ib chemistry on hess's law, enthalpy formation and combustion

20
http://lawrencekok.blogspo t.com Prepared by Lawrence Kok Video Tutorial on Hess’s Law, Enthalpy Formation and Combustion.

Upload: lawrence-kok

Post on 06-Aug-2015

228 views

Category:

Documents


5 download

TRANSCRIPT

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Video Tutorial on Hess’s Law, Enthalpy Formation and Combustion.

CO(g)

∆H2

∆H2

∆H1 = -394

CO2(g)

C(s) + ½ O2(g)

CO(g) + ½ O2

C(s) + O2(g)

CO2(g)

A E

B C D

∆H6∆H5

∆H4∆H2

Hess’s Law

C(s) + O2(g) CO2(g)

Overall ∆H rxn is independent of its pathway

∆H rxn in series steps = sum of enthalpy changes for individual steps

∆H1

∆H2 ∆H4

∆H1

∆H3

Energy Level or Cycle Diagram to find ΔH

State function - property of system whose magnitude depend on initial and

final state

∆H3

A → D A → B → C → D

∆H1 = H2 + H3 + H4

∆H A → E is same regardless of its path

Final state

A → E A → C→ D → E

∆H1 = H2 + H3 + H4

A → E A → B → E

∆H1 = H5 + H6

Initial stateInitial state

Final state

∆H3 = -283

∆H1 = ∆H2 + ∆H3

Energy Level Diagram

22

1O

∆H2 = H1 - H3 = -394 +283 = -111 kJ mol-1

∆H3 = -28322

1O

Energy Cycle Diagram∆H1 = -394

∆H2 = H1 - H3 = -394 +283 = -111 kJ mol-1

Path not impt !!!!

∆H1 = ∆H2 + ∆H3

C(s) + O2 → CO2 (g) ∆H1 = -394

C (s) + ½ O2 → CO(g) ∆H2 = ??? CO(g) + ½ O2 → CO2 (g) ∆H3 = -283

+

Hess’s Law

Find ∆H cannot be measured

directly/experimentally

C(s) + 1/2O2 → CO(g) ∆H2

????

SO2(g)

∆H2

∆H2

∆H1 = -395

SO3(g)

S(s) + O2(g)

SO2(g) + ½O2

S(s) + 3/2O2(g)

SO3(g)

A E

B C D

∆H6∆H5

∆H4∆H2

Hess’s Law

S(s) + 3/2O2(g) SO3(g)

Overall ∆H rxn is independent of its pathway

∆H rxn in series steps = sum of enthalpy changes for individual steps

∆H1

∆H2 ∆H4

∆H1

∆H3

Energy Level or Cycle Diagram to find ΔH

State function - property of system whose magnitude depend on initial and

final state

∆H3

A → D A → B → C → D

∆H1 = H2 + H3 + H4

∆H A → E is same regardless of its path

Final state

A → E A → C→ D → E

∆H1 = H2 + H3 + H4

A → E A → B → E

∆H1 = H5 + H6

Initial stateInitial state

Final state

∆H3 = -98

∆H1 = ∆H2 + ∆H3

Energy Level Diagram

Find ∆H cannot be measured

directly/experimentally

∆H2 = H1 - H3 = -395 + 98 = - 297 kJ mol-1

∆H3 = - 9822

1O

Energy Cycle Diagram∆H1 = -395

∆H2 = H1 - H3 = - 395 + 98 = - 297 kJ mol-1

Path not impt !!!!

Hess’s Law

∆H1 = ∆H2 + ∆H3S(s) + 3/2O2 → SO3 (g) ∆H1 = -395

S(s) + O2 → SO2(g) ∆H2 = ???SO2(g) + ½O2 → SO3 (g) ∆H3 = -98

+

O2

S(s) + O2 → SO2(g) ∆H2

?????

N2(g) + 2O2(g)N2(g) + 2O2(g)

N2O4(g)

2NO2(g)

∆H1

N2O4(g)

∆H1

∆H2 = + 33

2NO2(g)

A E

B C D

∆H6∆H5

∆H4∆H2

Hess’s Law

N2(g) + 2O2(g) 2NO2(g)

Overall ∆H rxn is independent of its pathway

∆H rxn in series steps = sum of enthalpy changes for individual steps

∆H1

∆H2 ∆H4

∆H1

∆H3

Energy Level or Cycle Diagram to find ΔH

State function - property of system whose magnitude depend on initial and

final state

∆H3

A → D A → B → C → D

∆H1 = H2 + H3 + H4

∆H A → E is same regardless of its path

Final state

A → E A → C→ D → E

∆H1 = H2 + H3 + H4

A → E A → B → E

∆H1 = H5 + H6

Initial stateInitial state

Final state

∆H3 = + 9

Energy Level Diagram

Find ∆H cannot be measured

directly/experimentally

∆H3 = + 9

Energy Cycle Diagram∆H2 = + 33

∆H1 = H2 + H3 = -33 + 9 = - 24 kJ mol-1

Path not impt !!!!

