hydraulic fractures: multiscale phenomena, asymptotic and

50
Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions SANUM Conference Stellenbosch 6-8 April 2009 Anthony Peirce University of British Columbia Collaborators: Emmanuel Detournay (UMN) Eduard Siebrits (SLB)

Upload: others

Post on 15-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hydraulic Fractures: multiscale phenomena, asymptotic and

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions

SANUM ConferenceStellenbosch

6-8 April 2009

Anthony Peirce

University of British Columbia

Collaborators:

Emmanuel Detournay (UMN)

Eduard Siebrits (SLB)

Page 2: Hydraulic Fractures: multiscale phenomena, asymptotic and

2

Outline

• Examples of hydraulic fractures

• Governing equations, scaling, asymptotic solutions 1-2D and 2-3D

• Solving the free boundary problem Existing methods: VOF, Level Set and KI matching Tip asymptote and Eikonal boundary value problem Setting the tip volumes using the tip asymptotes Coupled equations

• Numerical examples M-vertex and K-vertex Viscous crack propagating in a variable in situ stress Stress jump solutions

Page 3: Hydraulic Fractures: multiscale phenomena, asymptotic and

3

HF Examples - block caving

Page 4: Hydraulic Fractures: multiscale phenomena, asymptotic and

4

Oil well stimulation

FracturingFluid

Proppant

Page 5: Hydraulic Fractures: multiscale phenomena, asymptotic and

5

Quarries

Page 6: Hydraulic Fractures: multiscale phenomena, asymptotic and

6

Magma flow

Tarkastad

Page 7: Hydraulic Fractures: multiscale phenomena, asymptotic and

7

Model EQ 1: Conservation of mass

Page 8: Hydraulic Fractures: multiscale phenomena, asymptotic and

8

Model EQ 2: The elasticity equation

Page 9: Hydraulic Fractures: multiscale phenomena, asymptotic and

9

1-2D model and physical processes

FractureEnergy

Breaking rock

Leak-offViscous energy

loss

Page 10: Hydraulic Fractures: multiscale phenomena, asymptotic and

10

2-3D HF Equations

• Elasticity

• Lubrication

• Boundary conditions at moving front

(non-locality)

(free boundary)

(non-linearity)

Page 11: Hydraulic Fractures: multiscale phenomena, asymptotic and

11

Scaling

• Rescale the physical quantities as follows:

• Dimensionless groups:

• Scaled Equations

Page 12: Hydraulic Fractures: multiscale phenomena, asymptotic and

12

Reduced eq near a smooth front

Page 13: Hydraulic Fractures: multiscale phenomena, asymptotic and

13

Tip asymptotic behaviour

• Elasticity:

• Lubrication:

Page 14: Hydraulic Fractures: multiscale phenomena, asymptotic and

14

HF experiment (Bunger & Jeffrey CSIRO)

Page 15: Hydraulic Fractures: multiscale phenomena, asymptotic and

15

Discretizing the Elasticity Equation

• Piecewise constant DD:

• Discrete Elasticity Equation:

• Operator form:

Page 16: Hydraulic Fractures: multiscale phenomena, asymptotic and

16

Discretizing the Fluid Flow Equation

• The fluid flow equation:

• Integrate over cell:

• Approximate the integrals:

where

• Operator form:

Page 17: Hydraulic Fractures: multiscale phenomena, asymptotic and

17

How do we find the fracture front?

• VOF method • Level set method-move contours of a surface

- differentiate

.75

1

.15

11

.06.8

.3

Problem: we need an accurate

Page 18: Hydraulic Fractures: multiscale phenomena, asymptotic and

18

Why not use stress intensity factor?

• Move front till SIF = Find the SIF numerically if move forward if move back if stay

• Problems Accurate calculation of How far do you move? What about viscous and leak-off dominated

propagation regimes

Page 19: Hydraulic Fractures: multiscale phenomena, asymptotic and

19

Divide elements into tip & channel

tip elt

channel elt

At survey points

Page 20: Hydraulic Fractures: multiscale phenomena, asymptotic and

20

Eikonal solution surfacesThe signed distance function

Page 21: Hydraulic Fractures: multiscale phenomena, asymptotic and

21

Solving the Eikonal BVP

• The Eikonal Equation• First order discretization

• Reduction to a quadraticLet

• Solution to the quadratic equation

Page 22: Hydraulic Fractures: multiscale phenomena, asymptotic and

22

Geometric interpretation

Page 23: Hydraulic Fractures: multiscale phenomena, asymptotic and

23

Initializing from tip asymptotes

• General asymptote:

• K-vertex:

• M-vertex:

