hypoxia & hif-1

8
HYPOXIA & HIF-1 FALL 2004 HYPOXIA is oxygen starving at the tissue and cellular levels. It is caused by a reduction of oxygen supply in blood and in tissues below physiological levels. Severe hypoxia can result in anoxia, a complete loss of oxygen to an area of tissue. There are four major types of hypoxia. The first type, HYPOXIC HYPOXIA, is a decrease of the fraction of inhaled oxygen possibly due to hyperventilation from respiratory depression or altitude above sea level. The second type of hy- poxia is termed ANAEMIC HYPOXIA, and is char- acterized by a decrease in the amount of hae- moglobin that binds oxygen in the blood. This can be caused by multiple factors, including but not limited to: blood loss, reduced red blood cell production, carbon monoxide poisoning, and a genetic defect of haemoglobin. STAGNANT HYPOXIA, the third type of hypoxia that has been defined, results in low blood flow and is caused by vasoconstriction and/or heart failure. The fourth type of hypoxia is HYSTOTOXIC HYPOXIA, a poisoning of oxidative enzymes that causes vasodilation in brain arteries and veins, result- ing in more blood flow to the brain tissues. This response is probably mediated by nitric oxide (NO) and adenosine. Hypoxia is a fundamental angiogenic stimu- lus. An important mediator of this primary stim- ulus is HYPOXIAINDUCIBLE TOR1α HIF1α [1]. Normally, this protein is oxidized, ubiquiti- nylated and degraded in the proteasome. In the absence of oxygen, HIF-1α levels increase and stimulate VEGF transcription. Cells of the innate immune system get energy almost entirely from glycolysis, enabling survival under a variety of harsh conditions. In a recent report HIF-1α is now placed at the center of metabolic control in these cells [2]. The regulation of most proteins required for hypoxic adaptation occurs at the gene level and involves transcriptional induction via the bind- ing of a transcription factor, hypoxia-inducible factor-1 (HIF-1), to the conserved sequence, 5- (A/T)CGTG-3, in the hypoxia response element HRE on the regulated genes [3]. To date, about 100 hypoxia-inducible genes have been found to be directly regulated by HIF-1. CONTINUED ON PAGE 2 MINIREVIEW ON HYPOXIA AND HIF1 Tomorrow’s Reagents Manufactured Today HIF-1α (120 kDa) (human) HIF-1β (91-94 kDa) bHLH N-Terminus C-Terminus 826 aa C-Terminus 789 aa PAS (Per-ARNT-SIM Domains) bHLH N-Terminus PAS (Per-ARNT-SIM Domains) TAD TAD-N ODD Dimerization Transcriptional Modulation P402 P564 N803 17 71 185 228 401 603 NLS 718 721 DNA Binding (HRE) 5' (A/T)CGTG 3' 531 575 K532 p300/CBP OH OH OH COCH 3 pVHL Degradation Hypoxic (<5% O 2 ) PHD1-3 O2 2-Oxoglutarate (Fe 2+ ) ARD FIH1 CITED2&4 K391 K477 K532 SUMO SUMO SUMO TAD-C C800 NO IPAS Normoxic (20% O 2 ) HYPOXIA PRODUCT LINE NEWSLETTER CONTENTS HYPOXIA 1 HIF1 & PRODUCTS 2 REGULATION OF HIF1 & PRODUCTS 2/3 REGULATION BY HIF1 & PRODUCTS 4/5 CHEMICAL INHIBITORS OF HIF1 & PRODUCTS 6 LITERATURE & SELECTED REVIEW ARTICLES 7 HSP90 RELATED PRODUCTS 7 SMALL MOLECULE INHIBITORS 8 INCLUDES PRODUCTS FROM

Upload: others

Post on 05-Jun-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HYPOXIA & HIF-1

1I M M U N O LO G Y / C A N C E R R E S E A R C H

H Y P O X I A & H I F - 1

F A L L 2 0 0 4

HYPOXIA is oxygen starving at the tissue and cellular levels. It is caused by a reduction of oxygen supply in blood and in tissues below physiological levels. Severe hypoxia can result in anoxia, a complete loss of oxygen to an area of tissue.

There are four major types of hypoxia. The fi rst type, HYPOXIC HYPOXIA, is a decrease of the fraction of inhaled oxygen possibly due to hyperventilation from respiratory depression or altitude above sea level. The second type of hy-poxia is termed ANAEMIC HYPOXIA, and is char-acterized by a decrease in the amount of hae-moglobin that binds oxygen in the blood. This

can be caused by multiple factors, including but not limited to: blood loss, reduced red blood cell production, carbon monoxide poisoning, and a genetic defect of haemoglobin. STAGNANT HYPOXIA, the third type of hypoxia that has been defi ned, results in low blood fl ow and is caused by vasoconstriction and/or heart failure. The fourth type of hypoxia is HYSTOTOXIC HYPOXIA, a poisoning of oxidative enzymes that causes vasodilation in brain arteries and veins, result-ing in more blood fl ow to the brain tissues. This response is probably mediated by nitric oxide (NO) and adenosine.

Hypoxia is a fundamental angiogenic stimu-lus. An important mediator of this primary stim-ulus is HYPOXIAINDUCIBLE TOR1α HIF1α [1]. Normally, this protein is oxidized, ubiquiti-nylated and degraded in the proteasome. In the absence of oxygen, HIF-1α levels increase and stimulate VEGF transcription. Cells of the innate immune system get energy almost entirely from glycolysis, enabling survival under a variety of harsh conditions. In a recent report HIF-1α is now placed at the center of metabolic control in these cells [2].

The regulation of most proteins required for hypoxic adaptation occurs at the gene level and involves transcriptional induction via the bind-ing of a transcription factor, hypoxia-inducible factor-1 (HIF-1), to the conserved sequence, 5-(A/T)CGTG-3, in the hypoxia response element HRE on the regulated genes [3]. To date, about 100 hypoxia-inducible genes have been found to be directly regulated by HIF-1.

CONTINUED ON PAGE 2

M I N I R E V I E W O N H Y P O X I A A N D H I F 1

Tomorrow’s Reagents Manufactured Today™

HIF-1α (120 kDa)(human)

HIF-1β (91-94 kDa)

bHLHN-Terminus C-Terminus826 aa

C-Terminus789 aa

PAS (Per-ARNT-SIM Domains)

bHLHN-Terminus PAS (Per-ARNT-SIM Domains) TAD

TAD-NODD

Dimerization

Transcriptional Modulation

P402 P564 N803

17 71 185 228 401 603

NLS

718 721

DNA Binding(HRE)

5' (A/T)CGTG 3'

531 575

K532

p300/CBP

OHOH OHCOCH3

pVHL Degradation

Hypoxic (<5% O2)

PHD1-3

O2

2-Oxoglutarate(Fe2+) ARD

FIH1

CITED2&4

K391 K477 K532

SUMO SUMO SUMO

TAD-C

C800

NO

IPAS

Normoxic (20% O2)

HYPOXIA

P R O D U C T L I N E N E W S L E T T E R

CONTENTS

HYPOXIA 1

HIF1 & PRODUC TS 2

REGULATION OF HIF1 & PRODUC TS 2/3

REGULATION BY HIF1 & PRODUC TS 4/5

CHEMIC AL INHIBITORS OF HIF1 & PRODUC TS 6

LITERATURE & SELEC TED REVIEW ARTICLES 7

HSP90 RELATED PRODUC TS 7

SMALL MOLECULE INHIBITORS 8

INCLUDES PRODUCTS FROM

Flyer_HIF_final.indd 1Flyer_HIF_final.indd 1 21.09.2004 13:35:5821.09.2004 13:35:58

Page 2: HYPOXIA & HIF-1

I M M U N O LO G Y / C A N C E R R E S E A R C H2

For Prices visit our Online Catalog at www.alexis-e.biz, contact your Local Distributor, or call +41 61 926 89 89

Semenza and Wang [4] were the fi rst to re-port that the DNA sequence of HRE is critical for hypoxia-inducibility and that purifi ed HIF-1 binds to HRE, by using affi nity-purifi cation oli-gonucleotides with the HRE sequence [5].

HIF-1 is a heterodimer composed of a 120 kDa HIF-1α subunit and a 91-94 kDa HIF-1β subunit (fi rst described as the aryl hydrocar-bon (Ah) nuclear receptor translocator (ARNT) [6]), both of which are members of the basic helix-loop-helix (bHLH)-PAS family. PAS is an acronym for the three members fi rst recognised (Per, ARNT, and Sim). Accordingly, HIF-1α and HIF-1β each contain a bHLH domain near the N-terminus preceding the PAS domain. Whereas the basic domain is essential for DNA binding, the HLH domain and N-teminal half of the PAS domain are necessary for heterodimerization and DNA binding. Moreover, there are two tran-

scriptional activation domains (TADs) in HIF-1α, the N-terminal activation domain (TAD-N), and the C-terminal activation domain (TAD-C). In contrast, HIF-1β contains only one tran-scriptional activation domain at the C-terminus. Furthermore, HIF-1α possesses a unique oxy-gen-dependent degradation domain (ODD) that controls protein stability. A portion of the ODD overlaps with the TAD-N.

