icam 'manufacturing cost/design guide' /mc/dg/ · icam-manufacturing anniversary...

31
W Frontiers of Achievement [ pjj AIAA-81-0855 ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981 ANNUAL MEETING AND TECHNICAL DISPLAY “FRONTIERS OF ACHIEVEMENT” v May 12-14, 1981/Long Beach, California For psrmlsslon to copy or republish, contact the American lnsthute of Aeronautics and Astronautics * 1290 Avenus of the Amsrlcas, New Yark. NY 10104

Upload: others

Post on 21-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

W Frontiers of Achievement [ pjj

AIAA-81-0855 ICAM-Manufacturing

Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH

M

AlAA 1981 ANNUAL MEETING AND TECHNICAL DISPLAY

“FRONTIERS OF ACHIEVEMENT” v May 12-14, 1981/Long Beach, California

For psrmlsslon to copy or republish, contact the American lnsthute of Aeronautics and Astronautics * 1290 Avenus of the Amsrlcas, New Yark. NY 10104

Page 2: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

ICAM "MANUFACTURING COSTIDESICN GUIDE" (MCIDC,) ' Bryan R. Noton*

B o t t c l l c ' s Columbus L a b o r a t o r i e s Columbus, O h i o

Abs t r ac t ___.

'The purpose of t h e "Manufncturing Cos t lnes ign Guide" (MCIIIG) i s t o enab le a i r f r a m e and a v i o n i c d e s i g n e r s t o achieve lowest c o s t by conduct ing t r a d e - o f f s between manufactur ing c o s t and o t h e r d e s i g n f a c t o r s . The MCIDC e n a b l e s d e s i g n e r s , a t a l l l e v e l s of t h e des ign process, t o pcrform qu ick , s imple, c o s t - t r a d e comparisons of manufactur ing

s and, f o r example, i n t h e Case of a i r - f rames, t r a d e - o f f s on a i r f r a m e components and a s sembl i e s i n bo th m e t a l l i c and composi.tf mater- i a l s . To a c c e l e r a t e technology t r a n s f e r , p o t e n t i a l c o s t savini: o p p o r t u n i t i e s provided by emerging m a t e r i a l s and processes can be i n d i c a t e d .

'The f i r s t phase i n t h e MCIDG development r equ i r ed p r e p a r a t i o n of a model showing t h e con- t e n t s , manufactur ing c o s t - d r i v e r s , d a t a r c q u i r e - ments, and dcs igne r -o r i en ted fo rma t s f o r convcn- riona.1 and emerging t echno log ie s . Three demonstra- t i o n s e c t i o n s were developed f o r :

Shect Metal k r o s p a c e Discret i . P a r t s

i ' i rs t - t .eve1 Mech~,nicaliy-i.'astolled Assemblies

ArIvanc.cd Composites Yabrichi ion

F u r t h e r , u t i l . i z i n g t h e s e demonstrat ion s e c t i o n s ,

s t u d i e s were conducted by ae rospace d e s i g n e r s on i u s e l a g e shear-panels i n aluminum, t i t a n i u m , and comso si^ t e s .

v s t m c t u r c l l performance, manufactur ing c o s t t r a d e -

S e c t i o n s have a l s o becn developed f o r test, i n s p c c t i o n , and e v a l u a t i o n (TI&E) f o r shee t m e t a l , itssi.mhly, composi tes , c a s t i n g s , machining, and also f o r c a s t i n g s and c e r t a i n advanced de.velopment programs, such a s superp1.ast.i.c formed d i f f u s i o n - bonded t i t a n i o a .

Nauurfncruring man-hour d a t a has becn developcd fo r base p a r t s and d i s c r e t e p a r t s . A basc part i s an clement i n i t s s imples t form and wi th d e s i g n e r - i n f luenced c o s t cl.cments (DICE) such a s , i n t h e C a s e o f shee t m e t a l , j o g g l e s , Cut-outs, and heat treatmerit , a d i s c r e t e p a r t i s o b t a i n e d . Typical IDlCE analyzed f o r mechanical. ly-fastened a s sembl i e s a re a c c e s s i b i l i t y , m a t e r i a l s j o i n e d , p a r t and f a s t c n e r coun t s , and srnl icrg requirements . iror composi tes , t y p i c a l D I C E are o r i e n t a t i o n and number of p l i e s , hybrid f i b e r s , c u t - o u t s , and q u a l i t y r equ i r emcn t s ,

A d e s i m eng inee r , u t i l i z i n g the M C I U G cos t - d r i v e r e f f e c t s (CUE) and c o s t - e s t i m a t i n g d a t a (CED) ro rma t s , performed a c o s t t r a d e a n a l y s i s of t en d i f f e r e n t advanced composite d e s i g n s . e s t i m a t e d t h a t the t r a d e s t u d y w a s conducted i n e i g h t hours u s i n g t h e M C / U G ha rd copy. normal method o f working wi th manufactur ing

'' Assoc ia t e Fellow, AIM

I t i s

With t h e

v Cnp)right'@ A ~ D P I C S ~ Institute of Aeronautics and Astronsntir~, Inc.. 1981. All riKhts reserved.

e n g i n e e r i n g and c o s t e s t i m a t o r s , t h e t a s k would have r e q u i r e d approximately 40 hours of l a b o r and a c a l e n d a r span o f one week f o r t u r n - a r o w d .

The MCIDG i s under development by R a t t e l l e ' s Columbus L a b o r a t o r i e s and t h e fo l lowing s u b c o n t r a c t o r s : General Dynamics Corpora t ion , Fo r t Worth D i v i s i o n ; Grumman Aerospace Corpora t ion ; Lackheed-California Company; Northrop Corporat ion, A i r c r a f t Group; and Rockwell I n t e r n a t i o n a l Corporat ion, North American A i r c r a € t D iv i s ion . Boeing Commercial A i rp l ane Company also p a r t i c i p a t e d i n t h e f i r s t two programs.

The MCIDG w i l l be a v a i l a b l e i n b o t h hard copy and as a computerized manufactur ing c o s t l d e s i g n system (MCIDS) being developed by ano the r c o a l i t i o n headed by Crunlman Aerospace Corporat ion.

