011-2807-4

Monte,T.C.C.,Gentile,R.,Garcia,J.,Mota,E.,Santos,J.N.,&Maldonado,A. (2014). Brazilian Angiostrongylus cantonensis haplotypes, ac8and ac9, have two different biological andmorphological profiles.Memorias do Instituto Oswaldo Cruz,109(8),1057–1063.https://doi.org/10.1590/0074-0276130378

Monte,T.C.,Simoes,R.O.,Oliveira,A.P.,Novaes,C.F.,Thiengo,S.C.,Silva, A. J., … Maldonado, Jr, A. (2012). Phylogenetic relationshipof the Brazilian isolates of the rat lungworm Angiostrongylus can-tonensis (Nematoda: Metastrongylidae) employing mitochondrialCOI gene sequence data. Parasites & Vectors, 5, 248. https://doi.org/10.1186/1756-3305-5-248

Moreira, V. L., Giese, E. G.,Melo, F. T., Simoes, R. O., Thiengo, S. C.,Maldonado,Jr,A.,&Santos,J.N.(2013).Endemicangiostrongyliasisin theBrazilianAmazon:NaturalparasitismofAngiostrongylus can-tonensis in Rattus rattus and R. norvegicus,andsympatricgiantAfricanland snails,Achatina fulica. Acta Tropica,125(1), 90–97. https://doi.org/10.1016/j.actatropica.2012.10.001

Nakaya,Y.,Okano,T.,Onuma,M.,Yoshikawa,T., Saito,Y., Tanaka,A.,…Nagamine, T. (2013). First record ofAngiostrongylus cantonensis (Nematoda:Metastrongylidae) infection inRyukyu long-furredrats(Diplothrix legata).Japanese Journal of Zoo and Wildlife Medicine,18(2),71–74.https://doi.org/10.5686/jjzwm.18.71

Okano, T.,Haga, A.,Mizuno, E.,Onuma,M.,Nakaya, Y., &Nagamine,T.(2014).Angiostrongylus cantonensis(Nematoda:Metastrongylidae)in theRyukyu Islands tree rat (Diplothrix legata). Journal of Wildlife Diseases,50(2),322–325.https://doi.org/10.7589/2013-03-050

Pavlova, A., Gan, H. M., Lee, Y. P., Austin, C. M., Gilligan, D. M.,Lintermans,M.,&Sunnucks,P. (2017). Purifying selection andge-netic drift shaped Pleistocene evolution of the mitochondrial ge-nomeinanendangeredAustralianfreshwaterfish.Heredity,118(5),466–476.https://doi.org/10.1038/hdy.2016.120

Qvarnstrom, Y., da Silva, A. C., Teem, J. L., Hollingsworth, R., Bishop,H.,Graeff-Teixeira,C.,&daSilva,A.J. (2010). ImprovedmoleculardetectionofAngiostrongylus cantonensisinmollusksandotherenvi-ronmentalsampleswithaspecies-specificinternaltranscribedspacer1-based TaqMan assay. Applied and Environmental Microbiology,76(15),5287–5289.https://doi.org/10.1128/AEM.00546-10

Qvarnstrom, Y., Sullivan, J. J., Bishop, H. S., Hollingsworth, R., & daSilva,A. J. (2007). PCR-baseddetectionofAngiostrongylus canton-ensis in tissueandmucussecretions frommolluscanhosts.Applied and Environmental Microbiology, 73(5), 1415–1419. https://doi.org/10.1128/AEM.01968-06

Rodpai,R., Intapan,P.M.,Thanchomnang,T., Sanpool,O., Sadaow,L.,Laymanivong, S., … Maleewong, W. (2016). Angiostrongylus can-tonensis and A. malaysiensis broadly overlap in Thailand, Lao PDR,Cambodia and Myanmar: A molecular survey of larvae in land

snails. PLoS ONE,11(8),e0161128.https://doi.org/10.1371/journal.pone.0161128

Simoes,R.O.,Monteiro,F.A.,Sanchez,E.,Thiengo,S.C.,Garcia,J.S.,Costa-Neto,S.F.,…Maldonado,A.(2011).Endemicangiostrongyli-asis,RiodeJaneiro,Brazil.Emerging Infectious Diseases,17(7),1331–1333.https://doi.org/10.3201/eid1707.101822

Song,S.L.,Yong,H.S.,&Eamsobhana,P.(2017).Angiostrongylus mack-errasae and A. cantonensis(Nematoda:Metastrongyloidea)belongtosame genetic lineage: Evidence frommitochondrial protein-codinggenes. Journal of Helminthology, 1–6. https://doi.org/10.1017/S0022149X1700061X