In addition to the ubiquitous HIF-1α, the HIF-1α family contains two other members, HIF-2α (also called EPAS1 [7], MOP2 [8] or HLF [9]) and HIF-3α [10], both of which have more restricted tissue expression [11]. HIF-2α and HIF-3α contain domains similar to those in HIF-1α and exhibit similar biochemical prop-erties, such as heterodimerization with HIF-1β and DNA binding to the same DNA sequence in vitro. HIF-2α is also tightly regulated by oxygen

tension and its complex with HIF-1β appears to be directly involved in hypoxic gene regulation, as is HIF-1α [12]. However, although HIF-3α is homologous to HIF-1α, it might be a negative regulator of hypoxia-inducible gene expression [13]. To activate transcription, HIF-1α must re-cruit the transcriptional adapter/histone acetyl-transferase proteins, p300 and CBP to the target gene promoters. This occurs by direct physical interactions between the transactivation domain (TAD) of HIF-1α and the fi rst cysteine-histidine (CH1) domain of the p300/CBP complex. This domain of p300/CBP also binds members of the CITED (CBP/p300 interacting transactivator with ED-rich tail) family of transcription factors. CITED2 [14] and CITED4 [15] disrupt the in-teraction between HIF-1α and p300 and inhibit transactivation by HIF-1α and gene activation by hypoxia.

Oxygen-dependentAt normal oxygen levels NORMOXIC CONDI

TIONS, HIF-1 prolyl-hydrolases (PHD-1, -2 & -3) hydroxylate the prolyl residues at Pro 402 and 564 of the HIF-1α ODD. Furthermore, the asparagine hydroxylase FIH-1 (factor inhibiting HIF-1) hydroxylates Asp803 of the HIF-1α C-ter-minal transactivation domain. The hydroxylated peptide interacts with an E3 ubiquitin-protein ligase complex composed of the von Hippel-Lindau tumor suppressor protein VHL, elongin B & C and cullin 2. After being poly-ubiquitinized, HIF-1α is degraded by the 26S proteasome.

Under HYPOXIC CONDITIONS, HIF-1α is not hydroxylated because the major substrate, di-oxygen, is not available. The unmodifi ed protein escapes the VHL-binding, ubiquitination and deg-radation, and then dimerizes HIF-1β. The het-

erodimeric HIFs upregulate a myriad of hypoxia-inducible genes, triggering physiologic responses to hypoxia. Interestingly, PHD-1 and -2 are in-ducible by hypoxia, indicating a feedback loop to avoid excessive nuclear HIF-1 accumulation.

Oxygen-independentIn addition to mediating adaption to hypoxia,

HIF-1 also contributes to other cellular process-es that occur under normoxic conditions, such as the development of normal tissues or tumors, the determination of cell death or survival, im-mune responses and the adaption to mechanical stress. Under normoxic conditions HIF-1 can be activated by various cytokines, growth fac-tors, transition metals, iron chelation (inhibits enzymatic activity), as well as nitric oxide (NO). Degradation of HIF-1 in a VHL- and oxygen-in-

dependent manner is mediated by p53. Dephos-phorylated HIF-1α binds to p53 while phospho-rylated HIF-1α is the major form that binds to HIF-1β [16]. HIF-1α protects p53 degradation by binding to Mdm2, the principal cellular an-tagonist of p53 [17]. Also, inhibition of PI3K or mTOR prevent growth factor- and cytokine-induced HIF-1α accumulation. Generally HIF-1α induction by hypoxia is far greater than by growth factors and cytokines. The COP9 subunit CSN5 is able to stabilize HIF-1α in a pVHL-inde-pendent form aerobically by inhibiting HIF-1α prolyl-564 hydroxylation [18].

HIF-1, Nitric Oxide (NO) and ROSHypoxia stimulates nitric oxide (NO) forma-

tion through the induction of inducible nitric oxide synthase (iNOS; NOS II), the transcrip-

HIF1

REGULATION OF HIF1

MAb to HIF-1α (mgc3) ALX-804-216-R100 100 µlCLONE: mgc3. ISOT YPE: Mouse IgG1. IMMUNOGEN: Human hypoxia-inducible factor 1α (HIF-1α) (aa 530-826). SPECIFICIT Y: Recognizes human, non-human primate, bovine and pig HIF-1α. Recognizes mouse HIF-1α only in Gel Supershift assays; does not cross-react with HIF-1β (ARNT) or HIF-2α. Detects a band of ~116kDa by Western blot after hypoxic in-duction. APPLICATION: Gel Supershift assay (on mouse), ICC, IP, WB. LIT: General applicability of chicken egg yolk antibodies: the per-formance of IgY immunoglobuilins raised against thy hypoxia-in-ducible factor 1alpha: G. Camenisch, et al.; FASEB J. 13, 81 (1999)

PAb to HIF-1αALX-210-069-C050 50 µgFrom rabbit. IMMUNOGEN: Recombinant HIF-1α (aa 609-826). SPECIFICIT Y: Recognizes human and mouse HIF-1α. APPLICATION: IHC, IP, WB.

MAb to HIF-1β (2B10)[anti-Ah Receptor Nuclear Translocator (ARNT) MAb]ALX-804-108-R100 100 µlCLONE: 2B10. ISOT YPE: Mouse IgG1. IMMUNOGEN: Synthetic peptide corresponding to aa 771-789 (N771SYNNEEFPDLTMFPPFSE789) of human HIF-1β (Ah receptor nuclear translocator; ARNT). SPECIFICIT Y: Recognizes human, mouse and monkey ARNT. APPLICATION: ICC, IP, WB. LIT: Physiochemical and immunocytochemical analysis of the aryl hydrocarbon receptor translocator: Characterization of two mono-clonal antibodies to the ARNT: N.G. Hord and G. Perdew; Mol. Phar-macol. 46, 618 (1994)

PAb to HIF-1β (mouse)[anti-Ah Receptor Nuclear Translocator (ARNT) PAb]ALX-210-150-R100 100 µlFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to aa 771-789 (N771SYNNEEFPDLTMFPPFSE789) of human HIF-1β (Ah receptor nuclear translocator; ARNT). SPECIFICIT Y: Rec-ognizes mouse ARNT. APPLICATION: WB.

PAb to Ah Receptor Nuclear Translocator 3 [ARNT3][anti-BMAL1 PAb]ALX-210-245-R200 200 µlFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to aa 582-594 (D582MIDNDQGSSSPS594) of mouse ARNT3 (Ah receptor nuclear translocator 3; BMAL1). SPECIFICIT Y: Recog-nizes human and hamster ARNT3. APPLICATION: WB. BLOCKING PEPTIDE: Prod. No. ALX-152-023.

PRODUCTS

Flyer_HIF_final.indd 2Flyer_HIF_final.indd 2 21.09.2004 13:36:0421.09.2004 13:36:04

Page 3: HYPOXIA & HIF-1

FC = Flow Cytometry; ICC = Immunocytochemistry; IP = Immunoprecipitation; IHC = Immunohistochemistry (FS = Frozen Sections, PS = Paraffin Sections); WB = Western blot

3I M M U N O LO G Y / C A N C E R R E S E A R C H

tion of which is enhanced by HIF-1. Conversly, NO affects the HIF-1-mediated induction of the hypoxia-inducible genes, such as the erythro-poietin and vascular endothelial growth factor genes [19]. However, the effect of NO on HIF-1α expression is reciprocal and may depend on the concentration of NO. NO has been shown to block the hypoxic stabilization of HIF-1α but also represses its transcriptional activity [20]. However, under different conditions NO can induce the accumulation of HIF-1α even un-der normoxic conditions by interfering with the function of PHDs [21, 22]. E.J. Yeo, et al. have

shown that YC-1, known as a NO-dependent, su-peroxide-sensitive stimulator of soluble guanylyl cyclase and non-specifi c phosphodiesterase in-hibitor, also inhibits HIF-1α activity in tumors resulting in blocked angiogenesis and an inhibi-tion of tumor growth [23, 24].

Reactive oxygen species (ROS) impair the expression of HIF-1α in hypoxic cells and the DNA-binding activity of HIF-1 [25-27]. Another hypothesis suggests that in case of oxygen defi -ciency, the last step in the respiratory chain is blocked because oxygen is essentially required for removing electrons. Electrons thus accumu-

late in the respiratory chain and produce ROS by reducing oxygen remaining in the mitochon-dria [28]. ROS generated by the mitochondrial complex III participate in HIF-1α stabilization [29]. In addition, it has been demonstrated that HIF-1α is up-regulated even under normoxic conditions by cytokines generating ROS [30, 31]. Reoxygenation of tumor cells leads to oxi-dative stress and stabilization of the HIF-1 dimer through free radical intermediates and depoly-merises the hypoxia-induced translational sup-pressors known as stress granules [32].