T r t roduc t ion __I

The need f o r t h e A i r Force t o a r r e s t and reduce c o s t s a t a l l l e v e l s o f t h e a i r c r a f t :system l i f e - c y c l e is becoming I n c r e a s i n g l y impor t an t . Qual- i t a t i v e and q u a n t i t a t i v e d a t a and o t h e r i n fo rma t ion on c o s t - d r i v e r s u s e f u l d u r i n g t h e d e s i g n , manufac- t u r i n g , o p e r a t i o n , and maintenance o f a i r c r a f t s y s t e m are e s s e n t i a l . because, a t t h e same t ime, t h e number of new a i r - c r a f t t ypes b e i n g developed f o r t h e A i r Force inven to ry is r educ ing while t h e r e i s a need f o r h c r e a s e d performance meaning reduced we igh t , b e t t e r q u a l i t y , lower ownership c o s t s , b u t w i t h less energy consumption. f o r e b e provided w i t h performance which i s affor i l - ab l e .

This i s p a r t i c u l a r l y so

The A i r Force must t he re -

Cost-dr ivers are t h e r e s u l t of advancements i n tec!mology. 3r a i r f r a m e s u t i l i z i n g advanced composites o r s u p e r p l a s t i c fo rmed ld i f fus ion bonded (B?F/DB) t i t a n i u m r e q u i r e new developments i n manufactur ing technology, i f through t h e i r a p p l i c a t i o n t h e A i r Force's r e q u i r e m n t s f o r i n c r e a s e d performance are met wh i l e a t the sam t i m e t h e U.S. i n d u s t r y remains compe t i t i ve . However, this must not be f o r t h e sake of t e c h n o l o g i c a l s o p h i s t i c a t i o n , but t o reduce c o s t s w i th bo th emerging and conven t iona l mano- f a c t u r i n g processes f o r c a s t i n g s , shee t me ta l and composi tes , which a m used f o r a i r f r a m e s , a v i o n i c s , and o t h e r subsystems. The U . S . a e rospace i n d u s t r y , through government R&D and I F A D programs which i d e n t i f y and resolve c o s t - d r i v e r problems, i s a t t h e f o r e f r o n t i n t h i s h igh ly Competi t ive i n d u s t r y . I n meet ing t h e mandatory o b j e c t i v e o f p rov id ing a f f o r d a b l e performance, we f i n d t h a t t h e r e i s a dilemma i n manufactur ing. The a v a i l a b i l i t y of t h e s k i l l e d work f o r c e i s reduc ing ; l a b o r and equ ip - ment c o s t s are i n c r e a s i n g , a s i s t h c need f o r

i' MCIDG i s under development f o r t h e Computer I n t e - g ra t ed Nmufac tu r ing Rranch, M a t e r i a l s I .aboratory1 MLTC, A i r Force Wright Aeronau t i ca l L a b o r a t o r i e s , Ilayton, Ohio 45433 .

For example, new e l e c t r o n i c s y s t e m

1

Page 3: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

h ighe r performance, reduced weight , and more stringent s p e c i f i c a t i o n s . To a l l e v i a t e these problems, the most promising avenue o f develop- went i s m n u f a c t u r i n g s o p h i s t i c a t i o n , e . g . , com- pu te r - a ided manufactur ing ( C A M ) , r o b o t i c s , and a d a p t i v e process c o n t r o l .

S t rong i n t e r a c t i o n between des ign and manu- f a c t u r i n g i s e s s e n t i a l t o achieve t h i s r e q u i r e d advancerent i n manufactur ing s o p h i s t i c a t i o n and r e f inemen t s , The "Manufacturing Cost jDesign Guide" (MCIDG) Data Development Program, a follow-on of e a r l i e r c o n t r a c t s (F33615-75-C-5194 and F33615- 77-C-5027) p rov ides an unprecedented oppor tun i ty f o r t h e d e s i g n e r t o s t u d y a l a r g e r number, e . g . , 10 , of a l t e r n a t i v e des ign c o n f i g u r a t i o n s f o r a i r - frames to ach ieve t h e lowest manufactur ing c o s t .

'l'hc i n d i v i d u a l des ignc r lras scldo:s been t r a i n e d o r has expe r i ence t o conduct s t r u c t u r a l perforniance/manuiactur ing c u s t t r a d e s t u d i e s i n I r i s d a i l y e f i o r t s . t lomver , today tire d e s i g n e r i s r a t e d not on ly on h i s i ngenu i ty t o meet the weight and c o s t o h j r c t i v e s b u t a l s o t o achi.eve t h i s witir- i n des ign scIredu1.c l i m i t a t i o n s (F igu res 1 & 2 ) . Design-Lo-lowc,st C O S L i s now a d c s i g n d i s c i p i i n c .

I n t h e p a s t , t h e dcs igne r had on ly one re- source i n de t e rmin ing c o s t and t h i s w a s t h e c o s t e s t imu to r . The c o s t est imator i s still an important f a c t o r i n t h e i i n a l i t e r a t i o n of the des ign p r i o r t o p r o d u c t i o n cosmitment. Howrvcr, i t i s o f t c n d i f f i c i d t L O meet schedul ing r equ i r emen t s , a s we11 a s t o c o n s i d e r an adequate numbcr o i des ign alter-- niit i v c s while a s c e r t a i n i n g , w i . t h con f idence , t h a t t h e s e l c c t e d d e s i g n i s a c t u a l l y t h e lowest c o s t a1 t e r m t ive .