Hess’s Law

∆H1 = ∆H2 + ∆H3

N2(g)+ 2O2 → 2NO2(g) ∆H2

= +33

2NO2 → N2+ 2O2 ∆H2 = - 33 N2(g) + 2O2 → N2O4(g) ∆H3 = + 9

+

2NO2(g) → N2O4(g) ∆H1 = ?

∆H1 = ∆H2 + ∆H3

∆H1 = H2 + H3 = -33 + 9 = - 24 kJ mol-1

inverse

2NO2(g) → N2O4(g) ∆H = -24

∆Hf θ

(reactant)∆Hf

θ

(product)

 Using Std ∆Hf θ formation to find ∆H rxn

∆H when 1 mol form from its element under std condition

Na(s) + ½ CI2(g) → NaCI (s) ∆Hf θ = - 411 kJ

mol -1

Std Enthalpy Changes ∆Hθ

Std condition

Pressure 100kPa

Temp 298K

Conc 1M All substance at std states

Hess’s Law

Std ∆Hf θ formation

Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ

mol -1

Reactants Products

O2(g) → O2 (g) ∆Hf θ = 0 kJ

mol -1

∆Hrxnθ = ∑∆Hf

θ(products) - ∑∆Hf

θ(reactants)

∆Hf θ

(products)∆Hf

θ

(reactants)

∆Hrxnθ

Elements

Std state solid gas

2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf θ =- 275

kJ mol -1

1 mole formed

H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286

kJ mol -1

Std state solid gas 1 mol liquid

For element Std ∆Hf θ formation = 0

Mg(s)→ Mg(s) ∆Hf θ = 0 kJ

mol -1

No product form

 Using Std ∆Hf θ formation to find ∆H of a rxn

PDF version

Click here chem database (std formation enthalpy)

Online version

Click here chem database (std formation enthalpy)

C2H4 + H2 C2H6

Find ΔHθ rxn using std ∆H formation

Reactants Products

2C + 3H2

ElementsC2H4 + H2 → C2H6

∆Hrxnθ

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = Hf

θ C2H6 - ∆Hf

θ C2H4+ H2

= - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1

2CH4(g) + 4O2(g) → 4H2O + 2CO2(s) ∆Hcθ = - 890

x 2 = - 1780 kJ mol -1

Std ∆Hf θ formation to find ∆H rxn ∆H when 1 mol form from its element under std

conditionNa(s) + ½ CI2(g) → NaCI (s) ∆Hf

θ = - 411 kJ mol -1

Hess’s Law Std ∆Hf θ

formation

Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ

mol -1

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(products) - ∑∆Hf

θ(reactants)

∆Hf θ

(products)∆Hf

θ

(reactants)

∆Hrxnθ

ElementsStd state solid gas 1 mole formed

Total amt energy released/absorbed α mol reactants

CH4(g) + 2O2(g) → 2H2O + CO2(s) ∆Hcθ = - 890

kJ mol -1

ΔH reverse EQUAL in magnitude but opposite sign to ΔH forward

Na+(g) + CI_

(g) → NaCI(s) ∆Hlattθ = - 770 kJ

mol -1

NaCI(s) → Na+(g) + CI_

(g) ∆Hlattθ = + 770

kJ mol -1

H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286

kJ mol -1

H2(g) + ½O2(g) → H2O(I) ∆Hcθ =- 286

kJ mol -1

Compound NaF NaCI NaBr NaI

Hf θ(kJ mol-

1)-573 -414 -361 -288

More ↑ – ve formation↓

More ↑heat released to surrounding↓

More ↑ energetically stable (lower in energy)↓

Do not decompose easily

Subs Na2

OMgO

AI2O3

Hf θ -

416-

602-

1670

Subs P4O10 SO3 CI2O7

Hf θ -

3030-390 +250

1 mole formed

2 mole formed x 2

О

О

∆Hfθ formation vs ∆Hc

θ combustion

∆H Form - std state liquid

∆H Comb - std state liquid

More –ve – more stable

Across Period 3↓

∆H – more ↑ –ve ↓

Lower in energy↓

Oxides more stable

Across Period 3↓

∆H – more ↑ +ve ↓

Higher in energy↓

Oxides less stable – decompose easily

∆Hf = ∆Hc

∆Hrxn

C2H4 + H2 C2H6

C2H6 + 3.5 O2 2CO2 + 3 H2O

∆Hf θ (reactant) ∆Hf

θ (product)

Hess’s Law

 Std ∆Hf θ formation to find ∆H rxn

Reactants Products∆Hrxnθ

∆Hf θ

(product)∆Hf

θ

(reactant)

Elements

∆Hf θ - 85 0 - 393 - 286

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 1644 - ( - 85 )