CONTINUED ON PAGE 5

Growth Factors

Hypoxic (<5% O2)

Insulin, IGF-1 & -2, EGF, FGF-2

Ras

RAF

+

MEK

ERK

++ Stress

p38

JNK

+

PD98059 ---

SP600125JNKI1

---

SB203580SB220025

---

Raf1 Kinase Inhibitor ---

+

+

+

HIF-1 Degradation(26S Proteasome)

Oxygen SensingPHD1-3, FIH

His-Fe -HISI I

Asp

O2

2-OxoglutarateCO2

Succinate

---

N-OxalylglycineDimethyloxallylglycine

2,4-Diethylpyridine dicarboxylate

HIF-1 Transactivation�

+

+

++

Apoptosis

HIF-1�

PI(3)K (p110)�

Akt

WortmanninLY-294,002

--- PTEN

---

mTOR

GSK-3

TNF- , IL-1 , Angiotensin II, Thrombin, PDGF, HER2� �

+

p70S6K

---

++

+

HIF-1 Synthesis�

Rapamycin ---

SH-5SH-6

---

+

HIF-1�

Normoxic (20% O2)

Pro564 Pro

402

VHL

Asn803HIF-1�

OH OH

OH

Ub

Ub

Ub

Ub

HIF-1�

Bax

p53

Nucleus

p300/CBP

HIF-1�

HIF-1�

Transcription CITED2

+

---

--- OTDZTTDZD-8TIBPO

Bisindolylmaleimide V ---

U0126 ---

HIF-1�

PAb to PHD1 (BL525) BET-A300-326A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of the C-terminus of human prolyl hydroxylase domain-containing protein 2 (PHD1; EGLN2). SPECIFICIT Y: Recognizes human and mouse PHD1. APPLICATION: WB.

PAb to PHD2 (human) (BL521) BET-A300-322A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human prolyl hydroxylase domain-containing pro-tein 2 (PHD2; EGLN1) encoded within exon 1. SPECIFICIT Y: Recognizes human PHD2. APPLICATION: WB.

PAb to PHD3 (BL526) BET-A300-327A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human prolyl hydroxylase domain-containing pro-tein 3 (PHD3; EGLN3) encoded within exon 1. SPECIFICIT Y: Recognizes human and rat PHD3. APPLICATION: WB.

PAb to PHD4 (human) (BL529)BET-A300-330A 0.1 mg From rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human prolyl hydroxylase domain-containing pro-tein 4 (PHD4; EGLN4) encoded within exon 4. SPECIFICIT Y: Recognizes human PHD4. APPLICATION: WB.

PAb to Von Hippel-Lindau Disease Tumor Suppressor ProteinJBS-ABD-016 50 µgFrom rabbit. IMMUNOGEN: Recombinant human Von Hippel-Lindau (VHL) disease tumor suppressor protein. SPECIFICIT Y: Recognizes human VHL. APPLICATION: WB.

Von Hippel-Lindau Disease Tumor Suppressor Protein (human) (rec.)JBS-PR-768 5 µgProduced in Sf9 cells. PURIT Y: ≥90%, homogeneous. Contains no detectable protease, DNase and RNase activity. APPLICATION: For in vitro transcriptional activation and protein-pro-tein interaction assays.

PAb to CSN5 (human) (BL1062)BET-A300-014A 0.1 mg From rabbit. IMMUNOGEN: Synthetic peptide corresponding to a C-terminal domain of human COP9 signalosome complex subunit 5 (CSN5). SPECIFICIT Y: Recognizes human CSN5. Other species have not been tested. APPLICATION: WB.

PRODUCTS

Flyer_HIF_final.indd 3Flyer_HIF_final.indd 3 21.09.2004 13:36:0421.09.2004 13:36:04

Page 4: HYPOXIA & HIF-1

I M M U N O LO G Y / C A N C E R R E S E A R C H4

For Prices visit our Online Catalog at www.alexis-e.biz, contact your Local Distributor, or call +41 61 926 89 89

REGULATION OF HIF1 ACTIVITYHIF-1 Prolyl-hydrolase 1 (PHD1) [1]CITED2 (P35srj) [2]IPAS [3]

ANGIOGENESISAdrenomedullin [4]LDL-receptor-related Protein 1 (LRP1) [5]VEGF [6]VEGFR-1 (Flt-1) [7]TGF-β3 [8]Leptin [9, 10]Endoglin (CD105) [11]Plasminogen-activator Inhibitor-1 (PAI-1) [12]Connective Tissue Growth Factor (CTGF) [13]Pentraxin 3 (PTX3) [14]CancerN-myc Downstream Regulated Gene 1(Cap43; NDRG1) [15]CXCR4 ↓ [16, 17]Stromal Cell-derived Factor-1 (SDF-1; CXCL12) [18]c-MET [19]ARMET [14]

DRUG RESISTANCEP-glycoprotein (MDR1) [20]

CELL PROLIFERATIONp21 (WAF-1/CIP1), p53, Bcl-2 [21]p27 [22]IGF2, IGFBP-2, IGFBP-3 [23]IGFBP-1 [24]TGF-α [25]TGF-β1, TGF-β2, TGF-β3 [8]Cyclin G2 [5]Cyclin D1 ↓ [26]hTERT ↓ [27]Nucleophosmin [28]

CELL GROWTHP58IPK [14]

APOPTOSISAdrenomedullin [4]Bcl-2 [21]Bid ↓, Bax ↓ [29]NIP3 [30]BNip3, NIX [31]RTP801 [32]NOXA [33]HGTD-P [34]REDD2 [35]

ERSTRESS GADD153 (CHOP), HERP, HEDJ, ERDJ4, GRP78 (Bip), GRP94 [14]

ALZHEIMER’S DISEASEPresenilin-1 [36]Presenilin-2 [37]

DNA REPAIRBRCA1 ↓ [27]GADD153 (CHOP) [14]

TRANSCRIPTIONAL REGULATIONDEC1 (Stra13; Sharp2) [5, 38]DEC2 [39]ETS-1 [40]NUR77 [41]ATF3 [14]

ATF4 [42]XBP1 [14]

CYTOSKELETAL STRUCTUREVimentin [43, 25]Keratin 14, Keratin 18, Keratin 19 [25]

MOTILITYLDL-receptor-related Protein 1 (LRP1) [5]TGF-α [25]Glucose-6-phosphate Isomerase (GPI, AMF, Neuroleukin) [44]

CELL ADHESIONMIC2 (CD99) [5]

VASOMOTOR TONEEndothelin-1 [5]Adrenomedullin [4]α1β-Andrenergic Receptor (α1β-AR) [45]Inducible Nitric Oxide Synthase (iNOS; NOS II) [46]Heme Oxygenase 1 (HO-1; human: ↓, rat, bovine, monkey, hamster: ↑), Bach1 [47]Atrial Natriuretic Peptide (ANP) [71, 72]

EXTRACELLULAR MATRIX METABOLISMPlasminogen-activator Inhibitor-1 (PAI-1) [12]Prolyl-4-hydroxylase α-1 (4-PHα-1) [48]Collagen type V (α1) [5]Cathepsin D, Fibronectin 1, Matrix Metalloproteinase 2 (MMP2), Urokinase Plasminogen Activator Receptor (UPAR) [25]

COAGULATION/WOUND HEALING Transferrin (CD142; Thromoplastin) [49]Fibronectin 1 [25]Viral-like 30 Element (VL30) [50]

MUCOSAL REPAIRIntestinal Trefoil Factor (ITF) [51]

ATP/GLUCOSE/ENERGY METABOLISMGlyceraldehyde-3-P-dehydrogenase (GAPDH) [52, 53]Glucose-6-phosphate Isomerase (GPI; AMF; Neuroleukin) [44]Glucose Transporter 1 & 3 (GLUT1 & GLUT3) [54]Prolyl-4-hydroxylase α 1 (4-PHα-1) [48]Phosphofructokinase L (PFKL), Lactate Dehydrogenase A (LDHA), Aldolase A&C, Pyruvate Kinase M, Enolase 1 [55]Hexokinase 1 & 2 [56]6-Phosphofructo-2-kinase/Fructose-2,6-biphosphatase-3 (PFKFB3) [57]Phosphoglyceratekinase 1 (PGK1) [58, 55]Triose Phosphate Isomerase (TPI) [59]

DIABETESHepatic Growth Factor (HGF) [43]Leptin [9, 10]

OBESITYPPARγ2 ↓ [60]

INFLAMMATIONCOX-2 [36]Integrin β2 Subunit (CD18) [61]CYP4B1 [62]Adrenomedullin [63]

ERYTHROPOIESIS/IRON METABOLISMErythropoietin [64]Transferrin [65]Transferrin Receptor [66]

Ceruloplasmin [67]Coproporphyrinogen Oxidase [14]

NUCLEOTIDE METABOLISMAdenylate Kinase 3 (AK3) [49]Ecto-5‘-nucleotidase (5’NT, CD73) [68]

AMINO ACID METABOLISMTransglutaminase 2 [5]Asparagine Synthetase [14]

RENINANGIOTENSIN SYSTEMAminopeptidase A [5]

PH REGULATIONCarbonic Anhydrase 9 [69]