Page 24: Hydraulic Fractures: multiscale phenomena, asymptotic and

24

Sample signed distance function

1.44 1.09 0.78 0.53 0.41 0.52 0.75 1.05 1.41.09 0.7 0.34 0.05 -0.09 0.03 0.31 0.66 1.050.79 0.35 -0.07 -0.43 -0.59 -0.46 -0.11 0.3 0.740.55 0.07 -0.42 -0.83 -0.97 -0.86 -0.47 0.01 0.50.43 -0.07 -0.57 -0.96 -1.16 -0.99 -0.63 -0.13 0.370.55 0.07 -0.42 -0.83 -0.97 -0.86 -0.47 0.01 0.50.79 0.35 -0.07 -0.43 -0.59 -0.46 -0.11 0.3 0.741.09 0.7 0.34 0.05 -0.09 0.03 0.31 0.66 1.051.44 1.09 0.78 0.53 0.41 0.52 0.75 1.05 1.4

Page 25: Hydraulic Fractures: multiscale phenomena, asymptotic and

25

Calculating the tip volume

Page 26: Hydraulic Fractures: multiscale phenomena, asymptotic and

26

Tip volume & width as a function of

• Width of the tip element:

• Volume of the tip element:

• Tip widths

Page 27: Hydraulic Fractures: multiscale phenomena, asymptotic and

27

Tip widths and Pressures

Page 28: Hydraulic Fractures: multiscale phenomena, asymptotic and

28

The coupled equations

• Channel lubrication equation

• Tip lubrication equation

• Elasticity Equation (eliminate channel pressure)

• Coupled system

Page 29: Hydraulic Fractures: multiscale phenomena, asymptotic and

29

Time stepping and front evolutionTime step loop:

Front iteration loop:

Coupled Solution

end

set in

use FMM to solve

Locate front

next front iteration

next time step

Page 30: Hydraulic Fractures: multiscale phenomena, asymptotic and

30

M-vertex radial sol’n – footprints

Page 31: Hydraulic Fractures: multiscale phenomena, asymptotic and

31

M-Vertex radial solution – front speed

Page 32: Hydraulic Fractures: multiscale phenomena, asymptotic and

32

M-vertex radial solution -

Page 33: Hydraulic Fractures: multiscale phenomena, asymptotic and

33

M-Vertex Footprint evolutionILSAEXACT

Page 34: Hydraulic Fractures: multiscale phenomena, asymptotic and

34

M-vertex radial soln:width & pressure

Page 35: Hydraulic Fractures: multiscale phenomena, asymptotic and

35

M-vertex width

Page 36: Hydraulic Fractures: multiscale phenomena, asymptotic and

36

M-vertex pressure

Page 37: Hydraulic Fractures: multiscale phenomena, asymptotic and

37

K-vertex radial sol’n – footprints

Page 38: Hydraulic Fractures: multiscale phenomena, asymptotic and

38

K-Vertex radial solution – front speed

Page 39: Hydraulic Fractures: multiscale phenomena, asymptotic and

39

K-vertex radial solution -

Page 40: Hydraulic Fractures: multiscale phenomena, asymptotic and

40

K-vertex – convergence rate for

Page 41: Hydraulic Fractures: multiscale phenomena, asymptotic and

41

K-vertex radial soln:width & pressure

Page 42: Hydraulic Fractures: multiscale phenomena, asymptotic and

42

K-vertex width

Page 43: Hydraulic Fractures: multiscale phenomena, asymptotic and

43

K-vertex Pressure

Page 44: Hydraulic Fractures: multiscale phenomena, asymptotic and

44

Linear in-situ stress field - footprints

Page 45: Hydraulic Fractures: multiscale phenomena, asymptotic and

45

Zoom in

Page 46: Hydraulic Fractures: multiscale phenomena, asymptotic and

46

Linear in-situ stress field - movieILSA Linear Uniform field

Page 47: Hydraulic Fractures: multiscale phenomena, asymptotic and

47

Breakthrough: Low to High Stress

Page 48: Hydraulic Fractures: multiscale phenomena, asymptotic and

48

Stress contrast high->low

Page 49: Hydraulic Fractures: multiscale phenomena, asymptotic and

49

Lab Test (Bunger et al 2008)ILSATest

Page 50: Hydraulic Fractures: multiscale phenomena, asymptotic and

50

Conclusions

• Governing equations, scaling, asymptotic solutions 1-2D and 2-3D

• Solving the free boundary problem Existing methods: VOF, Level Set and KI matching Tip asymptote and Eikonal boundary value problem Setting the tip volumes using the tip asymptotes Coupled equations

• Numerical examples M-vertex and K-vertex Viscous crack propagating in a variable in situ stress Stress jump solutions