Spratt, D. M. (2015). Species of Angiostrongylus (Nematoda:Metastrongyloidea) in wildlife: A review. International Journal for Parasitology: Parasites and Wildlife, 4(2), 178–189. https://doi.org/10.1016/j.ijppaw.2015.02.006

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013).MEGA6: Molecular evolutionary genetics analysis version 6.0.Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197

Tokiwa, T., Harunari, T., Tanikawa, T., Komatsu, N., Koizumi, N.,Tung, K. C., … Ohta, N. (2012). Phylogenetic relationships ofrat lungworm, Angiostrongylus cantonensis, isolated from differ-ent geographical regions revealed widespread multiple lineages.Parasitology International,61(3),431–436.https://doi.org/10.1016/j.parint.2012.02.005

Tokiwa,T.,Hashimoto,T., Yabe,T.,Komatsu,N.,Akao,N.,&Ohta,N.(2013). First report of Angiostrongylus cantonensis (Nematoda:Angiostrongylidae)infectionsininvasiverodentsfromfiveislandsoftheOgasawaraArchipelago,Japan.PLoS ONE,8(8),e70729.https://doi.org/10.1371/journal.pone.0070729

Vitta,A.,Srisongcram,N.,Thiproaj,J.,Wongma,A.,Polsut,W.,Fukruksa,C.,…Dekumyoy,P.(2016).PhylogenyofAngiostrongylus cantonensis in Thailand based on cytochrome c oxidasesubunitIgenesequence.Southeast Asian Journal of Tropical Medicine and Public Health,47(3),377–386.

Wang,Q.P.,Lai,D.H.,Zhu,X.Q.,Chen,X.G.,&Lun,Z.R.(2008).Humanangiostrongyliasis.Lancet Infectious Diseases,8(10),621–630.https://doi.org/10.1016/S1473-3099(08)70229-9

Wertheim, J. O.,Murrell, B., Smith,M. D., Kosakovsky Pond, S. L., &Scheffler,K.(2015).RELAX:Detectingrelaxedselectioninaphylo-geneticframework.Molecular Biology and Evolution,32(3),820–832.https://doi.org/10.1093/molbev/msu400

Xu,B.,&Yang,Z.(2013).PAMLX:AgraphicaluserinterfaceforPAML.Molecular Biology and Evolution, 30(12), 2723–2724. https://doi.org/10.1093/molbev/mst179

Yang,Z.(2007).PAML4:Phylogeneticanalysisbymaximumlikelihood.Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088

Yong,H.S.,Eamsobhana,P.,Lim,P.E.,Razali,R.,Aziz,F.A.,Rosli,N.S.,…Anwar,A. (2015).Draft genomeof neurotropic nematodepara-siteAngiostrongylus cantonensis, causative agent of human eosino-philicmeningitis.Acta Tropica,148,51–57.https://doi.org/10.1016/j.actatropica.2015.04.012

Yong, H. S., Eamsobhana, P., Song, S. L., Prasartvit, A., & Lim, P. E.(2015). Molecular phylogeography of Angiostrongylus cantonensis (Nematoda:Angiostrongylidae)andgenetic relationshipswithcon-geners using cytochrome b genemarker.Acta Tropica,148, 66–71.https://doi.org/10.1016/j.actatropica.2015.04.020

Yong,H.S.,Song,S.L.,Eamsobhana,P.,Goh,S.Y.,&Lim,P.E.(2015).Completemitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae).Acta Tropica, 152, 157–164.https://doi.org/10.1016/j.actatropica.2015.09.001

Yong,H.S.,Song,S.L.,Eamsobhana,P.,&Lim,P.E. (2016).CompletemitochondrialgenomeofAngiostrongylus malaysiensislungwormand

Page 13: Hurdles in the evolutionary epidemiology of …phpr.ph.mahidol.ac.th/staff/Research/2561/(5) 2017...cantonensis: Pseudogenes, incongruence between taxonomy and DNA sequence variants,

     |  13DUSITSITTIPON eT al.

molecular phylogeny ofMetastrongyloid nematodes.Acta Tropica,161,33–40.https://doi.org/10.1016/j.actatropica.2016.05.002

Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improvedbranch-sitelikelihoodmethodfordetectingpositiveselectionatthemolecular level. Molecular Biology and Evolution,22(12),2472–2479.https://doi.org/10.1093/molbev/msi237

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesup-portinginformationtabforthisarticle.

How to cite this article:DusitsittiponS,CriscioneCD,MorandS,KomalamisraC,ThaenkhamU.HurdlesintheevolutionaryepidemiologyofAngiostrongylus cantonensis: Pseudogenes,incongruencebetweentaxonomyandDNAsequencevariants,andcrypticlineages.Evol Appl. 2018;00:1–13. https://doi.org/10.1111/eva.12621