MISCELLANEOUSNorepinephrine [70]

[1] N. Erez, et al.; FEBS Lett. 567, 311 (2004) [2] S. Bhattacharya, et al.; Genes Dev. 13, 64 (1999) [3] Y. Makino, et al.; Nature 414, 550 (2001) [4] S. Cormier-Regard, et al.; J. Biol. Chem. 273, 17787 (1998) [5] C.C. Wykoff, et al.; Oncogene 19, 6297 (2000) [6] J.A. Forsythe, et al.; Mol. Cell. Biol. 16, 4604 (1996) [7] H.P. Gerber, et al.; J. Biol. Chem. 272, 23659 (1997) [8] G.M. Saed, et al.; Am. J. Reprod. Immunol. 48, 387 (2002) [9] G. Ambrosini, et al.; J. Biol. Chem. 277, 34601 (2002) [10] A. Grosfeld, et al.; J. Biol. Chem. 277, 42953 (2002) [11] T. Sanchez-Elsner, et al.; J. Biol. Chem. 277, 43799 (2002) [12] T. Kietzmann, et al.; Blood 94, 4177 (1999) [13] T. Shimo, et al.; Cancer Lett. 174, 57 (2001) [14] L. Romero-Ramirez, et al.; Cancer Res. 64, 5943 (2004) [15] D. Zhou, et al.; Cancer Res. 58, 2182 (1998) [16] P. Staller, et al.; Nature 425, 307 (2003) [17] T. Schioppa, et al.; J. Exp. Med. 198, 1391 (2003) [18] D.J. Ceradini, et al.; Nat. Med. 10, 858 (2004) [19] S. Pennacchietti, et al.; Cancer Cell 3, 347 (2003) [20] K.M. Comerford, et al.; Cancer Res. 62, 3387 (2002) [21] P. Carmeliet, et al.; Nature 394, 485 (1998) [22] L.B. Gardner, et al.; J. Biol. Chem. 276, 7919 (2001) [23] D. Feldser, et al.; Cancer Res. 59, 3915 (1999) [24] S.I. Tazuke, et al.; PNAS 95, 10188 (1998) [25] B. Krishnamachary, et al.; Cancer Res. 63, 1138 (2003) [26] M. Baba, et al.; Oncogene 22, 2728 (2003) [27] M. Koshiji, et al.; EMBO J. 23, 1949 (2004) [28] J. Li, et al.; J. Biol. Chem. in press (2004) [29] J.T. Erler, et al.; Mol. Cell. Biol. 24, 2875 (2004) [30] R.K. Bruick; PNAS 97, 9082 (2000) [31] H.M. Sowter, et al.; Cancer Res. 61, 6669 (2001) [32] T. Shoshani, et al.; Mol. Cell. Biol. 22, 2283 (2002) [33] J.Y. Kim, et al.; J. Exp. Med. 199, 113 (2004) [34] M.J. Lee, et al.; Mol. Cell. Biol. 24, 3918 (2004) [35] C. Cuaz-Perolin, et al.; Arterioscler. Thromb. Vasc. Biol. in press (2004) [36] N.G. Bazan and W.J. Lukiw; J. Biol. Chem. 277, 30359 (2002) [37] W.J. Lukiw, et al.; Neuroreport 12, 53 (2001) [38] A.V. Ivanova, et al.; J. Biol. Chem. 276, 15306 (2001) [39] K. Miyazaki, et al.; J. Biol. Chem. 277, 47014 (2002) [40] M. Oikawa, et al.; BBRC 289, 39 (2001) [41] J.W. Choi, et al.; Cancer Res. 64, 35 (2004) [42] J.D. Blais, et al.; Mol. Cell. Biol. 24, 7469 (2004) [43] B. Vasir, et al.; Diabetologia 43, 763 (2000) [44] D.Y. Yoon, et al.; BBRC 288, 882 (2001) [45] A.D. Eckhart, et al.; PNAS 94, 9487 (1997) [46] L.A. Palmer, et al.; Am. J. Physiol. 274, L212 (1998) [47] T. Kitamuro, et al.; J. Biol. Chem. 278, 9125 (2003) [48] Y. Takahashi, et al.; J. Biol. Chem. 275, 14139 (2000) [49] J.F. O‘Rourke, et al.; Eur. J. Biochem. 241, 403 (1996) [50] S.D. Estes, et al.; J. Virol. 69, 6335 (1995) [51] G.T. Furuta, et al.; J. Exp. Med. 193, 1027 (2001) [52] K. Salnikow, et al.; Cancer Res. 60, 38 (2000) [53] K.K. Graven, et al.; Biochim. Biophys. Acta 1447, 208 (1999) [54] B.L. Ebert, et al.; J. Biol. Chem. 270, 29083 (1995) [55] G.L. Semenza, et al.; J. Biol. Chem. 269, 23757 (1994) [56] N.V. Iyer, et al.; Genes Dev. 12, 149 (1998) [57] A. Minchenko, et al.; J. Biol. Chem. 277, 6183 (2002) [58] J.D. Firth, et al.; PNAS 91, 6496 (1994) [59] B. Gess, et al.; Pflugers Arch. 448, 175 (2004) [60] Z. Yun, et al.; Dev. Cell 2, 331 (2002) [61] T. Kong, et al.; PNAS 101, 10440 (2004) [62] V. Mastyugin, et al.; J. Cell Biochem. 91, 1218 (2004) [63] Y. Makino, et al.; J. Immunol. 171, 6534 (2003) [64] G.L. Wang and G.L. Semenza; J. Biol. Chem. 268, 21513 (1993) [65] A. Rolfs, et al.; J. Biol. Chem. 272, 20055 (1997) [66] L. Tacchini, et al.; J. Biol. Chem. 274, 24142 (1999) [67] C.K. Mukhopadhyay, et al.; J. Biol. Chem. 275, 21048 (2000) [68] K. Synnestvedt, et al.; J. Clin. Invest. 110, 993 (2002) [69] C.C. Wykoff, et al.; Cancer Res. 60, 7075 (2000) [70] G.L. Semenza; J. Appl. Physiol. 96, 1173 (2004) [71] Y.F. Chen, et al.; Hypertension 29, 75 (1997) [72] Y.S. Chun, et al.; Biochem. J. 370, 149 (2003)

TABLE 1: TRANSCRIPTIONALLY REGULATED GENES BY HIF1

Flyer_HIF_final.indd 4Flyer_HIF_final.indd 4 21.09.2004 13:36:0521.09.2004 13:36:05

Page 5: HYPOXIA & HIF-1

FC = Flow Cytometry; ICC = Immunocytochemistry; IP = Immunoprecipitation; IHC = Immunohistochemistry (FS = Frozen Sections, PS = Paraffin Sections); WB = Western blot

5I M M U N O LO G Y / C A N C E R R E S E A R C H

The HIF-1α/HIF-1β dimer recruits the coac-tivator p300/CBP. This complex then binds and activates HREs in HIF target genes to modulate transcription of those genes. A recent screen of 600,000 compounds identifi ed a single specifi c inhibitor, chetomin, of HIF-1α binding to p300 [33]. HIF-1 regulates the expression of a broad range of genes that facilitate acclimatization to low oxygen conditions. Its targets include genes that code for molecules that participate in va-somotor control, angiogenesis, erythropoiesis, iron metabolism, cell proliferation and cell cy-cle control, cell death and energy metabolism. Hypoxia is also a critical determinant of sur-vival of the activated T cells via the HIF-1α-AM cascade, defi ning a previously unknown mode of regulation of peripheral immunity [39]. For an overview of hypoxia-mediated gene ex-pression see Table 1. CONTINUED ON PAGE 6

PAb to CREB Binding Protein [CBP] ALX-210-229-C100 100 µgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to aa 162-176 (A162TSSPATSQTGPGIC176) in the nuclear factor binding domain of human CBP (CREB binding protein). SPECIFICIT Y: Recognizes human and mouse CBP. Detects a band of ~265kDa by Western blot. APPLICATION: WB. BLOCKING PEPTIDE: Prod. No. ALX-153-023.

PAb to CREB Binding Protein [CBP] (human) (BL440)BET-A300-362A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human CREB binding protein (CBP) encoded within exon 17. This sequence is conserved in 22 of 29 resi-dues between human and mouse. SPECIFICIT Y: Recognizes hu-man CBP. APPLICATION: IP.

PAb to CREB Binding Protein [CBP] (human) (BL441)BET-A300-363A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human CREB binding protein (CBP) encoded within exon 33. This sequence is conserved in 28 of 31 resi-dues between human and mouse. SPECIFICIT Y: Recognizes hu-man CBP. APPLICATION: IP.

p300 (human) (rec.)JBS-PR-762 2 µgProduced in Sf9 cells. PURIT Y: >95% (SDS-PAGE). APPLICATION: For in vitro transcriptional activation, protein-protein interaction assays, in vitro acetylation assays and cell growth assays.

p300 (C-terminal Domain) (human) (rec.)JBS-PR-770 4 µgProduced in Sf9 cells. PURIT Y: >95% (SDS-PAGE). APPLICATION: For in vitro transcriptional activation, protein-protein interaction assays, in vitro acetylation assays and cell growth assays.