The MCIDC i d e n t i f i e s the c o s t - d r i v e r s over which the des igne r has control and whi.ch he can trade back f o r performance once t h e basic. pe r fo r - mance requirernents o f the system have been cxcmded A n example i s c o r q o s i t e materials with c e r t a i n de- s i g n c o n f i g u r a t i o n s : f a r example, lor complex f i iselage s e c t i o n s , i t i s p o s s i b l e to show s i g n i f i - cant weight s a v i n g s over t r a d i t i . o n a 1 aluminum s t r u c t u r e s . However, hav ing met the performance r equ i r emen t s , t h c designer may d e s i r e t o t r a d e back some weight s a v i n g s t o achieve c o s t Sav ings . "he E!C/DG a l s o p rov ides in fo rma t ion t o promote i n t e r a c t i o n between manufactur ing and des ign , f o r example, r ega rd ing a l t e r n a t i v e f a c i l . i t i e s duc to shop loading r equ i r emen t s . While the des igne r i s p r i n c i p a l l y i n t e r e s t e d i n t h e lowes t c o s t pro- cess i n the manufacture o f a i r f r a m e s , a v i o n i c s , o r o t h e r subsystem d i s c r e t e p a r t s , when communicating with manufac tu r ing , t h e p r i n c i p a l d i s c u s s i o n s w i l l revolve around t h e a l t e r n a t i v e methods t o produce a c e r t a i n p a r t and, t h e r e f o r e , t h e MCIDG man-hour in fo rma t ion is p resen ted i n b a s i c a l l y t h r e e forms. mese are l owes t - cos t processes f o r the d e s i g n e r , manufactur ing methods f o r m u l t i p l e d i s c r e t e p a r t s and m u l t i p l e manufactur ing methods f o r s i n g l e d i s c r e t e p a r t s .

Whilc the MC/DC can bc used 3t a l l l e v e l s Of t h e dcs ign process, t h e importance o l tile prel im- i n a r y dcsign phase, t h e "window of o p p o r t u n i t y , " needs to bc emphasized. Figure 3 illustrates hol i tlic c o s t s av ings leverage decreases as t h c program p rogras ses . Ttw p r r l i n i inn ry des ign phase i s where

i n d u s t r y hiis t k maximum oppor tun i ty t o achieve n l u w c o s t des ign . It i s here where r a d i c a l l y i nnova t ive approaches t o s t r u c t u r a l des ign con- c e p t s and manufactur ing technology choice can s i g n i f i c a n t l y impact c o s t . Configurat ion selcc- Lion f r e q u e n t l y o f f c r s i h e major oppor tun i ty t o rcduce Cos t s . I t i s at t h i s p re l imina ry design phase, a s Figure 3 i n d i c a t e s , where on ly B few pcrcen t of the program c o s t s have been expcnded, yet d e c i s i o n s have bcen made which i n i l u e n c c 90 Lo 95 pe rcen t o f t h e t o m 1 c o s t i n c l u d i n g opera- t i o n s and maintenance c o s t s . p r o g r e s s e s through d e t a i l des ign and p roduc t ion , i t i s extrcmely d i i f i c u l t t o r educc the cos t by nmre than a few pc rcen t even w i t h innovative approaches t o des ign and manufactur ing. As soon as t h e d e t a i l des ign phase i s approached, t h e m a j o r i t y of components considcrcd f o r r edcs ign t c u t i l i z e aS.cerniitivc advanced mnnufacturi.ng pro- cesses ox m a t e r i a l s m u s t meet Form, F i t , and l :mc- t i o n requirements of t h e p a r t beinp reiil;iced. F i g u r e s 4 and 5 show t h e C o s t impact of de.ci-;ions a s a f u n c t i o n of the number of d e c i s i o n s . T h e major m i l e s t o n e s are i n d i c a t e d tliroughout t l w devclopmcnt o f , i n this case, nn a i ~ r c r l i f t system committed L O product ion.

d

A s the program

The h e i i e r i t s o f im MC/DC, d c v e l o p r d meetini: t h e o b j e c t i v e s s p e c i f i e d l a te r are summarircd b e l o w :

More t r a d e s t u d i e s p o s s i b l e w i t h i n a v a i l - vb lc time-span r e s u l t i n g i n a l a r g e r ntn~n- ber of alternative d c s i g o s w n s i d p r c d to assure lowest cost.

addre~ssed a t ea r l i e r s m g e i n design process than now p o s s i b l e .

0 MC/DG Serves as communications l i n k be- tween design a n d manufnctur ing.

MC/DC s t i m u l a t e s d e s i g n c r t u d e v e l o p inno- v a t i v e s t r u c t u r a l c o n f i g u r a t i o n s a t t h c PI) s t a g e , u t i l . i z i n g t h e l.owcst cost manufac- t u r i n g t echno log ie s f o r buth c o n v c n t i o t ~ i i l and cmerging t ec lmolog ie s .

MC/DG c i rcumvents problem o f l i m i t e d n u m - ber of c a s t s t u d i e s being made on a i r f r n s r concep t s p r i o r t o product ion rc l ensc (problem due t o t im-consuming proccss o r o b t a i n i n g r cqu i r ed c o s t c s t i m a t r s ) .

MC/DC w i l l support d e t a i l design der is ion: ; i n s e l ec t . i ng n d c s i g n approach a t t h e d c s i g n e r l g r o u p lender l e v e l p e r m i t t i n g f a s t e r d e c i s i o n s avoiding need of liigliei- l e v c l d i r c c t i o n .

4- Mnnufacturing c o s t - d r i v e r s a l l e v i i i t c d a n d

. Dec i s ions supported by hard ixts made a t d e s i g n l ayou t t a b l e .

Crea te r b read th providcd t o d c s i g n c r ; p r o b l c m i i in imizcd of "point" des igne r

i n p e n ; t l t i e s i.n tile program.

MC/!X e d u c a t e s d c s i g n e r s w i t h va ry ing l . evc l s of expe r i ence an lcss c o s t l y altcrnatives improving fu ture d c s i g n .

s e1cc t ing t o o narrow a scope , r e s u l t i n g

0

2

Page 4: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

The c u r r e n t c o n t r a c t r e q u i r e s t h e development of MCIDG s e c t i o n s f o r test , i n s p e c t i o n and cvalua- t i o n (Pliase I ) , c a s t i n g s (Phase I ) , c e r t a i n emerging t e c h n o l o g i e s (Phase I ) , and e l e c t r o n i c s (Phase 1.1). -

P r o j e c t Organ iza t ion ..