= - 1559 kJ mol -1

- 85 0 - 858 - 786

x 2 x 3

C2H4 + H2 C2H6

∆Hrxnθ Reactants Products

2C + 3H2

∆Hf θ + 52 o - 85

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 85 - ( + 52 )

= - 137 kJ mol -1

C2H6 + 3.5 O2 2CO2 + 3 H2O

2C + 3H2 + 3.5O2

Energy Level Diagram

2CO2 + 3H2O

2C + 3H2 + 3.5O2

C2H6 + 3.5 O2

∆Hf θ = -85

∆Hf θ = -

393

∆Hf θ = 0

2C + 3H2 + 3.5O2 Elements

Reactants

Products

∆Hf θ = -

286

∆Hrxn= (- 393 x 2 + -286 x 3) – (- 85 + 0) = - 1559 kJ mol-1

x 2

x 3

C2H4 + H2 Reactants

C2H6

∆Hrxn = - 85 – ( + 52 + 0 ) = - 137 kJ mol-1

2C + 2H2 + H2

∆Hf θ = +

52

∆Hf θ = 0

∆Hrxn

Products

2C + 3H2 Elements

∆Hf θ = -

85

Elements

∆Hf θ (reactant) ∆Hf

θ (product)

∆Hf θ

(reactant)∆Hf

θ

(product)

 Using Std ∆Hf θ formation to find ∆H rxn

Hess’s Law

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(products) - ∑∆Hf

θ(reactants)

∆Hf θ

(products)∆Hf

θ

(reactants)

∆Hrxnθ

Elements

2H2S + SO2 3S + 2H2O

Find ΔHθ rxn using std ∆H formation

Reactants Products

3S + O2 + 2H2

Elements

∆Hrxnθ

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 572 - ( - 338 )

= - 234 kJ mol -1

2H2S + SO2 → 3S + 2H2O∆Hf

θ - 20.6 - 297 0 - 286

- 41.2 - 297 0 - 572

x 2 x 2

Reactants Products

 Using Std ∆Hf θ formation to find ∆H rxn

Reactants Products∆Hrxnθ

∆Hf θ

(product)∆Hf

θ

(reactant)4C + 12H2 + 9N2 + 10O2

Elements

∆Hf θ + 53 - 20 - 393 - 286 0

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 5004 - ( +112 )

= - 5116 kJ mol -1

4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2

4CH3NHNH2 + 5N2O4 4CO2 + 12H2O + 9N2

+ 212 - 100 - 1572 - 3432 0

x 4 x 5 x 4 x 12

NH4NO3 N2O + 2H2O∆Hrxn

θ Reactants Products

N2 + 2H2 + 3/2O2

NH4NO3 N2O + 2H2O

∆Hf θ - 366 + 82 - 286 x 2

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 488 - ( - 366 )

= - 122 kJ mol -1

Elements

∆Hc θ

(reactant)∆Hc

θ

(product)

∆Hcθ combustion to find ∆H formation of

hydrocarbon

∆H when 1 mol completely burnt in oxygen under std condition

Std Enthalpy Changes ∆Hθ

Std condition

Pressure 100kPa

Temp 298K

Conc 1M All substance at std states

Hess’s Law

Std ∆Hc θ combustion

C(s) + O2(g) → CO2(g) ∆Hcθ = - 395 kJ

mol -1

Reactants Products

∆Hrxnθ = ∑∆Hc

θ(reactant) - ∑∆Hc

θ(product)

∆Hcθ

(product)∆Hc

θ

(reactant)

∆Hrxnθ

Combusted products

1 mole combusted

H2(g) + ½O2(g) → H2O(I) ∆Hc θ = - 286 kJ

mol -1

Std ∆Hc θ combustion to find ∆H of a rxn

PDF version

Click here chem database (std combustion enthalpy)

Online version

Click here chem database (std combustion enthalpy)

Find ΔHθ formation using std ∆H comb

Reactants Products

2CO2 + 3H2O

∆Hrxnθ

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

∆Hrxnθ = Hc

θ ( C + H2 ) - ∆Hc

θ C2H6

= 2 x (-395) + 3 x (-286) – (-1560) = - 88 kJ mol -1

H2(g) + ½O2(g) → H2O(I) ∆Hc θ = - 286 kJ

mol -1

C(s) + O2(g) → CO2(g) ∆Hcθ = - 395 kJ

mol -1

Combustion H2 = formation of H2O∆Hc = ∆Hf

Combustion C = formation of CO2

∆Hc = ∆Hf

Using combustion data

2C(s) + 3H2(g) → C2H6(g) ∆Hf θ = -

84 kJ mol -1

2C(s) + 3H2(g) + ½O2(g) → C2H5OH(I) ∆Hf θ = -

275 kJ mol -1

2C + 3H2 C2H6

+ 3.5O2 + 3.5O2

x 2 x 3

How enthalpy formation hydrocarbon obtained ?