PAb to p300 (human) ALX-210-228-C100 100 µgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to aa 139-151 (G139TSGPNQGPTQST151) in the nuclear factor binding domain of human p300. SPECIFICIT Y: Recognizes hu-man p300. Detects a band of ~265 kDa by Western blot. APPLICATION: WB. BLOCKING PEPTIDE: Prod. No. ALX-165-038.

PAb to p300 (human) (BL442)BET-A300-358A 0.1 mg From rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human E1A binding protein p300 encoded within exons 15 and 16. SPECIFICIT Y: Recognizes human p300. APPLICATION: IP.

PAb to p300 (human) (BL443)BET-A300-359A 0.1 mgFrom rabbit. IMMUNOGEN: Synthetic peptide corresponding to a portion of human E1A binding protein p300 encoded within exon 16. SPECIFICIT Y: Recognizes human p300. APPLICATION: IP.

Anacardic acid[2-Hydroxy-6-pentadecylbenzoic acid; 6-Pentadecylsalicylic acid; AA]ALX-270-381-M005 5 mgALX-270-381-M025 25 mgCell permeable salicylic acid analog that acts as a potent, non-competitive inhibitor of p300 and PCAF (p300/CBP-associated factor) HAT (histone acetyltransferase) activities (IC50~8.5µM and ~5µM, respectively).LIT: Small molecule modulators of histone acetyltransferase p300: K. Balasubramanyam, et al.; J. Biol. Chem. 278, 19134 (2003).

CTPB[N-(4-Chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentade-cyl-benzamide]ALX-420-033-M001 1 mgALX-420-033-M005 5 mgPotent activator of p300 HAT, but not of PCAF (p300/CBP-as-sociated factor) HAT (histone acetyltransferase) activities.LIT: Small molecule modulators of histone acetyltransferase p300: K. Balasubramanyam, et al.; J. Biol. Chem. 278, 19134 (2003).

PRODUCTS

REGULATION BY HIF1

VEGF-A [VEGF] (human) BioLISA Kit ALX-850-298-KI01 1 Kit QUANTIT Y: 96 wells (~80 tests). SENSITIVIT Y: 11 pg/ml. APPLICATION: For measurements of active human vascular en-dothelial growth factor A (VEGF-A; VEGF) in cell culture super-natants, human serum, plasma and other biological samples. PRODUC T DESCRIPTION: Compared to normal ELISA kits, this kit uses rsVEGFR-1 to capture the antigen instead of an anti-body, thus only biologically active VEGF-A will be measured.

sVEGFR-1 [Flt-1] (human) ELISA Kit ALX-850-264-KI01 1 Kit QUANTIT Y: 96 wells (~80 tests). SENSITIVIT Y: 100 pg/ml. APPLICATION: For measurement of total human soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; Flt-1) in cell culture supernatants, human serum, heparin treated plasma and other biological samples.

PAb to VEGF-A [VEGF] (human) SIG-861-01 1 ml From rabbit. IMMUNOGEN: MAP peptide of the N-terminal sequence (aa 1-20) of human vascular endothelial growth fac-tor A (VEGF-A; VEGF). SPECIFICIT Y: Recognizes human VEGF-A. APPLICATION: IHC (PS, FS not tested), IP, ELISA, WB.

VEGFR RELATED PRODUCTS

FOR A FULL PANEL OF SYNTHETIC SMALL MOLECULES SEE PAGE 8 OR VISIT WWW.ALEXISE.BIZ

LATEST INSIGHTS

Muscle HIF-1α knockout mice show a meta-bolic shift away from glycolysis toward oxidation leading to increasing exercise times. This dem-onstrates an important role for the HIF-1 path-way in the metabolic control of muscle function. Interestingly, mice with enhanced expression of PPARδ show a similar increase in running en-durance.

HIF-2α promotes adipose differentiation by inducing PPARγ2, suggesting that HIF-2α plays a role in adipogenesis and adipocyte function in-cluding regulation of glucose uptake followed by lipid synthesis. C75 (Prod. No. ALX-270-286), a fatty acid synthase inhibitor, on the other hand, has been reported to downregulate PPARγ and to inhibit adipocyte differentiation.

LIT: Loss of Skeletal Muscle HIF-1alpha Results in Altered Exercise Endurance: S.D. Mason, et al.; PLoS Biol. 2, E288 (2004) / Regula-tion of Muscle Fiber Type and Running Endurance by PPARdelta: Y.X. Wang, et al.; PLoS Biol. 2, E294 (2004)/ EPAS1 promotes adipose differentiation in 3T3-L1 cells: S. Shimba, et al.; J. Biol. Chem. in press (2004) / Effects of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells: L.H. Liu, et al.; Acta Pharma-col. Sin. 25, 1052 (2004)

C75ALX-270-286-M001 1 mg ALX-270-286-M005 5 mg

OCH3

HOOC

O

CH2

PRODUCT HIGHLIGHT

Flyer_HIF_final.indd 5Flyer_HIF_final.indd 5 21.09.2004 13:36:0521.09.2004 13:36:05

Page 6: HYPOXIA & HIF-1

I M M U N O LO G Y / C A N C E R R E S E A R C H6

For Prices visit our Online Catalog at www.alexis-e.biz, contact your Local Distributor, or call +41 61 926 89 89

YC-1 (Prod. No. ALX-420-025), best described as a potent stimulator of soluble guanylyl cyclase, suppresses the cellular levels of erythropoietin and VEGF and the DNA-binding activity of HIF-1 and HIF-1α protein expression [23, 24]. Vinc-ristine (Prod. No. ALX-350-069) and 2-methoxy-estradiol, two microtubule-targeting agents, in-hibit the expression of HIF-1α in normoxic and hypoxic cancer cells [34]. The topoisomerase-I inhibitor topotecan (Prod. No. LKT-T5761) also inhibits hypoxic induction of VEGF mRNA [35]. HSP90 inhibitors 17-allylaminogeldanamycin (17-AAG) (Prod. No. ALX-380-091), geldan-amycin (Prod. No. ALX-380-054) and radicicol (Prod. No. ALX-380-092) have been shown to suppress HIF-1 activity [36-38]. Dimethyloxal-lylglycine (DMOG) (Prod. No. ALX-270-371), 2,4-diethylpyridine dicarboxylate (2,4-DPD) (Prod. No. ALX-270-372) and N-oxalylglycine (Prod. No. ALX-270-412) are inhibitors of the oxygen-sensing enzyme HIF-α prolyl hydroxyla-se (HIF-PH), which destructs HIF-1α when hy-droxylated at a specifi c proline residue (P564).

17-AAG[17-(Allylamino)-17-desmethoxygeldanamycin]ALX-380-091-C100 100 µgALX-380-091-M001 1 mgInhibitor of HSP90 binding to the N-terminal ATP-binding do-main of HSP90 family members.

2,4-Diethylpyridine dicarboxylate[2,4-DPD]ALX-270-372-M010 10 mgALX-270-372-M025 25 mgALX-270-372-M100 100 mgCell permeable, competitive inhibitor of the oxygen-sensing enzyme HIF-1α prolyl hydroxylases (PHDs).

Dimethyloxallylglycine[DMOG]ALX-270-371-M010 10 mgALX-270-371-M050 50 mgALX-270-371-M100 100 mgCell permeable, competitive inhibitor of the oxygen-sensing enzyme HIF-1α prolyl hydroxylases (PHDs).

GeldanamycinALX-380-054-C100 100 µgALX-380-054-C500 500 µgALX-380-054-M001 1 mgInhibitor of HSP90 binding to the N-terminal ATP-binding do-main of HSP90 family members.

Herbimycin AALX-350-029-C100 100 µg ALX-350-029-M001 1 mgInhibitor of HSP90 binding to the N-terminal ATP-binding do-main of HSP90 family members.

Novobiocin . sodium salt[Albamycin; Streptonivicin]ALX-380-093-G001 1 gInhibitor of HSP90 binding to the C-terminal ATP-binding do-main of HSP90.

N-Oxalyl-D-alanine[NODA; N-Oxalyl-2R-alanine]ALX-270-414-M010 10 mgALX-270-414-M050 50 mgCell permeable, potent competitive inhibitor of factor inhibit-ing HIF asparagine hydroxylase (FIH, IC50<0.4mM). Does not inhibit HIF-1α prolyl hydroxylases (PHDs).LIT: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation: P. Jaakkola, et al.; Science 292, 468 (2001)/Structure of factor-inhibiting hypoxia-in-ducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha: J.M. Elkins, et al.; J. Biol. Chem. 278, 1802 (2003)

N-Oxalyl-L-alanine[NOLA; N-Oxalyl-2S-alanine]ALX-270-413-M010 10 mgALX-270-413-M050 50 mgCell permeable, competitive inhibitor of the oxygen-sensing enzyme HIF-1α prolyl hydroxylases (PHDs). Less potent in-hibitor of factor inhibiting HIF asparagine hydroxylase (FIH, IC50=2.5mM).LIT: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation: P. Jaakkola, et al.; Science 292, 468 (2001)/Structure of factor-inhibiting hypoxia-in-ducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha: J.M. Elkins, et al.; J. Biol. Chem. 278, 1802 (2003)

N-Oxalylglycine[NOG]ALX-270-412-M010 10 mgALX-270-412-M050 50 mgCell permeable, competitive inhibitor of the oxygen-sensing enzyme HIF-1α prolyl hydroxylases (PHDs).