'This program is admin i s t e red under t b c techni-- cal d i r e c t i o n o f Capt . Richard R. P re s ton , Computer I n t e g r a t e d Manufactur ing Branch, Ma te r i a l s Labor- a t o r y (AFi$Al./MI.TC), Aiz Force I i r ight Aeronau t i ca l L a b o r a t o r i e s , AFSC, Wright-Pat terson A i r Force Base, Ohio 4 5 4 3 3 .

B a t t e l l c ' s Columbus Labora to r i e s (UCI.) is t h e prime c o n t r a c t o r on t h e MC/DG Data Development Program. 'fie Program Manager a t BCI. is Mr. Bryan K. Noton. The program i s suppor t ed by the follow- i n g a i r f r a m e and e l c c t r o n i . c s i n d u s t r y subcontrac- tors: Airframe /Avionic Cas. General Dynamics Corpora t ion , P. M. Bunting

G r u m m n Aerospace Corporat ion V . T . Padden

Honeywell, Tncorporated R . R e m k i

Lockheed-California Company 3 . F. Workman

Northrop Corporat ion, A i r c r a f t J. R . l lendel croup A . P. I h n g l o i s

Rockwell i n t e r n a t i o n a l Corpor- R . A . Anderson a t i o n , North American A i r - c ra f t Div i s ion

-_ Proxram ManaE3- ___ ~-

Fort Worth Divi.sion B. E . Kaminski

A. J. Tornahe

w Rockwell i n t e r n a t i o n a l Corpora- J . 6 . V e c e l l i o

t i o n , Avionics & Missiles Croup, C o l l i n s Avionics Div- i s i o n

Boeing Commercial A i rp l ane Company a l s o p a r t i c i p a t e d i n t h e f i r s t two M C I D G programs. Mr. R. H. Hammer, Mr. David Weiss and Mr. P e t e r H. Bain were t h e Program mnagers.

lbe Team Approach-

Important advantages are e v i d e n t i n t h e de- velopment o f manufactur ing man-hour d a t a by a team of major aerospace companies. The p r i n c i p a l advnn- t ages are as fol. lows:

Provides a c r o s s - s e c t i o n o f small and l a r g e a i r c r a f t f o r t h e e n t i r e i n d u s t r y ; both m i l i t a r y and commercial .

P re sen t team members liave large i n t e r f a c e w i t h a l l levels o f d e s i g n e r s . I n d u s t r y w i l l , t h e r e f o r e , t r a n s i t i o n t h e MC/DG r a p i d l y to the des ign process .

Team draws on each company's e x p e r t i s e m k i n g r e s u l t s more viab1.e ( e x p e r t i s e and i n s t a l l e d manufactur ing f a c i l i t i e s vary acrnss i n d u s t r y ) .

Team has an extensive source of a v a i l a b l r d a t a and p rov ides ii hroad base from which t o c o l l e c t and develop d a t a .

Team p rov ides t h e r equ i r ed base f o r de r iv - i n g ave rage i n d u s t r y d a t a (which cannot be achicvcd wi thou t the team approach) .

--

Team can v e r i f y and thus p rov ide confidence t o d a t a and formats f o r des igne r use, r a t h e r than a p a r o c h i a l p o i n t o f view o f B s i n g l e company.

Team prov ides a broad base f o r emerging t echno log ie s and u t i l i z a t i o n of DoD manufactur ing technology (MT) program r e s u l t s .

The A i r Force ICAM Thrust?

Because of t h e complex n a t u r e of t h e ob jec - t i v e s of des ign ing and manufactur ing a i r c r a f t systems t o t h e lowest p o s s i b l e c o s t , manufacturers are t u r n i n g i n c r e a s i n g l y t o t h e use of t h e d i g i t a l computer f o r b o t h t h e d e s i g n and manufacture of a i r c r a f t . The computer-aided concept i s t h e b a s i s o f t h e A i r Force's I n t e g r a t e d Computer-Aided Manufacturing program, known (is ICAM. ICAM w i l l h e l p i n d u s t r y t o r e v o l u t i o n i z e i t s approach t o improving o v e r a l l p r o d u c t i v i t y , a t a l l l e v e l s of t h e manufactur ing h i e r a r c h y , from t h e shop f l o o r o p e r a t i o n s t o e x e c u t i v e d e c i s i o n making.

The K / D G i s a c r i t i c a l p a r t of t h e I C & program. The MC/DG, a t t h i s t ime, covers d e s i g n , f a b r i c a t i o n , and assembly. Current e f f o r t s i nc lude test, i n s p e c t i o n and e v a l u a t i o n (TI&?), as well as t h e c o s t r educ t ion p o t e n t i a l of emera- i ng t echno log ie s . The fo l lowing are t h e t h r u s t a r e a s and p l ann ing d e s i g n a t i o n s t o which t h e MCIDG i s r e l a t e d :

Pahric .a t ion (2000) . Design (4000)

AsSemhly (7000)

T e s t , I n s p e c t i b n and Q u a l i t y Assurance (0000).

The MC/DG enab le s t h e r e q u i r e d i n t e r a c t i o n t o be achieved and t r a d e s t u d i e s t o be conducted between a i r c r a f t system performance and manufac- t u r i n g c o s t , w h i l e meeting t h e developmental s chedu le r equ i r emen t s . The i n t e r a c t i o n s behueen performance, manufactur ing c o s t , s chedu le , o p e r a t i o n s and maintenance c o a t s and o t h e r f a c t o r s are shown i n F i g u r e s 1 t o 5.

