hyundai green ship

17
1 Introduction to HYUNDAI Green Ship Technology NEWSFRONT Naftiliaki Shipbuilding Conference: Building for the Future 6 th April, 2011 Athens, Greece AGENDA 1. Intern at io nal Rul es and Re gulati ons 2. Naval Architecture 3. Mechanical Technology 4. Electrical Technology 5. IT Convergence Technology 6. Intr od uc ti on to HY UND AI Gre en Sh ip 2

Upload: boving

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 1/17

1

Introduction to

HYUNDAI Green Ship

Technology

NEWSFRONT

Naftiliaki

Shipbuilding Conference:Building for the Future

6th April, 2011

Athens, Greece

AGENDA

1. International Rules and Regulations

2. Naval Architecture

3. Mechanical Technology

4. Electrical Technology

5. IT Convergence Technology

6. Introduction to HYUNDAI Green Ship

2

Page 2: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 2/17

1. International Rules and Regulations

1.1 Prevention of air pollution (MARPOL 73/78 Annex VI)

ü Reg. 13 Nitrogen Oxides (NOx) (Tier II, Tier III)

ü Reg. 14 Sulphur Oxides (SOx), Particulate Matter 

Emission Control Area (ECA)

ü EU Directive/2005/33/EC, CARB, US EPA

1.2 IMO MEPC Green House Gas (GHG) Reduction Discussion

ü Energy Efficiency Design Index for New Ships (EEDI)

1.3 Ballast Water Management(BWM) Convention, 2004

1.4 Ship Recycling

ü IMO Res. MEPC 179(59) Inventory of Hazardous Materials (IHM)

- the Hong Kong Convention on Recycling of Ships

3

2. Naval Architecture

4

2.1 Hull Form Optimization Procedure

Optimum Bulbous Bow

Optimum Trim

Propulsion Efficiency

Propeller and Rudder Optimization

Hull Form Optimization

Speed-Power Prediction byModel Tests

HHI HMRI MODELBASIN

Hull Form

Design

HHI Database &

HullFormDesign+

Optimization

HHI HullFormOpt

PerformancePrediction by CFD

HHI HiFlow

FLUENT

WAVIS

Hyundai Maritime Research Institute Towing Tank

HiFlow  – HHI Wave Resistance Code

FLUENT  – Drag and Wake prediction, Propeller performance

WAVIS  – Wave ,Viscous Resistance and Propulsion Efficiency

Prediction (developed by MOERI, KOREA)

Page 3: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 3/17

2. Naval Architecture

5

2.2 Hull Form Optimization for Slow Steaming and Operational Profile – HMRI

ü Lines Optimization for Slower Design Speed and Slow Steaming

Ø ECO Speed for Container : 21 ~ 23 knots from 25 ~ 26 knots

Ø ECO Speed for Tanker/Bulker : 14.5 ~ 15.5 knots from 15.5 ~ 16.5 knots

Ø When speed is reduced by 15~20%, FOC reduction will be up to 50%.

ü Optimization for Operational Profile

(Slight Compromise with Calm Water Performance)

Ø Optimization for the Most Frequent Actual Operating Draughts

Ø Optimum Trim Tests for Operational Draughts

Ø Further Investigation on Rough Sea (Sea State 4~5) Performance

2. Naval Architecture

6

2.3 Engine Selection

ü Development of Main Engine Adequate for Slow Speed

Ø HHI EMD  – MAN Developing 84 RPM “S80” Engine from 78 RPM

Ø HHI EMD  – WARTSILA Developing 88 RPM “82T” Engine from 80 RPM

Items Unit 4,500 TEU 13,200 TEU

Speed (d1, 15% SM) (knots) 22 22

M/E

Type - 7RT-flex82C 7RT-flex82T 9K98ME7 10S90ME-C9.2

Nominal (kW x rpm) 31,640 x 102 31,640 x (88) 56,070 x 97 58,100 x 84

MCR (kW x rpm) 26,900 x 87 26,500 x 84 46,300 x 90 44,780 x 76

NCR (kW x rpm) 24,210 x 84 23,850 x 81.1 41,670 x 86.9 40,300 x 73.4

Prop. Dia. x No. (m) 8.1 x 5 Max. 8.2 x 5 9.1 x 5 Max. 9.9 x 5

SFOC at NCR (g/kW) 168.8 (160) (5.2%) 168.5 160.4 (4.8%)

DFOC at NCR (t/d) 98.1 91.6 (6.6%) 168.5 155.1 (8%)