Quercetin . dihydrate[3,3‘,4‘,5,7-Pentahydroxyflavone . 2H2O]ALX-385-001-G005 5 g Potent inhibitor of factor inhibiting HIF asparagine hydroxylase (FIH, IC50=0.6mM) not dependent on FEII chelation. Inhibits the activation of the hypoxia-response element (HRE) under hypoxic conditions.LIT: The selectivity and inhibition of AlkB: R.W. Welford, et al.; J. Biol. Chem. 278, 10157 (2003)/Specific inhibition of hypoxia-in-ducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids: Y. Hasebe, et al.; Biol. Pharm. Bull. 26, 1379 (2003)

TopotecanLKT-T5761-M001 1 mg LKT-T5761-M005 5 mgInhibitor of topoisomerase-1 inhibiting hypoxic induction of VEGF mRNA.

Vincristine . sulfateALX-350-069-M001 1 mg ALX-350-069-M005 5 mgDepolymerizes microtubules and blocks binding of tubulin to microtubule proteins. Inhibits the expression of HIF-1α.

YC-1[3-(5’-Hydroxymethyl-2’-furyl)-1-benzylindazole]ALX-420-025-M001 1 mg ALX-420-025-M005 5 mgNitric oxide (NO)-independent potent stimulator of soluble guanylyl cyclase. Suppresses the cellular levels of erythropoi-etin and VEGF and the DNA-binding activity of HIF-1 and HIF-1α protein expressionLIT: Inhibitory effect of YC-1 on the hypoxic induction of erythro-poietin and vascular endothelial growth factor in Hep3B cells: Y.S. Chun, et al.; Biochem. Pharmacol. 61, 947 (2001)/YC-1: a potential anticancer drug targeting hypoxia- inducible factor 1: E.J. Yeo, et al.; J. Natl. Cancer Inst. 95, 516 (2003)

PRODUCTS

CHEMICAL INHIBITORS OF HIF1

Finally small molecule inhibitors of the HER2→PI3K→AKT→mTOR/GSK-3 pathway, Ras→Raf-1→MEK1→ERK1/2 pathway and p38→JNK

pathway (see last page), which regulate the level of HIF-1α, are of great interest in deciphering HIF-1 regulation.

O

O

NH

CH3

O

CH3

CH3

OHCH3H3CO

H3CO

OCONH2

NH

CH2

O

NN

CH2OH

O

NH

O

CH3

CH3CH3

H3CO

CH3

H3CO

O

OCONH2

OCH3CH3O

HSP90 Inhibitors

Hydroxylase Inhibitors

Other Inhibitors

O

OH

OH

OH

OH

O

OH . 2H2O

. HCl

N

N O

O

O

OH

CH3

OH

N

CH3

CH3

N

NH

OH

CH3

C

O

NH3CO

NH

CH3

OH C

O

OCOCH3OCH3

H3CO

HOC

. H2SO4

NO CH3

O

O O CH3

CH3O

NH

OCH3

O

O

O

OHNH

OH

O

O

O

CH3

OHNH

OH

O

O

O

CH3

OHNH

OH

O

O

O

CHEMICAL STRUCTURES

O

O

NH

CH3

O

CH3

CH3

OHCH3

H3CO

H3CO

H3CO

OCONH2

O

CH3

CH3

O OH

OH3CO

O

NH2

O

CH3

OH

O

NH

O

OH

CH3

CH3

. Na+

17-AAG Geldanamycin Herbimycin A Novobiocin . Na

Topotecan Vincristine . sulfate YC-1

2,4-DPD DMOG NODA NOLA NOG Quercetin . 2H2O

Flyer_HIF_final.indd 6Flyer_HIF_final.indd 6 21.09.2004 13:36:0621.09.2004 13:36:06

Page 7: HYPOXIA & HIF-1

FC = Flow Cytometry; ICC = Immunocytochemistry; IP = Immunoprecipitation; IHC = Immunohistochemistry (FS = Frozen Sections, PS = Paraffin Sections); WB = Western blot

7I M M U N O LO G Y / C A N C E R R E S E A R C H

[1] Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS het-erodimer regulated by cellular O2 tension: G.L. Wang, et al.; PNAS 92, 5510 (1995) [2] HIF-1alpha is essential for myeloid cell-me-diated inflammation: T. Cramer, et al.; Cell 112, 645 (2003) [3] Structural and functional analysis of hypoxia-inducible factor 1: G.L. Semenza, et al.; Kidney Int. 51, 553 (1997) [4] A nuclear factor in-duced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation: G.L. Semenza & G.L. Wang; Mol. Cell. Biol. 12, 5447 (1992) [5] Purification and characterization of hypoxia-inducible factor 1: G.L. Wang & G.L. Semenza; J. Biol. Chem. 270, 1230 (1995) [6] Cloning of a factor required for activity of the Ah (dioxin) recep-tor: E.C. Hoffman, et al.; Science 252, 954 (1991) [7] Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively ex-pressed in endothelial cells: H. Tian, et al.; Genes Dev. 11, 72 (1997) [8] Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway: J.B. Hogenesch, et al.; J. Biol. Chem. 272, 8581 (1997) [9] A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development: M. Ema, et al.; PNAS 94, 4273 (1997) [10] Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha: Y.Z. Gu, et al.; Gene Expr. 7, 205 (1998) [11] Cellular adaptation to hypoxia: O2-sensing protein hydroxylas-es, hypoxia-inducible transcription factors, and O2-regulated gene expression: R.H. Wenger; FASEB J. 16, 1151 (2002) [12] Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha: M.S. Wiesener, et al.; Blood 92, 2260 (1998) [13] Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha: S. Hara, et al.; BBRC 287, 808 (2001) [14] Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1: S. Bhattacharya, et al.; Genes Dev. 13, 64 (1999) [15] CITED4 inhibits hypoxia-ac-tivated transcription in cancer cells, and its cytoplasmic location in

breast cancer is associated with elevated expression of tumor cell hy-poxia-inducible factor 1alpha: S.B. Fox, et al.; Cancer Res. 64, 6075 (2004) [16] Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia: H. Suzuki, et al.; Oncogene 20, 5779 (2001) [17] Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function: D. Chen, et al.; J. Biol. Chem. 278, 13595 (2003) [18] Distinct aerobic and hypoxic mechanisms of HIF-alpha regulation by CSN5: L. Bemis, et al.; Genes Dev. 18, 739 (2004) [19] Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis: H. Kimura & H. Esumi; Acta Biochim. Pol. 50, 49 (2003) [20] Inhibition of hy-poxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling: L.E. Huang, et al.; J. Biol. Chem. 274, 9038 (1999) [21] Accumulation of HIF-1al-pha under the influence of nitric oxide: K.B. Sandau, et al.; Blood 97, 1009 (2001) [22] Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis fac-tor-alpha in contrast to desferroxamine and phenylarsine oxide: K.B. Sandau, et al.; J. Biol. Chem. 276, 39805 (2001) [23] Inhibitory ef-fect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells: Y.S. Chun, et al.; Biochem. Pharmacol. 61, 947 (2001) [24] YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1: E.J. Yeo, et al.; J. Natl. Cancer Inst. 95, 516 (2003) [25] Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1: G.L. Wang, et al.; BBRC 212, 550 (1995) [26] Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabi-lization of its alpha subunit: L.E. Huang, et al.; J. Biol. Chem. 271, 32253 (1996) [27] Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells: J.J. Haddad, et al.; J. Biol. Chem. 275, 21130 (2000) [28] Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat: J.W. Park, et al.; Life Sci. 60, 2207 (1997) [29] Reactive oxygen species gener-ated at mitochondrial complex III stabilize hypoxia-inducible factor-

1alpha during hypoxia: a mechanism of O2 sensing: N.S. Chandel, et al.; J. Biol. Chem. 275, 25130 (2000) [30] A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha: J.J. Haddad & S.C. Land; FEBS Lett. 505, 269 (2001) [31] Recombinant human interleukin (IL)-1 beta-mediated regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization, nuclear translocation and activation requires an antioxidant/reactive oxygen species (ROS)-sensitive mechanism: J.J. Haddad; Eur. Cytokine Netw. 13, 250 (2002) [32] Raising the Bar: How HIF-1 Helps Determine Tumor Radiosensitivity: B.J. Moeller & M.W. Dewhirst; Cell Cycle 3 in press (2004) [33] Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway: A.L. Kung, et al.; Cancer Cell 6, 33 (2004) [34] 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF: N.J. Mabjeesh, et al.; Cancer Cell 3, 363 (2003) [35] Identification of small molecule inhibitors of hypoxia-inducible factor 1 tran-scriptional activation pathway: A. Rapisarda, et al.; Cancer Res. 62, 4316 (2002) [36] Hsp90 regulates a von Hippel Lindau-independ-ent hypoxia-inducible factor-1 alpha-degradative pathway: J.S. Isaacs, et al.; J. Biol. Chem. 277, 29936 (2002) [37] Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells: N.J. Mabjeesh, et al.; Cancer Res. 62, 2478 (2002) [38] Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA bind-ing by the 90-kDa heat-shock protein inhibitor radicicol: E. Hur, et al.; Mol. Pharmacol. 62, 975 (2002) [39] Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells: Y. Makino, et al.; J. Immunol. 171, 6534 (2003)