Ob jec t ives o f t h e M C / n G

The o b j e c t i v e s o f t h e MC/DG are t o :

Provide t o d e s i g n e r s urgent ly-needed, qu ick , s imple , and q u a n t i t a t i v e c o s t comparisons o f manufacturing processes

Emphasize design o r i e n t a t i o n of MClDG formats and manufactur ing man-hour d a t a f o r use a t a l l phases of des ign process, i . e . , p re l imina ry and d e t a i l d e s i g n , t h e r e f o r e , i n c r e a s i n g emphasis on c o s t as a v i t a l d e s i g n parameter

Enable more e x t e n s i v e manufactur ing c o s t t r ade -o f f s t o be conducted an a i r f r a m e components and ae rospace e l e c t r o n i c s f a b r i c a t i o n and assembly

3

Page 5: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

Emphasize p o t e n t i a l c o s t advantages o f emerging m a t e r i a l s and m n u f a c t u r i n g methods a c c e l e r a t i n g t h e t r a n s f e r t o p roduc t ion hardware of t h e s e t echno log ie s

manufactur ing prbcess e a r l y i n t h e des ign phase t o avoid c o s t - d r i v e r s

Cuide t h e des igne r t o t h e lowest c o s t

Tdent i fy c o s t - d r i v i n g manufactur ing o p e r a t i o n a l sequences which p rov ide t a r z e t s f o r f u t u r e computer-aided manufactur ing (CAM) e f f o r t s .

Design/manufvcturing i n t e r a c t i o n i s , o f course, c r u c i a l i n t h e development of the MCIDG and when t h e MCIDG i s complete , i t w i l l s e r v e as a unique and v a l u a b l e t o o l to achieve and ma in ta in t h i s i n t e r n c t i o n . The c o n t e n t s are shown i n Table 1.

NC/DG and Cost-Estimating Manuals

The MC/DG team analyzed and a s ses sed Cost-

~-

Es t ima t ing Manuals (CEM) and compared t h e ob jec - t i v e s and o r r a n i z a t i o n o f t h e s e w i t h those o f t h e MC/DC.. e x e s : .

.

.

.

.

.

The fo l lowing are t h e p r i n c i p a l d i f f e r -

A CEW i s not des igne r or ienLed. I t is an e s t i m a t i n g too l used p r i m a r i l y by c o s t e s t i m a t o r s .

A CEX does n o t meet t h e MCIDG development c r i t e r i a .

A CEM format i s , t h e r e f o r e , no t s imple f o r des igne r s t o use. It i s tire con- suming and invo lves complex c a l c u l a t i o n s which w i l l s e v e r e l y c o n f l i c t w i t h des ign s c h e d u l e s .

A CEM docs no t i l l u s t r a t e or emphasize c o s t - d r i v e r s .

h CEM does no t p r e s e n t r e l a t i v e t r ade -o f f d a t a i n a form r e a d i l y a c c e s s i b l e by d e s i g n e r s a t d i f f e r e n t l e v e l s of t h e design p r o c e s s .

The number of c o s t t r a d e s , which can be conducted by t h e a i r f r ame i n d u s t r y on d i f f e r e n t des igns i n v o l v i n g d i f f e r e n t manufactur ing methods, is l i m i t e d because of t h e f e a t u r e s o f CEMs and the l i m i t e d number of experienced c o s t e s t i m a t o r s a v a i l a b l e .

Desi$p-Oriente_d Format Design C r i t e r i a

The des igne r -o r i en ted formats developed were reviewed by i n t e r d i s c i p l i n a r y groups i n i n d u s t r y .

Pur thermore , des igne r su rveys wcre conducted and t h e feedhack r ece ived on t h e K / D G was as fol lows:

Mus t be s imple whenever p o s s i b l e

M u s t no t b e time consuming t o use i n che des ign p rocess

Complicated c a l c u l a t i o n s should be avoided

Manufacturing d a t a are urgen t ly need-d, b u t w i t h d e s i g n e r o r i e n t a t i o n

NO s i n g l e a i r f r ame company can p rov ide a l l manufactur ing c o s t d a t a r equ i r ed due L, t o va ry ing e x p e r t i s e

Designers are mre concerned t h a t i t is the lowest c o s t r a t h e r than what i t c o s t s , i . e . , q u a l i t a t i v e comparisons are i m - p o r t a n t .

The MC/DG team agreed t h a t t h e fo rma t s m u s e meet t h e fo l lowing c r i t e r i a :

Emphasize c o s t - d r i v e r s

Be simple t o use

Use d e s i g n e r language

l n s t i l l confidence

Be economical

Be a c c e s s i b l e

R e ma in ta inah le

An example of a format s e l e c t i o n a i d for Clie m/Dc sections i s siiowm i n Figure 6 .

__- M e t h o d o l x i e s f o r P r e s e n t i n g Manufacturing Da ta .~

The manufactur ing man-hour d a t a fo r t h e

>../ v a r i o u s m a t e r i a l s , aerospace d i s c r e t e p a r t s and a s sembl i e s , and manufactur ing t echno log ie s are p resen ted i n wo ways. F i r s t l y , c o s t - d r i v e r e f f e c t s (CDE) and secondly, cos t - e s t ima t ing da ta (CED) are shown. The o b j e c t i v e s of t h c CDi7 and CED methodologies a r e :

To develop a s imple approach f o r t h e nse of formatted d a t a by des igne r s t o achicve lowest manufactur ing c o s t s d u r i n g all design phases (CDE and CED) . To provide q u a l i t a t i v e c o s t guidance t o t h e des igne r t o assure lowest manufactur- i n g c o s t (CDE)

To provide t h e des igne r w i rh t h e capab i l - i t y through q u a n t i t a t i v e guidance. t o perform simple t r ade -o f f s OD manufactur ing c o s t s (CED)

The CDE c o s t r e l a t i o n s h i p s , p rov id ing qual- i t a t i v e in fo rma t ion , have t h e fo l lowing o b j e c t i v e s :

I d e n t i f y c o s t - d r i v e r s t h a t i n c r e a s e the manufactur ing c o s t of t h e design

Show r e l a t i v e e f f e c t s o f c o s t e lements over iihich des igne r s have c o n t r o l

Motivate d e s i g n e r s t o reduce t h e impacr o f the c o s t - d r i v e r s by des ign ing around them.

Using t h e CDE approach, t h e des igne r should

formance requirements , e . g . , a i r f r ame weight and d u r a b i l i t y .

r e a l i z e the lowest c o s t wh i l e s a t i s f y i n g the p e r - ..