-790 -858 - 1371

2 C + 3H2 + 3.5O2 C2H5OH

∆Hc θ (reactant) ∆Hc θ (product)

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 2 x (-395) + 3 x (-286) – (-1560) = - 88 kJ mol -1

Reactants Products

2 C + 3H2 + 3.5O2 C2H5OH

2C + 3H2 C2H6

2C + 3H2 C2H6

∆Hcθ comb to find ∆Hf formation of

hydrocarbon

∆Hrxn

Hess’s Law

Reactants Products∆Hrxnθ

∆Hc θ

(product)∆Hc

θ (reactant)

∆Hc θ -395 -286 - 1560

Reactants Products

- 790 -858 - 1560

x 2

∆Hrxnθ

Reactants Products

Energy Level Diagram

∆Hc θ = -395

∆Hc θ = - 1560

∆Hc θ = -286

Combusted products

Reactants

Products

∆Hrxn = (- 395 x 2 + -286 x 3) – (-1560 ) = - 88 kJ mol-1

Reactants

∆Hrxn

Products

∆Hc θ = -

1371

2CO2 + 3H2O

x 3

2C + 3H2

C2H6

2CO2 + 3H2O 2CO2 + 3H2O

x 2 x 3

2 C + 3H2 + 3.5O2

2CO2 + 3H2O

∆Hc θ -395 -286 - 1371

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 2 x (-395) + 3 x (-286) – (-1371) = - 275 kJ mol -1

x 2 x 3

C2H5OH

∆Hc θ = -395 x 2

∆Hc θ = -286 x 3

2CO2 + 3H2OCombusted products

2CO2 + 3H2O

∆Hrxn = (- 395 x 2 + -286 x 3) – (-1371 ) = - 275 kJ mol-1

+ 3.5O2 + 3.5O2

+ 3.5O2 + 3.5O2

3C2H2 C6H6

∆Hc θ (reactant) ∆Hc θ (product)

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 6 x (-395) + 3 x (-286) – (-3271) = + 49 kJ mol -1

Reactants Products

3 C2H2 C6H6

6C + 3H2 C6H6

6C + 3H2 C6H6

∆Hcθ comb to find ∆Hf formation of

hydrocarbon

∆Hrxn

Hess’s Law

Reactants Products∆Hrxnθ

∆Hc θ

(product)∆Hc

θ (reactant)

∆Hc θ -395 -286 - 3271

Reactants Products

-2370 -858 - 3271

x 6

∆Hrxnθ

Reactants Products

Energy Level Diagram

∆Hc θ = -395

∆Hc θ = - 3271

∆Hc θ = -286

Combusted products

Reactants

Products

∆Hrxn = (- 395 x 6 + -286 x 3) – (-3271 ) = + 49 kJ mol-1

Reactants

∆Hrxn

Products

∆Hc θ = -

3270

6CO2 + 3H2O

x 3

6C + 3H2

C6H6

6CO2 + 3H2O 6CO2 + 3H2O

x 6 x 3

3 C2H2

6CO2 + 3H2O

∆Hc θ -1300 -

3270

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 3 x (- 1300) – (-3270) = - 630 kJ mol -1

x 3

C6H6

∆Hc θ = -1300 x 3

6CO2 + 3H2OCombusted products

6CO2 + 3H2O

∆Hrxn = (- 1300 x 3 ) – (-3270 ) = - 630 kJ mol-1

-3900 - 3270

Combustion C2H2

+ 7.5O2 + 7.5O2

+ 7.5O2 + 7.5O2

CH2 =CHCH3 + H2 → CH3CH2CH3

CH2 = CHCH3 + H2 CH3CH2CH3

Reactants Products

∆Hc θ (reactant) ∆Hc θ (product)

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= ( -1411) + (-286) – (-1560) = - 137 kJ mol -1

C2H4 + H2 C2H6

∆Hcθ comb to find ∆Hf formation of

hydrocarbon

∆Hrxn

Hess’s Law

Reactants Products∆Hrxnθ

∆Hc θ

(product)∆Hc

θ (reactant)

∆Hc θ -1411 -286 - 1560

Reactants Products

∆Hrxnθ

Reactants Products

Energy Level Diagram

∆Hc θ = -1411

∆Hc θ = - 1560

∆Hc θ = -286

Combusted products

Reactants

Products

∆Hrxn = (-1411) + (-286) – (-1560) = - 137 kJ mol-1

Reactants

∆Hrxn

Products

∆Hc θ = -

2222

2CO2 + 3H2OC6H6

2CO2 + 2H2O 2CO2 + 3H2O

3CO2 + 4H2O

∆Hc θ - 2060 -286

- 2222 ∆Hrxn

θ = ∑∆Hc θ(react) - ∑∆Hc

θ(pro)

= (-2060) + (-286) – (-2222) = - 124 kJ mol -1

∆Hc θ = -2060

3CO2 + 3H2OCombusted products

3CO2 + 4H2O

∆Hrxn = (-2060) + (-286) – (-2222 ) = - 124 kJ mol-1

Combustion CH2 =CHCH3

C2H4 + H2 C2H6

C2H4 + H2

+ H2O

Combustion C2H4

CH3CH2CH3

CH2=CHCH3 + H2

∆Hc θ = -286

+ H2O

+ 3.5O2 + 3.5O2

+ 5O2 + 5O2

∆Hc

 Std ∆Hf θ formation to find ∆H rxn

2H2S + SO2 → 2H2O + 3S ∆Hrxn = ?