Page 4: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 4/17

2. Naval Architecture

7

2.3 Engine Selection

ü FOC Reduction by Derating

Larger Engine

Items Unit 13,200 TEU

Speed (d1, 15% SM) (knots) 22

M/E

Type - 8S90ME-C9.2 10S90ME-C9.2

Nominal (kW x rpm) 46,480 x 84 58,100 x 84

MCR (kW x rpm) 45,700 x 84 44,780 x 76

NCR (kW x rpm) 41,130 x 81.1 40,300 x 73.4

Prop. Dia. x No. (m) 9.4 x 5 Max. 9.9 x 5

SFOC at NCR (g/kW) 164.3 160.4 (2.4%)

DFOC at NCR (t/d) 162.2 155.1 (4.4%)

2. Naval Architecture

8

2.3 Engine Selection

ü FOC Reduction by Derating Larger Engine & Slow Steaming

Ø Reduced Speed and Electronic Engine Applied on VLCC

Ø 7G80ME-C Slightly More Efficiency But It Requires Deeper Ballast Draft

Items Unit VLCC

Speed (d1, 15% SM) (knots) 16.4 15.8

M/E

Type - 7RTA82T 7RT-flex82T 7G80ME-C9.2

Nominal (kW x rpm) 31,640 x 80 31,640 x 80 31,150 x 68

MCR (kW x rpm) 31,640 x 80 24,900 x 72 24,500 x 67

NCR (kW x rpm) 28,476 x 77.2 22,410 x 69.5 22,050 x 64.7

Prop. Dia. x No. (m) 9.9 x 4 10 x 4 10.4 x 4

SFOC at NCR (g/kW) 168.8 161 (4.6%) 158.8 (1.4%)

DFOC at NCR (t/d) 115.4 86.6 (25%) 84.1 (2.9%)

Page 5: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 5/17

2. Naval Architecture

9

2.3 Engine Selection

ü Low NCR Power (below 75% MCR Power) with Low Load Tuning

Items Unit 13,200 TEU

M/E

Type - 10S90ME-C9.2

Nominal (kW x rpm) 58,100 x 84

MCR (kW x rpm) 44,780 x 76 57,700 x 83.5

NCR (kW x rpm) 40,300 x 73.4 40,390 x 74.1 (70% MCR)

Speed (d1,NCR/MCR) (knots) 22 / 22.6 22 / 24.2

Tuning (Load) High (STD) High (STD) Low (EGB)

SFOC at NCR (g/kW) 160.4 163.0 160.2

DFOC at NCR (t/d) 155.1 158.0 155.3

2. Naval Architecture

10

2.4 Energy Saving Devices and Appendages

ü HHI (X-Twisted) Full Spade Rudder –HMRI

Ø Enhanced Cavitation Performance

Ø Increased Propulsion Efficiency by 1~2%

ü HHI Vs Propeller – HHI HMRI

Ø 2% Increase in Propeller Efficiency

Ø Enhanced Cavitation Performance

ü CRP (Contra Rotating Propeller)  – HHI & Ja-Ke

Ø 8~10% increase in propeller efficiency

ü HHI BAL

(Bottom Air Layer)

System

 – HHI HMRI

Ø 5~10%Resistance

Reduction

Page 6: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 6/17

2. Naval Architecture

11

2.4 Energy Saving Devices and Appendages

ü Joint Development on Appendages – HHI & MARIN

2. Naval Architecture

12

2.5 Hydrodynamic Structural Optimization and Lightweight Reduction

ü Dynamic Loading Approach for Slamming, Whipping and Greenwater 

Ø Numerical Analysis

Ø Model Test & Onboard Measurement

JDP HHI, DNV, BV, MARINTEK and CeSOS for Segmented Model Test

EU FP7 Project

Tools for Ultra Large Container Ships

JIP BV, MARIN, CMACGM, WIKKI, …

Page 7: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 7/17

2. Naval Architecture

13

2.5 Hydrodynamic Structural Optimization and Lightweight Reduction

ü Higher Tensile Steel and Structural Optimization

-500

ton

-1,000

ton

Ø Narrower Spacing for Frame and Longitudinal

Ø Dividing Plates for Thickness Variations

14

3.1 Energy Saving Technology

ü FOC Reduction by Tuning Engine

Ø ECT (Engine Control Tuning)  – Only for ME Type M/E

This method can be implemented without change

of engine components, only engine controlparameters are changed.

Ø EGB (Exhaust Gas Bypass) Tuning

This method requires installation of EGB technology.

The turbochargers on the engine are matched at

100% load fully open EGB.

Ø VT (Variable Turbine Area) Tuning

This method requires special turbocharger parts

allowing the turbochargers on the engine to varythe are of the nozzle ring. The nozzle ring area is

minimum at the lower engine load range.