Page 6: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

The CED c o s t r e l a t i o n s h i p s . p rov id ing q u a n t i - t a t i v e in fo rma t ion , have t h e fo l lowing o b j e c t i v e s :

P rov ide designers w i t h manufactur ing man- v !IOU data t o al.law t r a d e - o f f s to be

quickly performed t o achieve comparative c o s t s ro r cand i d n t e s t r u c t u r a l conf igu ra - t i o n s . Motivate d e s i g n e r s t o conduct t r a d e - o f f s through the use of des igne r -o r i en ted fo r - mats and manufactur ing man-hour d a t a i n the M C I U G .

~ x a m p l e s of CDE, CED and D I C E fo rma t s f o r shee t - tnetnl~ and composi tes appea r i n Figures 1 0 t o 18.

P a r t . ~~. Definiti.OnS

The fo l lowing i n d i c a t e s t h e s u b d i v i s i o n o f composite p a r t s t o determine manufactur ing man- hours:

(1) Base Part: A d e t a i l e d p a r t i n i ts s i m p l e s t form, i . e . , wi thou t complexi- ties such as s t r i p - p l i e s , cu t -ou t s , and doub le r s .

( 2 ) Dssif iner-Inf luenced Cost E l e w n t s (DICK): Inc ludes s t r i p - p l i e s , c n t - w t s , doub le r s , and s p e c i a l t o l e r a n c e s t h a t add c o s t t o t h e increased f a b r i c a t i o n operat ions and t o o l i n g r e q u i r e d over the s t anda rd manufactur ing method (SMM) f o r the base p a r t .

(3) !&ailed o r Discrete Pa=&: A d i s t i n c t 1 a i r f r a m e s truc tura l p a r t which may in-

corporate complex i t i e s , e . g . , a base p a r t plus D I C E , ready for assembly t o perform i t s r e q u i r e d functi .on in the airframe.

Sheet-metal base and d i x r e t e p a r t s a r c shown i n Figures 8 and 9.

- Designer's Worksheet

'To dc t f rmine t h e t o t a l program c o s t s f o r b o t h d i s c r c t e parts and a s sembl i e s , and ?!C/i)C C O S : worli- SIICCL has been prepared and can be used by indus- l r y . A m r k s l r e l coap lc t cd in an ac tua l t r a d e s t u d y by a des igne r i s shown i n Table 6 .

Manufac tur ing Cost-Uri~vers

To develop the modcl, or sect ion-by-sect ion layout of t h e HC/oc, i t ims neccssa ry t o i d e n t i f y t h e c o s t - d r i v c r s f o r each conventional. and emcrgin:: manufactur ing technology i n c l u d e d i n the l i s t of c o n t e n t s , Table 1. 'These c o s t d r i v e r s enabled t h e d a t a r equ i r emen t s t o be s p e c i t i e d f o r subse- quent development of thc d e s i g n e r ar i .entcd fo rma t s t o be d i s c u s s e d later. Examples o f t h e s e c o s t - d r i v e r s are a s fo l lows :

Mccll~niC3lly-FaStfned Assembly-Fabrication: Cost-Drivers __

e A c c e s s i b i . l i t y f u r Fos t enc r h s t a l l k i t i o n . J i g g i n g Requirements Y

. Materials to be Jo ined

Scal ing . Sequencing Requirements

Stackup of P a r t s

Number of P a r t s

Number of F a s t e n e r s

- Hand R i v e t s

- Drivmatic R i v e t s

- 'Threaded F a s t e n e r s

To le rances

C . ... a s L i n g : Cost-Drivers - Xeechanical P r o p e r t i e s

e Mate r i a l and Chemistry Control

Heat T r e a t Condi t ion

D e s t r u c t i v e Test Requirements

0 S t r u c t u r a l C l a s s i f i c a t i o n (IA, I B , I T A , IIB) . . . . . . . . . . . . . . .

X-Ray C l a s s i f i c a t i o n (A, B , C , and D)

Tolerancfs

Cas t ing Process

Surface Finish

Rela t ionsh ip of A s - C a s t Condi t ion

I n t e r n a l Cavi t i c s (Cores)

Thi.ckne ss

Size. - DimensionalIWeight

I s o l a t e d Masses

Pressu re Requirements

Subsequent MachiningIProccssing

P a r t LinclDrnftlCorner Radi i

F i l l e t Rad i i

Cost of Foundry T o o l i n g

Standard Foundry F a c t o r s

- Metal Weight, S i ~ z e , R i s e r s

- Number of Cores, e t c .

Advanced C o m p o s i t e s x r i c a t i o n : C o s t - D r a

P a r t Type and Funct ion . Par: s i z e

Number of P l i e s

O r i e n t a t i o n of P l i e s . Overlaps

Lot S ize

0 F i b c r Types

Resin System

F ibe r Mix (Hybrids)

Q u a l i t y Rcquiremcnts . Cocured Versus Staged Assembly

5

Page 7: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

Automatic V e r s u s Mnnuill Lamination

F a c i l i t i e s

'Tooling Concept

Manufacturing Technologies Analy;.ed ___ For e a c h s e c t i o n of t h e MCIDG, a s e r i e s of

nanufnctur ing t echno log ie s were analyzed.

'i'he fo l lowi .ng a r c t h o s e s tud ied icr aluminum, t i t a n i u m and steel, r e s p e c t i v e l y :

Aluminum

Rrnkr/i iuffi i l .o R o 1 . l L3r;ikc F o r m Br;ikc/Strctclr Dic Form Drop Ilammer Fnrnlinm K o l l Rout ( P l a t SIieet) IRubber (Hydro) Press S t r e t c h Form

Ti tnnium

lirake ~ o r m ROO^ Temix?ratore) Brake (Room Temperaturc)/Hot S t r e t c h creep Form i'arnhnm Ro l l H O T Press P r e f o r d l i o t S i z c

S t e e l

7 . Hand f i n i s h form

8. I d e n t i f y (metal t a b s )

9. Degrease

10. S o l u t i o n h e a t - t r e a t t o T-42

11. Ice box

1 2 . Check and s t r a i g h t e n

13. Rout. p e r i p h e r y

1 4 . Deburr

15. Degrcase

16. Age t o T-62

17. Alodine

18. Prime

19. I d e n t i f y ( rubber s t a m p )

20. P r o t e c t (package) .

Ground - Rules f o r Data DevelopmenJ

General and De ta i l ed Ground Rules f o r e a c h MCIDG s e c t i o n were developed by t h e team. Ground rules are necessa ry and important a s t h e y promote understanding, ensure cons i s t ency , un i fo rmi ty , and accu racy i n g e n e r a t i n g and i n t e g r a t i n g d a t a i n t o t h e fo rma t s . Tlrc fo l lowing a re exnmp1.e~ of ground r u l e s f o r shee t mctal aerospace d i s c r e t e p a r t s .