∆Hf θ - 21 x 2 - 297 - 286 x 2 0

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 572 - ( - 339 )

= - 233 kJ mol -1

Reactants Products

IB Question ∆Hf and ∆Hc

1 2

2 Pb(NO3)2 → 2PbO + 4 NO2 + O2 ∆Hrxn = ? ∆Hf

θ - 444 x 2 - 218 x 2 + 34 x 4 0

 Std ∆Hf θ formation to find ∆H rxn

Reactants Products

∆Hrxnθ = ∑∆Hf

θ(pro) - ∑∆Hf

θ(react)

∆Hrxnθ = - 300 - ( - 888 )

= + 588 kJ mol -1

∆Hcθ comb to find ∆Hf formation of C6H6

(Benzene)

6C + 3H2 → C6H6 ∆H form= ?∆Hc

θ -395 x 6 -286 x 3 - 3271

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 6 x (-395) + 3 x (-286) – (-3271) = + 49 kJ mol -1

Reactants Products

2C + 3H2 + 3.5O2 → C2H5OH ∆Hform= ? ∆Hc

θ -395 x 2 -286 x 3 - 1371

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= 2 x (-395) + 3 x (-286) – (-1371) = - 275 kJ mol -1

∆Hcθ comb to find ∆Hf formation of C2H5OH

(Ethanol)

Reactants Products

Combustion C / H2

to CO2 and H2O

C2H4 + H2 → C2H6 ∆H rxn = ?

∆Hcθ comb to find ∆H rxn of

C2H6

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

= ( -1411) + (-286) – (-1560) = - 137 kJ mol -1

∆Hc θ -1411 -286 - 1560

Reactants Products

Find ∆Hc using ∆H provided

CH2 = CHCH3 + H2 CH3CH2CH3

3CO2 + 4H2O

CH2 =CHCH3 + H2 → CH3CH2CH3

∆Hc θ x -286

- 2222

∆Hrxnθ = ∑∆Hc

θ(react) - ∑∆Hc

θ(pro)

- 124 = x + (-286) – (-2222) x = - 2060 kJ mol -1

Reactants Products

∆H = -2222

∆H = - 124

CH2 = CHCH3 + H2 → CH3CH2CH3 ∆H = -124CH3CH2CH3 + 5O2 → 3CO2 + 4H2O ∆H = -2222H2 + ½ O2 → H2O ∆H = -28.6Combustion of

hydrocarbon

Formation Enthalpy

use

NOT Formation Enthalpy

use

Diamond unstable respect to graphite↓

Kinetically stable (High Ea)↓

Wont decompose spontaneous

∆H = - 98

∆H = - 187

H2O(I) + 1/2O2(g)

H2O2(I)

H2(g) + O2(g)

∆H2= -111

∆H1 = -394

CO2(g)

C(s) + ½ O2(g)

CO(g) + ½ O2

C(s) + O2(g)

CO2(g)

∆H3 = -283

Energy Level Diagram

Energy Cycle Diagram

Energetic stability vs Kinetic stability

C(s) + O2(g) → CO2 ∆H = - 394CO(g) + 1.5O2(g) → CO2 ∆H = - 283C(s) + 1.5O2(g) → CO ∆H = - 111

Lower in energy ( -ve ∆H)↓

Thermodynamically more stable

∆H = - ve

All are thermodynamically stable (-ve ∆H)↓

More heat released to surroundingLower in energy

↓Both oxides (CO2/CO) are thermodynamically

↓Stable with respect to their element (C and O2)

H2(g) + O2(g) → H2O2 ∆H = - 187H2O2(I) → H2O + O2 ∆H = - 98

C(diamond) → C (graphite)

C(diamond) → C (graphite) ∆H = - 2

Diamond forever

H2O2 unstable respect to H2O/O2

↓Kinetically stable (High Ea)

↓Wont decompose spontaneous

All are thermodynamically stable (-ve ∆H)↓

More heat released (lower energy)↓

H2O2 thermodynamically more stable with respect to its elements H2/O2

↓H2O2 unstable with respect to H2O and O2 Will decompose to lower energy (stable)

High Activation energyKinetically stableWont decompose

∆H = - ve

H2O (I) + O2

H2O2(I)∆H = - ve

High Activation energyKinetically stableWont decompose

C + O2 energetically unstable respect to CO2

↓Kinetically stable (High Ea)

↓Wont react spontaneous unless ignited!