3. Mechanical Technology

Page 8: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 8/17

15

3.1 Energy Saving Technology

ü FOC Reduction by Engine Tuning

Items Unit 13,200 TEU

M/E

Type - 10S90ME-C9.2

Nominal (kW x rpm) 58,100 x 84

MCR (kW x rpm) 44,780 x 76

NCR (kW x rpm) 40,300 x 73.4

Tuning (Load)High

(STD)

Part

(ECT)

Part

(EGB)

Part

(VT)

Low

(ECT)

Low

(EGB)

Low

(VT)

SFOC at NCR22 knots

(g/kW) 160.4 161.9(+1.5)

161.9(+1.5)

160.9(+0.5)

161.9(+1.5)

161.9(+1.5)

160.9(+0.5)

SFOC at 70% MCR

20.5 knots(g/kW) 158.6

157.6

(-1.0)

156.3

(-2.3)

156.3

(-2.3)

157.1

(-1.5)

155.8

(-2.8)

155.8

(-2.8)

SFOC at 50% MCR

18.5 knots(g/kW) 163.0

162.0

(-1.0)

160.0

(-3.0)

160.0

(-3.0)

160.5

(-2.5)

158.0

(-5.0)

158.0

(-5.0)

3. Mechanical Technology

3. Mechanical Technology

16

3.1 Energy Saving Technology

ü Turbo Charger Variations  – HHI EMDØ Turbo Charger Cut Off, Dual MCR

Ø DuETNAVI (Dual Effective Turbocharging Navigation System)

(Sequential Turbocharging System)

Page 9: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 9/17

3. Mechanical Technology

17

3.1 Energy Saving Technology

ü Waste Heat Recovery System with Intelligent Power Management System

3. Mechanical Technology

18

3.2 Emission Control Technology  – HHI EMDü EGR (Exhaust Gas Recirculation)

üChAM (Charge Air Moisturization),

DWI (Direct Water Injection)

ü WIF (Water In Fuel)