LITERATURE

SELECTED REVIEW ARTICLES

[1] REGULATION OF MAMMALIAN O2 HOMEOSTASIS BY HYPOXIAINDUCIBLE FACTOR 1: G. L. Semenza; Annu. Rev. Cell Dev. Biol. 15, 551 (1999)

[2] CELLULAR ADAPTATION TO HYPOXIA: O2SENSING PROTEIN HYDROXYLASES, HYPOXIAINDUCIBLE TRANSCRIPTION FACTORS, AND O2REGULATED GENE EXPRESSION: R. H. Wenger; FASEB J. 16, 1151 (2002)

[3] OXYGENDEPENDENT AND INDEPENDENT REGULATION OF HIF1ALPHA: Y. S. Chun, et al.; J. Korean Med. Sci. 17, 581 (2002)

[4] RECIPROCAL REGULATION BETWEEN NITRIC OXIDE AND VASCULAR ENDOTHELIAL GROWTH FACTOR IN ANGIOGENESIS: H. Kimura & H. Esumi; Acta Biochim. Pol. 50, 49 (2003)

[5] THE VON HIPPELLINDAU TUMOR SUPPRESSOR, HYPOXIAINDUCIBLE FACTOR1 HIF1 DEGRADATION, AND CANCER PATHOGENESIS: C. W. Pugh & P. J. Ratcliffe; Semin. Cancer Biol. 13, 83 (2003)

[6] THE HYPOXIAINDUCIBLE FACTORS: KEY TRANSCRIPTIONAL REGULATORS OF HYPOXIC RESPONSES: C. P. Bracken, et al.; Cell. Mol. Life Sci. 60, 1376 (2003)

[7] THE SUBTLE SIDE TO HYPOXIA INDUCIBLE FACTOR HIFALPHA REGULATION: R. L. Bilton & G. W. Booker; Eur. J. Biochem. 270, 791 (2003)

[8] HIFS AND TUMORS CAUSES AND CONSEQUENCES: G. Hopfl, et al.; Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R608 (2004)

[9] HYPOXIAINDUCIBLE FACTOR1 IN TUMOUR ANGIOGENESIS: Y. H. Shi & W. G. Fang; World J. Gastroenterol. 10, 1082 (2004)

[10] THE HIF PATHWAY AS A THERAPEUTIC TARGET: K. S. Hewit-son & C. J. Schofield; Drug Discov. Today 9, 704 (2004)

[11] HYPOXIC GENE EXPRESSION AND METASTASIS: Q. T. Le, et al.; Cancer Metastasis Rev. 23, 293 (2004)

[12] HYPOXIAINDUCIBLE FACTOR HIF1ALPHA: ITS PROTEIN STABILITY AND BIOLOGICAL FUNCTIONS: J. W. Lee, et al.; Exp. Mol. Med. 36, 1 (2004)

[13] HIF1: AN OXYGEN AND METAL RESPONSIVE TRANSCRIPTION FACTOR: P. Maxwell & K. Salnikow; Cancer Biol. Ther. 3, 29 (2004)

[14] HIF1 AND OXYGEN SENSING IN THE BRAIN: F. R. Sharp & M. Bernaudin; Nat. Rev. Neurosci. 5, 437 (2004)

[15] OXYGENDEPENDENT AND TISSUESPECIFIC REGULATION OF ERYTHROPOIETIN GENE EXPRESSION: J. Fandrey; Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R977 (2004)

[16] HYPOXIAINDUCIBLE FACTOR 1 HIF1 IN CANCER: M. Quintero, et al.; Eur. J. Surg. Oncol. 30, 465 (2004)

[17] HYPOXIAINDUCIBLE FACTOR 1RELATED DISEASES AND PROSPECTIVE THERAPEUTIC TOOLS: J. W. Park, et al.; J. Pharma-col. Sci. 94, 221 (2004)

[18] HIF HYDROXYLATION AND CELLULAR OXYGEN SENSING: E. Metzen & P. J. Ratcliffe; Biol. Chem. 385, 223 (2004)

[19] HYPOXIA AND THE REGULATION OF MITOGENACTIVATED PROTEIN KINASES: GENE TRANSCRIPTION AND THE ASSESSMENT OF POTENTIAL PHARMACOLOGIC THERAPEUTIC INTERVENTIONS: J. J. Haddad; Int. Immunopharmacol. 4, 1249 (2004)

[20] NEW ANTICANCER STRATEGIES TARGETING HIF1: E. J. Yeo, et al.; Biochem. Pharmacol. 68, 1061 (2004)

[21] THE ROLE OF CALCIUM IN HYPOXIAINDUCED SIGNAL TRANSDUCTION AND GENE EXPRESSION: K. A. Seta, et al.; Cell Calcium 36, 331 (2004)

[22] CALCIUM AND PH HOMEOSTASIS IN NEURONS DURING HYPOXIA AND ISCHEMIA: H. Yao & G. G. Haddad; Cell Calcium 36, 247 (2004)

HSP90 RELATED PRODUCTS

HSP90 (human) (recombinant)ALX-201-147-C025 25 µg SOURCE/HOST: Recombinant human HSP90 produced in insect cells. PURIT Y: >99%. APPLICATION: WB.

HSP90 (mouse)IMA-220-0-C100 100 µg SOURCE/HOST: Purifi ed from mouse cells. PURIT Y: >95% (SDS-PAGE).

HSP90 (E. coli) (recombinant)ALX-201-146-C025 25 µg SOURCE/HOST: Recombinant protein produced in E. coli. PURIT Y: >99%. APPLICATION: WB.

HSP90 (yeast) (recombinant)ALX-201-138-C025 25 µg SOURCE/HOST: Recombinant protein produced in yeast. PURIT Y: >99%. APPLICATION: WB.

MAb to HSP90 (3B6) ALX-804-078-R100 100 µlCLONE: 3B6. ISOT YPE: Mouse IgG2b. IMMUNOGEN: Purifi ed mouse heat shock protein 90 (HSP90). SPECIFICIT Y: Recog-nizes human, mouse and rat HSP90. Detects a band of ~90 kDa by Western blot. Does not cross-react with chicken HSP90. APPLICATION: WB. For IP use Prod. No. ALX-804-079.

MAb to HSP90 (3G3) ALX-804-079-R400 400 µl CLONE: 3G3. ISOT YPE: Mouse IgM. IMMUNOGEN: Heat shock protein 90 (HSP90) from Hepa 1 cells. SPECIFICIT Y: Recog-nizes human, mouse, rat, rainbow trout and chicken HSP90. APPLICATION: IP. For WB use Prod. No. ALX-804-078.

MAb to HSP90 (H90-10) ALX-804-808-C100 100 µg CLONE: H90-10. ISOT YPE: Mouse IgG2aκ. IMMUNOGEN: Puri-fi ed human HSP90β. SPECIFICIT Y: Recognizes human, mouse and rabbit HSP90α and HSP90β. APPLICATION: ICC, IP, WB.