C + O2

CO2(g)

High Activation energyKinetically stableWont decompose

C graphite thermodynamically more

stable with respect diamond↓

Will diamond decompose to graphite

∆H = - veDiamond

Graphite

∆H = - 50 – (+12) = - 62 kJ mol -1

∆H = - 50 kJ mol -1

Cold water = 50g

CuSO4 .100H2O

CuSO4 (s) + 95H2O → CuSO4 .100H2O

CuSO4 (s) + 100H2O → CuSO4 .100H2O

Mass cold water add = 50 gMass warm water add = 50 gInitial Temp flask/cold water = 23.1 CInitial Temp warm water = 41.3 CFinal Temp mixture = 31 C

CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ?

Slow rxn – heat lost huge – flask used.

Heat capacity flask must be determined. CuSO4 (s) + 5H2O → CuSO4 .5H2O

1. Find heat capacity flask

Ti = 23.1C

Hot water = 50g T i = 41.3C

No heat loss from system (isolated system)

↓ ∆H system = O

Heat lost hot H2O=Heat absorb cold H2O + Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ)

50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)

Water Flask CuSO4

Heat capacity flask, c = 63.5JK-1

Mass CuSO4 = 3.99 g (0.025mol)Mass water = 45 gT initial flask/water = 22.5 CT final = 27.5 C

Mass CuSO4 5H2O = 6.24 g (0.025mol)Mass water = 42.75 gT initial flask/water = 23 CT final = 21.8 C

2. Find ∆H CuSO4 +100H2O → CuSO4 .100H2O3. Find ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O

Hess’s Law

CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O

Water Flask CuSO4 5H2O

∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ)

∆Hrxn = Heat absorb water + vacuum (mc∆θ) + (c∆θ)

∆Hrxn= 45 x 4.18 x 5 + 63.5 x 5∆Hrxn= - 1.25 kJ

∆Hrxn= 42.75 x 4.18 x 1.2 + 63.5 x 1.2∆Hrxn= + 0.299 kJ

0.025 mol = - 1.25 kJ 1 mol = - 50 kJ mol-1

0.025 mol = + 0.299 kJ 1 mol = + 12 kJ mol-1

CuSO4 (s) + 5H2O → CuSO4 .5H2O

CuSO4 .100H2O

∆H = + 12 kJ mol -1

AssumptionNo heat lost from system ∆H = 0Water has density = 1.0 gml-1

Sol diluted Vol CuSO4 = Vol H2OAll heat transfer to water + flask

Rxn slow – lose heat to surrounding Plot Temp/time – extrapolation done, Temp correction

limiting

Enthalpy change ∆H - using calorimeter

without temp correction

Lit value = - 78 kJ mol -1

CONTINUE

Time/m

0 0.5

1 1.5

2 2.5

3 3.5

4

Temp/C 22

22 22 22 22

27 28 27 26

∆H = - 60 kJ mol -1

CuSO4 .100H2O

CuSO4 (s) + 95H2O → CuSO4 .100H2O

CuSO4 (s) + 100H2O → CuSO4 .100H2O

CuSO4 (s) + 5H2O → CuSO4 .5H2O ∆H = ?

CuSO4 (s) + 5H2O → CuSO4 .5H2O

Water Flask CuSO4

Mass CuSO4 = 3.99 g (0.025 mol)Mass water = 45 gT initial mix = 22 CT final = 28 C

Mass CuSO4 5H2O = 6.24 g (0.025 mol)Mass water = 42.75 gT initial mix = 23 CT final = 21 C

Find ∆H CuSO4 + 100H2O → CuSO4 .100H2OFind ∆H CuSO4 .5H2O + 95H2O → CuSO4 .100H2O

Hess’s Law

CuSO4 + H2O → CuSO4 .100H2O CuSO4 .5H2O + H2O → CuSO4 .100H2O

Water Flask CuSO4 5H2O

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn= 45 x 4.18 x 6 + 63.5 x 6∆Hrxn= - 1.5 kJ

∆Hrxn= 42.75 x 4.18 x 2 + 63.5 x 2∆Hrxn= + 0.48kJ

0.025 mol = - 1.5 kJ 1 mol = - 60 kJ mol-1

0.025 mol = + 0.48 kJ 1 mol = + 19 kJ mol-1

CuSO4 (s) + 5H2O → CuSO4 .5H2O

CuSO4 .100H2O

∆H = + 19 kJ mol -1

∆H = - 60 – (+19) = - 69 kJ mol -1

Rxn slow – lose heat to surrounding Plot Temp/time – extrapolation done, Temp correction

limiting

Enthalpy change ∆H using calorimeter

Data collection

Temp correction – using cooling curve for last 5 m

time, x = 2initial Temp = 22 C

final Temp = 28 C

Extrapolation best curve fit y = -2.68x + 33 y = -2.68 x 2 + 33 y = 28 (Max Temp)