1. GENERAL GROLIND RULES

The general ground rules are ca tegor i zed under t h e f o l ~ l o w i n g major groupings: Br;ike/Buffolo Roll

Brake Form (Room Temperature) Broke/ S trf t c h Fartiham Rol..l Rubber P r c s s (b) M a t e r i a l s SLre tc i l ruriti

The MCIDC team has s p e c i f i e d o p e r a t i o n a l (d) F a c i l i t i e s

(a) Sheet-Mctal D i s c r e t e P a r t s

(?) Manufacturing Methods

( e ) Data Generat ion - Recurr ing C a s t s

(f). Data Generat ion - Non-Recurring COSLS

(8) Support Function Modif iers .

seqocnccs on in fo rma t iona l slieets f o r each of t h e manufactur ing techi loiogies s t u d i e d lor the aero- spacc d i s c r e t c par ts manufactured i n both m c t a l l i c and nonmeta l l i c mnter iLds i n c l u d i n g mechonically- f n s t c n c d nsscmblies . T h i s i s an e s s e n t i a l S t e p i n the mat~-hour develonment t a s k s i n o r d e r t o minimize p o s s i b l e variations bctwcen team members so t h a t a r e a l i s t i c i n d u s t r y average i s achieved f o r subsc- quent i n s e r t i o n on t h e M C I D G formats . of such o p e r a t i o n a l sequences are shown below. Th i s i n d i c a t e s the d e t a i l of t h c a n a l y s i s .

(a) Sheet-Metal D i s c r e t e P a r t s

Examples (1) The sheet-metal ae rospace d i s c r e t e p a r t s

s e l e c t e d are r e p r e s e n t a t i v e of cornon s t r u - t u r a l p a r t s r e q u i r e d f o r b o t h small and

Aluminum Beaded Panel

I n i t i a l M:ateriiil Condi t ion: 2024-0 (annealed) Final Condit ion: 2024-T62 Yhnufiicturing Mcthod: Rubber (Hydro) p r e s s furrning

1 . She.ir ( l e n g t h t o width)

2 . Stack d r i l l ( t o o l i n g h o l e s )

3 . Dcburr

4 . Pol.ish r a d i i a reas

5 . 1)egroase

6. Rubber ( l l y d r o ) prcss form

la rge a i r c r a f t . The p a r t s have been scl- f c t e d such t h a t a base p a r t forms the Courid- n t i o n which the des igne r can modify a s r equ i r ed t o ach ieve t h e d e s i r e d d i s c r e t e p a r t o r s t r u c t u r a l c o n f i g u r a t i o n . The d i 6 - c r e t e p a r t s i nc lude s t r i n g e r s , l onge rons , f rames, and p a n e l s r e p r e s e n t i n g elements of major a i r f r a m e s t r u c t u r a l subasseniblies.

( 2 ) The d i s c r e t e p a r t s were s e l e c t e d , where p u s - s i b l e , t o develop d a t a f a r mare than one manufactur ing method. The d a t a the reby enables t h e dcs igne r , u s i n g t h e MCIDG, t u determine t h e most cost-compe.!itive manufnc- t u r i n g mcthod i n t r a d e s t u d i e s .

6

Page 8: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

( 3 ) l:he s e l e c t e d d i s c r e t e p a r t s were d e f i n e d and dimensioned t o adequa te ly d i s p l a y t h e e f f e c t on p a r t c o s t of DICE, e . g . , heat t r ea tmen t and l i g h t e n i n g ho le s . F a c i l i t y l i m i t a t i o n s were used i n determining t h e dimension r a n g e s f o r t h e discrete p a r t cons ide red .

( 4 ) S u p p o r t f u n c t i o n m o d i f i e r s wcrc excluded bu t can be handled i n t h e p r e f e r r e d way by t h e ncruspace company u s i n g t h e MCIDG.

( b ) M a t e r i a l s

(1) Thc a l l o y s s e l c c t e d f o r t h e d i s c r e t e p a c t s were r e p r e s e n t a t i v e of t h e range of t hose more commonly used i n t h e i n d u s t r y t o enab le a uniform d a t a base t o be establ . ished. The m a t c r i a l s included were:

e Aluminum - 2024 sheet . Ti.tanium - 6 A l - h V shee t

S t e e l - PH15-7Mo s h e e t .

included i n t h e MCIDC fo rma t s bu t can he t r c a t e d by t h e user a t h i s d i s c r e t i o n . However, t h e d e s i g n e r must be a l e r t e d and d i r e c t e d t o i n c l u d e material c o s t s wherever material costs are a c o s t - d r i v e r such a s w i t h ce r t a i . n emcrging m a t e r i a l s .

no t g e n e r a l l y inc luded , excep t when this c o s t impac t s a des ign d e c i s i o n , f o r example, f o r manufactur ing c e r t a i n d i s c r e t e p a r t s i n t i tai i i l im and s t e e l .

( 2 ) Raw m a t e r i a l c o s t s f o r t h e p a r t s were not

(3) Material . c o s t of "on-recurring t o o l i n g was

v ( c ) hanufac tu r ing Methods

(1) Only conven t iona l manufactur ing methods r equ i r ed t o produce t h e sheet-metal p a r e s i n t h e c o n f i g u r a t i o n s s e l e c t e d wcre cons ide red No emerging manufactur ing methods were eva l - ua t ed .

( 2 ) A produc t ion , i n c o n t r a s t t o a p ro to type , environment was assumed f o r t h c sheet-metal ae rospace d i sc . r e t e p a r t s .