Page 10: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 10/17

3. Mechanical Technology

19

3.2 Emission Control Technology  – HHI EMDü Scrubber for SOx and PM SCR (Selective Catalytic Reduction) for NOx

Mixing Chamber

SCR Reactor

Urea Injection

Diesel Engine

HHI NoNOx

System

Wartsila 6RTA52U / SCR

integrated with T/C system

3. Mechanical Technology

20

3.3 BWTS (Ballast Water Treatment System)

ü HYUNDAI ECO Ballast System HYUNDAI HI Ballast System

Page 11: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 11/17

3. Mechanical Technology

21

3.4 LNG as Fuel  – HHI EMD

ü HYUNDAI-MAN ME-GI Engine HIMSEN G35DF Dual Fuel Engine

Ø H35DF Diesel will be developed as

Dual Fuel within 2011

Ø High Efficiency & Low NOx at High MEP

3. Mechanical Technology

22

3.4 LNG as Fuel

ü HHI LNG Fuel Supply System for ME-GI and DF Engine

Page 12: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 12/17

3. Mechanical Technology

23

3.4 LNG as Fuel

ü KOGAS and Korean Shipbuilders Cooperation

on LNG Bunkering Facility Development

Distribution systems

Planned LNG

Terminal

Not KOGAS

LNG Terminal

LNG Terminal

LNG Terminal

Not KOGASLNG Terminal

Planned LNG Terminal

KOGAS

• Relative small

distance between

LNG terminals

and Large ports

3. Mechanical Technology

24

3.4 LNG as Fuel

ü HHI LNG Powered Tanker 

Dual Fuel ME-GI Engine

IMO Type C LNG Fuel Tank

Items Unit Tanker  

MGO / LNG (m3) 3,200 / 2,000

M/E

Type - 7S60ME-C8.2-GI

Nominal (kW x rpm) 16,660 x 105

MCR (kW x rpm) 16,660 x 105

NCR (kW x rpm) 14,994 x 101.4

Speed (d1, 15% S.M.) (knots) 15.7

DFOC/End. (MGO) at NCR (t/d) / (NM) 60.0 / 17,400

DFOC/End. (LNG) at NCR (t/d) / (NM) 49.5 / 5,300

Page 13: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 13/17

3. Mechanical Technology

25

3.4 LNG as Fuel

ü HHI LNG Powered Container Carrier 

Dual Fuel ME-GI Engine IMO Type C LNG Fuel Tank

Items Unit 13,200 TEU

MGO / LNG (m3) 6,500 / 2,000

M/E

Type - 10S90ME-C9.2-GI

Nominal (kW x rpm) 58,100 x 84

MCR (kW x rpm) 44,780 x 76

NCR (kW x rpm) 40,300 x 73.4

Speed (d1, 15% S.M.) (knots) 22

DFOC/End. (MGO) at NCR (t/d) / (NM) 155.1 / 20,300

DFOC/End. (LNG) at NCR (t/d) / (NM) 128.0 / 3,050

3. Mechanical Technology

26

3.4 LNG as Fuel

ü HYUNDAI-WARTSILA 70DF with Mechanical Drive

Page 14: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 14/17

4. Electrical Technology

27

4.1 Electric Power 

ü DFDE (Dual Fuel Diesel Electric) Propulsion

Ø Hyundai-Wartsila 50DF/70DF

ü Cold Ironing or Alternate Marine Power System

Shaft lineShaft lineEl. MotorsEl. Motors

Reduction gear Reduction gear 

Transf. & conv.Transf. & conv.

GeneratorsGenerators EnginesEngines

W 12V50DF

W 6L50DF

W 12V50DF

W 12V50DF

4. Electrical Technology

28

4.2 Higher Efficiency

ü LED (Light Emitting Diode) Light

ü High Efficiency Motor – HHI EES

Ø Energy-efficient motors use less energy to perform the same amount of work as standard motors. Key design improvements and more accurate

manufacturing tolerances are largely responsible for the increase in

performance of energy efficient motors.

ü Frequency Controlled (Variable Speed) Motor/Pump – HHI EES

Ø Bow/Stern Thruster 

Ø Cooling Pump

Ø Ventilation Fan

Ø Deck Machinery

Page 15: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 15/17

5. IT Convergence Technology

29

5.1 Digital Shipyard (Increase Productivity through Factory WiBro Network)

WiBro, Mobile WiMax

 Yard Area Network

Hybrid WiBro

PLC

ERP , Groupware, GPS

WiFi Zigbee RFID

Transporter Location&Sizing Netbook / Kiosk

F M C

WirelessIP Phone

SmartPhone

MobileOffice

IP Exchanger 

SHIP sideSHIP side SHORE sideSHORE side

5. IT Convergence Technology

30

5.2 Smart Ship (IT Intelligence for Remote Monitoring/Control Service)

Ship Area Network

Maker A/S

HHIRMS

Remote

Maintenance

Owner 

Monitoring

FBB

ISIG

Page 16: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 16/17

6. Introduction to HYUNDAI Green Ship

31

6.1 HYUNDAI Green Crude Oil Tanker / Bulk Carrier 

Waste Heat Recovery &Shaft Generator 4 to 5%

Bottom Air Layer 

10 to 15%Low Resistance

Coating 3%

 Additional

Device 4 to 6%

Lightweight Ship

/ Min. Ballast 1%Electronic Engine with

Tuning 3 to 4%

SCR(DeNox 95%) /

Scrubber(DeSOx:93%)

Hull & Propeller 

Interaction 3 to 4%

Optimum

Hull Form

2 to 3%

Ballast Water 

Treatment

Sewage Oily Bilge

Treatment & Collecting Tank

- LNG Burning, Fuel Cell

(Reduce CO2 Emission : 20%)

Garbage Treatment

Slow Steaming : 45-50%

Weather Vaning : 2-4%

Propeller/Hull Cleaning : 1-3%Optimum Trim : 1-2%

Route Optimization : 1-2%

<EEOI Reduction>

6. Introduction to HYUNDAI Green Ship

32

6.2 HYUNDAI Green Container Carrier 

Hull & Propeller 

Interaction 3 to 4%

Lightweight Ship /Min. Ballast 1%

Waste Heat Recovery &

Shaft Generator 9 to 10%

Electronic Engine withTuning 3 to 4%

 Additional

Device 4 to 6%

Low ResistanceCoating 3%

CRP 8%

SCR(DeNOx 95%)

Scrubber(DeSOx:93%)

OptimumHull Form

2 to 3%

Ballast Water 

Treatment

Sewage Oily Bilge

Treatment & Collecting Tank

Garbage Treatment

- LNG Burning, Fuel Cell

(Reduce CO2 Emission 20%)

<EEOI Reduction>

Bottom Air Layer 

5 to 10%

Slow Steaming : 45-50%

Weather Vaning : 2-4%

Propeller/Hull Cleaning : 1-3%

Optimum Trim : 1-2%

Route Optimization : 1-2%

Page 17: Hyundai Green Ship

8/2/2019 Hyundai Green Ship

http://slidepdf.com/reader/full/hyundai-green-ship 17/17

33

THANK YOUTHANK YOU