Excel plot

CuSO4 + H2O → CuSO4 .100H2O(Exothermic) Heat released

CuSO4 .5H2O + H2O → CuSO4 .100H2O(Endothermic) – Heat absorbed

Temp correction – using warming curve for last 5 m

Time/m

0 0.5

1 1.5

2 2.5

3 3.5 4

Temp/C 23

23 23 23 23

22 22 22.4 22.7

initial Temp = 23 C

time, x = 2

final Temp = 21 C

Excel plot

Extrapolation curve fit y = + 0.8 x + 19.4 y = + 0.8 x 2 + 19.4 y = 21 (Min Temp)

Lit value = - 78 kJ mol -1

with temp correction

∆H = - 113 kJ mol -1

Enthalpy change ∆H using calorimeter

Cold water = 50 g

MgSO4 .100H2O

MgSO4.7H2O + 93H2O → MgSO4 .100H2O

MgSO4 + 100H2O → MgSO4 .100H2O

Mass cold water add = 50 gMass warm water add = 50 gInitial Temp flask/cold water = 23.1 CInitial Temp warm water = 41.3 CFinal Temp flask/mixture = 31 C

MgSO4 (s) + 7H2O → MgSO4 .7H2O ∆H = ?

Slow rxn – heat lost huge – flask used.

Heat capacity flask must be determined. MgSO4(s) + 7H2O → MgSO4 .7H2O

1. Find heat capacity flask

Ti = 23.1 C

Hot water = 50 g T i = 41.3 C

No heat loss from system (isolated system)

↓ ∆H system = O

Heat lost hot H2O=Heat absorb cold H2O + Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ)

50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)

Water Flask MgSO4

Heat capacity flask, c = 63.5JK-1

Mass MgSO4 = 3.01 g (0.025mol)Mass water = 45 gT initial mix = 24.1 CT final = 35.4 C

Mass MgSO4 7H2O = 6.16 g (0.025mol)Mass water = 41.8 gT initial mix = 24.8 CT final = 23.4 C

2. Find ∆H MgSO4 +100H2O → MgSO4 .100H2O3. Find ∆H MgSO4 .7H2O + 93H2O → MgSO4 .100H2O

Hess’s Law

MgSO4 + H2O → MgSO4 .100H2O MgSO4 .7H2O + H2O → MgSO4 .100H2O

Water Flask MgSO4 .7H2O

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn= 45 x 4.18 x 11.3 + 63.5 x 11.3∆Hrxn= - 2.83 kJ

∆Hrxn= 41.8 x 4.18 x 1.4 + 63.5 x 1.4∆Hrxn= + 0.3 kJ

0.025 mol = - 2.83 kJ 1 mol = - 113 kJ mol-1

0.025 mol = + 0.3 kJ 1 mol = + 12 kJ mol-1

MgSO4 (s) + 7H2O → MgSO4 .7H2O

MgSO4 .100H2O

∆H = + 12 kJ mol -1

∆H = - 113 - 12 = - 125 kJ mol -1

AssumptionNo heat lost from system ∆H = 0Water has density = 1.00g ml-1

Sol diluted Vol MgSO4 = Vol H2OAll heat transfer to water + flask

Rxn fast – heat lost to surrounding minimizedDont need to Plot Temp/time

No extrapolation

Error AnalysisHeat loss to surroundingHeat capacity sol is not

4.18Mass MgSO4 ignored

Impurity presentMgSo4 already hydrated

limiting

∆H = - 286 kJ mol -1

∆H = - 442 kJ mol -1

Enthalpy change ∆H using calorimeter

Cold water = 50g

Mass cold water add = 50gMass warm water add = 50gInitial Temp flask/cold water = 23.1CInitial Temp warm water = 41.3CFinal Temp flask/mixture = 31C

Mg(s) + ½ O2 → MgO ∆H = ?

Slow rxn – heat lost huge – flask is used.