Flyer_HIF_final.indd 7Flyer_HIF_final.indd 7 21.09.2004 13:36:0621.09.2004 13:36:06

Page 8: HYPOXIA & HIF-1

I M M U N O LO G Y / C A N C E R R E S E A R C H8

International Distributors: Australia Sapphire Bioscience (02) 9966 9662 Austria Eubio (01) 8950145 Belgium 10P’s (03) 466 04 20 Brazil Bioagency 3666 3565 China ITS China (021)5089 0199 / Jingmei Biotech 0755 354 6191 / Beijing Bitab Biotech (010) 8201 5225 Czech Republic Genetica (02) 7270 1055 Denmark Medinova Scientific 3956 2000 Finland Nuppulinnan Laboratoriopalvelu (09) 27940200 France Coger (01) 45 33 67 17 Greece SB Biotechnology Suppliers SA (210) 823 3373 Hong Kong Boppard (0)2799 9019 Hungary Biomarker 28 419 986 India Imperial Bio-Medics 172 792 737/(027) / Hysel India 011-2622 7801 Indonesia ITS Indonesia (021) 451 6222 Iran Hermes Pajohan Lab. Equipment (021)888 3444 Israel Almog Diagnostic (03) 977 3390 Italy Vinci-Biochem 0571 568147 Japan BioLinks K.K. 03 5443 6891 Korea Chun Yang Tech (02) 929 8071 Luxembourg 10P’s +32 3 466 04 20 Malaysia Interscience (03) 7803 1888 Mexico Quimica Lavoisier (0)55 5511 7711 The Netherlands 10P’s 076 5425 184 New Zealand Global Science (09) 443 5867 / Sapphire Bioscience (02) 9966 9662 Norway AH Diagnostics (023) 23 32 60 Poland Biomibo (022) 872 0797 Portugal Baptista Marques (21) 722 06 60 Romania Medist SA (21) 411 5003 Russia Chimmed 095 728 4192 Singapore ITS Science & Medical (06) 273 0898 South Africa Southern Cross Biotechnology (021) 671 51 66 Spain Pacisa & Giralt (91) 6574810 Sweden Kelab 031 125160 Taiwan Cashmere Scientific Company (02) 8257 1878 Thailand Theera Trading (02) 412 5672 / (02) 418 1068 Turkey Tokra (312) 395 54 40 Vietnam ITS Vietnam (08) 9255 232

NORTH AMERICAAXXORA, LLCT (858)658-0065/1-800-900-0065F (858)550-8825/1-800-550-8825E [email protected]

GERMANYALEXIS DEUTSCHLAND GmbHT (06401) 90077Toll Free 0800 253 94 72F (06401) 90078E [email protected]

UK & IRELANDALEXIS CORPORATION (UK) LTD.T +44 1949 836111F +44 1949 836222E [email protected]

SWITZERLAND/REST OF EUROPEALEXIS CORPORATIONT +41 61 926 89 89F +41 61 926 89 79E [email protected]

Bisindolylmaleimide V[Ro 31-6045]ALX-270-053-M001 1 mgALX-270-053-M005 5 mgSelective inhibitor of p70S6K (IC50 = 0.8µM). LIT: Ro 31-6045, the inactive analogue of the protein kinase C in-hibitor Ro 31-8220, blocks in vivo activation of p70(s6k)/p85(s6k): implications for the analysis of S6K signalling: N. Marmy-Conus, et al.; FEBS Lett. 519, 135 (2002)

JNK Inhibitor 1 (D-stereoisomer) [D-JNKI1]ALX-159-601-R050 50 µlALX-159-601-R200 200 µlCell permeable JNK (c-Jun N-terminal kinase) inhibitor. D-JNKI1 exhibits a substantially prolonged half-life for in vivo applications (days) over its L-stereoisomer (hours). FITC-con-jugated D-TAT Control Peptide (Prod. No. ALX-168-010F).LIT: Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death: C. Bonny, et al.; Diabetes 50, 77 (2001)

JNK Inhibitor 1 (L-stereoisomer) [L-JNKI1]ALX-159-600-R100 100 µlALX-159-600-R200 200 µlCell permeable JNK (c-Jun N-terminal kinase) inhibitor.LIT: Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death: C. Bonny, et al.; Diabetes 50, 77 (2001)

LY-294,002ALX-270-038-M001 1 mgALX-270-038-M005 5 mgALX-270-038-M025 25 mgPotent, cell permeable, highly specifi c inhibitor of phosphati-dylinositol-3-kinase (PI(3)K) (IC50 = 1.4µM) that acts on the ATP binding site of the enzyme.LIT: Specific inhibitor of phosphatidylinositol 3-kinase, 2-(4- mor-pholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002): C.J. Vla-hos, et al.; J. Biol. Chem. 269, 5241 (1994)

OTDZT[2,4-Dibenzyl-5-oxothiadiazolidine-3-thione]ALX-270-401-M001 1 mgNon-ATP competitive inhibitor of GSK-3β (IC50=10µM).LIT: First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer ‘s disease: A. Martinez, et al.; J. Med. Chem. 45, 1292 (2002)

PD 98,059ALX-385-023-M005 5 mgALX-385-023-M010 10 mgALX-385-023-M100 100 mgPotent, cell permeable and selective inhibitor of MEK (MAP ki-nase kinase) (IC50 = 2-7µM). Blocks the activity of MEK thereby inhibiting the phosphorylation and activation of MAP kinase.LIT: PD 098059 is a specific inhibitor of the activation of mitogen- activated protein kinase kinase in vitro and in vivo: D.R. Alessi, et al.; J. Biol. Chem. 270, 27489 (1995)

Raf1 Kinase Inhibitor[5-Iodo-3-[(3,5-dibromo-4-hydroxyphenyl)methylene]-2-indolinone]ALX-270-324-M001 1 mgPotent cRAF1 kinase inhibitor (IC50 = 9nM). Shows >100-fold selectivity for Raf kinase versus CDK1, CDK2, c-Src, ERK2, MEK, p38, Tie2, VEGFR2, and c-Fms.LIT: The discovery of potent cRaf1 kinase inhibitors: K. Lackey, et al.; Bioorg. Med. Chem. Lett. 10, 223 (2000)

RapamycinALX-380-004-C100 100 µgALX-380-004-5100 5 x 100 µgALX-380-004-M001 1 mgALX-380-004-5001 5 x 1 mgSpecifi c inhibitor of mTOR.

SB203580ALX-270-179-M001 1 mgALX-270-179-M005 5 mgALX-270-179-M050 50 mgCell permeable, specifi c inhibitor of p38 (SAPK2a) (IC50 = 0.3-0.5 µM).LIT: The pyridinyl imidazole inhibitor SB203580 blocks phospho-inositide-dependent protein kinase activity, protein kinase B phos-phorylation, and retinoblastoma hyperphosphorylation in inter-leukin-2-stimulated T cells independently of p38 mitog: F.V. Lali, et al.; J. Biol. Chem. 275, 7395 (2000)

SB220025ALX-270-325-C500 500 µgPotent and specifi c inhibitor of human p38 (SAPK2a; IC50 = 60nM).LIT: Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models: J.R. Jackson, et al.; J. Pharmacol. Exp. Ther. 284, 687 (1998)

SH-5ALX-270-349-MC05 0.5 mgALX-270-349-M001 1 mgInhibitor of Akt (PKB) activation without affecting activation of the upstream kinase PDK-1, or other kinases downstream of Ras such as MAPK. LIT: Novel PI analogues selectively block activation of the pro-sur-vival serine/threonine kinase, Akt.: A.P. Kozikowski, et al.; JACS 125, 1144 (2003)

SH-6ALX-270-350-MC05 0.5 mgALX-270-350-M001 1 mgInhibitor of Akt (PKB) activation without affecting activation of the upstream kinase PDK-1, or other kinases downstream of Ras such as MAPK. LIT: Novel PI analogues selectively block activation of the pro-sur-vival serine/threonine kinase, Akt.: A.P. Kozikowski, et al.; JACS 125, 1144 (2003)

SP600125ALX-270-339-M005 5 mgALX-270-339-M025 25 mgPotent, cell permeable, selective, and reversible inhibitor of c-Jun N-terminal kinase (JNK) (IC50 = 40nM for JNK-1 and JNK-2 and 90nM for JNK-3).LIT: SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase: B.L. Bennett, et al.; PNAS 98, 13681 (2001)

TDZD-8[4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione]ALX-270-354-M005 5 mgHighly selective, non-ATP competitive inhibitor of GSK-3β (IC50 = 2µM).LIT: First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer ‘s disease: A. Martinez, et al.; J. Med. Chem. 45, 1292 (2002)

TIBPO[2-Thio(3-iodobenzyl)-5-(1-pyridyl)-[1,3,4]-oxadiazole]ALX-270-358-M005 5 mgPotent inhibitor of glycogen synthase kinase-3β (GSK-3β) (IC50 = 390nM).LIT: Scaffold hopping and optimization towards libraries of glyco-gen synthase kinase-3 inhibitors: L. Naerum, et al.; Bioorg. Med. Chem. Lett. 12, 1525 (2002)

U0126ALX-270-237-M001 1 mgALX-270-237-M005 5 mgPotent inhibitor of MEK1 (IC50 = 0.07 µM) and MEK2 (IC50 = 0.06 µM).LIT: MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products: J.V. Duncia, et al.; Bioorg. Med. Chem. Lett. 8, 2839 (1998)

WortmanninALX-350-020-M001 1 mgALX-350-020-M005 5 mgALX-350-020-M025 25 mgPotent and specifi c inhibitor of phosphatidylinositol-3-kinase (PI(3)K) (IC50 = 5nM)LIT: Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses: A. Arcaro & M.P. Wyman; Biochem. J. 296, 297 (1993)

SMALL MOLECULE INHIBITORS MANUFACTURED BY ALEXIS® BIOCHEMICALS

ALSO AVAILABLE

Phosphoinositide 3-kinase p110γ (human) (rec.) ALX-201-055-C010 10 µg

Phosphoinositide 3-kinase p110α/p85 (bovine) (rec.) ALX-201-119-C005 5 µg

PTEN (human) (rec.) ALX-201-079-C020 20 µg

Flyer_HIF_final.indd 8Flyer_HIF_final.indd 8 21.09.2004 13:36:0721.09.2004 13:36:07