Heat capacity flask must be determined. Mg + ½ O2 → MgO

1. Find heat capacity flask

Ti = 23.1C

Hot water = 50g T i = 41.3C

No heat loss from system (isolated system)

↓ ∆H system = O

Heat lost hot H2O=Heat absorb cold H2O + Heat absorb Flask (mc∆θ) (mc∆θ) (c ∆θ)

50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)

HCI Flask Mg

Heat capacity flask, c = 63.5JK-1

Mass Mg = 0.5 g (0.02 mol)Vol/Conc HCI = 100 g, 0.1MT initial mix = 22 CT final = 41 C

Mass MgO = 1 g (o.o248 mol)Vol/Conc HCI = 100 g, 0.1MT initial mix = 22 CT final = 28.4 C

2. Find ∆H Mg + 2HCI → MgCI2 + H2

3. Find ∆H MgO + 2HCI → MgCI2 + H2O4. Find H2 + ½ O2 → H2O

Hess’s Law

∆H Mg + 2HCI → MgCI2 + H2

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn= 100 x 4.18 x 19 + 63.5 x 19∆Hrxn= - 9.11kJ

∆Hrxn= 100 x 4.18 x 6.4 + 63.5 x 6.4∆Hrxn= -3.1 kJ

0.02 mol = - 9.11 kJ 1 mol = - 442 kJ mol-1

0.0248 mol = - 3.1 kJ 1 mol = - 125 kJ mol-1

∆H = - 125 kJ mol -1

∆H = - 442 – 286 + 125 = - 603 kJ mol -1

AssumptionNo heat lost from system ∆H = 0Water has density = 1.00g ml-1

Sol diluted Vol HCI = Vol H2OAll heat transfer to water + flask

Rxn fast – heat lost to surrounding minimizedDont need to Plot Temp/time

No extrapolation

Error AnalysisHeat loss to surrounding

Heat capacity sol is not 4.18

Mass MgO ignoredImpurity present

Effervescence cause loss Mg

+ 2HCI

MgCI2 + H2

HCI Flask MgO

+ ½ O2

MgCI2 + H2O

+ 2HCI

MgCI2 + H2O

∆H MgO + 2HCI → MgCI2 + H2O

Mg + ½ O2 → MgO

MgCI2 + H2

+ 2HCI

MgCI2 + H2O

+ ½ O2

limiting

MgCI2 + H2O

Data given

2KHCO3(s) → K2CO3 + CO2 + H2O

∆H = + 51.4 kJ mol -1

Enthalpy change ∆H for rxn using calorimeter

Cold water = 50g

Mass cold water add = 50 gMass warm water add = 50 gInitial Temp flask/cold water = 23.1 CInitial Temp warm water = 41.3 CFinal Temp flask/mixture = 31 C

2KHCO3(s) → K2CO3 + CO2 + H2O ∆H = ?

Slow rxn – heat lost huge – vacuum flask is used.

Heat capacity of flask must be determined.

1. Find heat capacity flask

Ti = 23.1C

Hot water = 50g T i = 41.3C

No heat loss from system (isolated system)

↓ ∆H system = O

Heat lost hot H2O=Heat absorb cold H2O + Heat absorb flask (mc∆θ) (mc∆θ) (c ∆θ)

50 x 4.18 x (41.3 – 31) = 50 x 4.18 x (31-23.1) + c x (31-23.1)

HCI Flask KHCO3

Heat capacity flask, c = 63.5JK-1

Mass KHCO3 = 3.5 g (0.035 mol)Vol/Conc HCI = 30 g, 2MT initial mix = 25 CT final = 20 C

Mass K2CO3 = 2.75 g (0.02 mol)Vol/Conc HCI = 30 g, 2MT initial mix = 25 CT final = 28 C

2. Find ∆H 2KHCO3 + 2HCI → 2KCI + 2CO2 + 2H2O3. Find ∆H K2CO3 + 2HCI → 2KCI + CO2 + H2O

Hess’s Law

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn = Heat absorb water + flask (mc∆θ) + (c∆θ)

∆Hrxn= 30 x 4.18 x 5 + 63.5 x 5∆Hrxn= + 0.9 kJ

∆Hrxn= 30 x 4.18 x 3 + 63.5 x 3∆Hrxn= -0.56 kJ

0.035 mol = + 0.9 kJ 1 mol = + 25.7 kJ mol-1

0.02 mol = - 0.56 kJ 1 mol = - 28 kJ mol-1

∆H = - 28 kJ mol -

1

∆H = +51.4 – (-28) = + 79 kJ mol -1

AssumptionNo heat lost from system ∆H = 0Water has density = 1.00g ml-1

Sol diluted Vol HCI = Vol H2OAll heat transfer to water + vacuum

Rxn fast – heat lost to surrounding minimizedDont need to Plot Temp/time

No extrapolation

Error AnalysisHeat loss to surrounding

Heat capacity sol is not 4.18

Mass of MgO ignoredImpurity present

Effervescence cause loss Mg

+ 2HCI

HCI Flask K2CO3

2KCI + 2CO2 + 2H2O

+ 2HCI

+ 2HCI

limiting

2KHCO3(s) → K2CO3 + CO2 + H2O

2KCI + CO2 + H2O

2KHCO3 + 2HCI → 2KCI + 2CO2 + 2H2O K2CO3 + 2HCI → 2KCI + CO2 + H2O

x 2

2KCI + 2CO2 + 2H2O 2KCI + CO2 + H2O

+ 2HCI

Acknowledgements

Thanks to source of pictures and video used in this presentation

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com