(3) To g e n e r a t e an e f f e c t i v e d a t a base for ccicli s e l e c t e d p a r t , a factory o p c r a t i o n a l sequciicc f o r each a p p l i c a b l e manufuc- tur.ing method was e s t a b l i s h e d r e f l c c t - i ng t h e most economical mcnns of f a b r i - c a t i o n . T h i s s t anda rd ized sequence w a s used by cach team member t o determine t h e p a r t c o s t (man-hours).

( 4 ) Tool f a m i l i e s r e q u i r e d t o manufacture t h e v a r i o u s p a r t s werc i d e n t i f i e d on t h e d a t a c d l e c t i o n forms.

( d ) F a c i l i t i c a

(1) On.ly s t anda rd manufactur ing f a c i l i t i e s , a v a i l a b l e t o t h e a i r f r a m e i n d u s t r y , were cons ide red .

( e ) I h t a Generat ion - Kccurr ing Cos t s

( 4 )

( 7 )

Rccurr ing and non-recurr ing man-hour d a t a were gene ra t ed f o r t h e complete p rocess o f p a r t f a b r i c a t i o n and i n - c luded a l l hands-on-factory d i r e c t labor o p e r a t i o n s from raw s t o c k blank p r e p a r a t i o n through forming, heat t r e a t - ment, pr iming, etc., t o s to rngc of t h e p a r t i n r e a d i n e s s f a r assembly i n t o t h c a i r f r a m e .

The base p a r t c o s t (man-hours) was gencrnted f o r each p a r t . The base p a r t c o s t r e p r e s e n t e d t h e sum of a l l s t anda rd hours a s s o c i a t e d w i t h each p a r t .

D I C E , r e q u i r i n g added o p e r a t i o n s , were t r c a t e d a s s e p a r a t e c o s t e lements , and t h e r e f o r e , no t i nc luded i n t h e base p a r t c o s t .

The q u a n t i t y f o r w h i c h t h e base p a r t c o s t was determined was u n i t 200 and was based on team member l e a r n i n g

Cost d a t a were p r e s f n t c d i n man-hours.

To demonstrate t h e Cost impact of

25 and 5 0 p a r t s were eva lua ted . Haw- ever, t h e v a l u e s p l o t t e d on t h e KC/D(: fo rma t s were on ly f a r l o t s i z e 2 5 .

Setup t ime (man-hours) i s t h e t o t a l s e tup t ime r e q u i r e d t o complete t h c p a r t . The se tup t ime was amort ized over t h e l o t s i z e s and added t o r u n t imes t o o h t u i n the base p a r t cos t (man-hours).

Recurr ing t o o l i n g C o s t s ( t o o l maintfn- ante, p lann ing , etc.) werc no t i nc luded .

Thc d a t a submit ted t o liCL were t h e hnse p a r t c o s t (man-bours) p l u s t h e c o s t s (man-hours) o f D I C E a s s o c i a t e d wi th t h e d i s c r e t e p a r t des ign .

In deve lop ing c o s t d a t a f o r parts, each p a r t i c i p a t i n g company u t i l i z e d i t s own p r o p r i e t a r y l c a r n i n g curves.

The part c o s t (man-hours), a s der ived by each a i r f r a m e company, w a s normal.ized by BCI, t o r e f l e c t an i n d u s t r y te.am nveruge ,value f o r each shect-metal d i . s c r e t c p a r t and rsngc of dimensions.

For p r o p r i e t a r y rcasons, r e a l i z a t i o n I n c t o r s ( i n c l u d i n g PF&D), s tandbrd hours , and o t h c r b u s i n e s s S e n s i t i v e in fo rma t ion employed u t team mcmber companies a r c not included i n t h e a n a l y s i s , o r on t h c d a t a s h c e t s o r MC/IJC. fo rma t s .

CUTYBS.

setup C O S t S , l o t r e l e a s e s o f 5 , 10 ,

Ccne ra t i an - Non-Recurring Cos t s

Tool f a b r i c a t i o n c o s t s were generated f o r each p a r t t ype . I n a d d i t i o n , t o o l desi:.," and t o o l p l ann ing c o s t s were eval.uated W i t i t r c s p e c t t o t h e i r impact , 10 determine whether t h e y should be i n - c luded o r omi.tted f o r the t h r e e m a t e r i a l t ypes .

Page 9: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

( 2 ) The c o s t of p roduc t ion t o o l i n g , if inc luded , was r e s t r i c t e d t o c o n t r a c t or p r o j e c t t o o l s o n l y , f o r p r e s e n t a t i o n i n the M C I D G .

( 3 ) Non-recurring t o o l i n g c o s t s (NRTC) gen- e r a t e d by t h e team companies were norm- ii.lizcd by RCI. f o r p r e s e n t a t i o n i n t h e MCInC.

( g ) Support Funct ion Modi f i e r s

(1) Addit ional e f f o r t o t h e r than f a c t o r y l a b o r , s u c h tis q u a l i t y c o n t r o l and assur- ance and manufactur ing eng incc r ing , was rnrS.uded from t h c pi i r t c o s t d a t a supp l i ed t o RCI.. 'These m o d i f i e r s may be i nc luded later by t h c M C I D G users a t a i r f r a m e com- ,p-ini.e s .

2 , 1 ~ E T A I l . U ( X O U N D RUJ.ES

The d e t a i l e d ground r u l e s are ca t egor i zed untici. the rol lowing major groupings:

(:I) Matur in l s

(1,) Gages ('Thicknesses)

( c ) 'Tol.cmnc.es

( d ) D i s c r c t c P a r t s

( e ) M;inufnctiiring Mcthods

( f ) i ; i c i i i t i e s

(g) Contract Tool.ing.

Material s

( I ) Tire materials s e l e c t e d f o r sheet-metal d i s c r e t c p a r t s are:

Aluminum - 2024

Titanium (annealed) - 6 A l - 4 V

S t e e l (annealed) - PH15-7Mo.

( 2 ) Treatment r e q u i r e d f o r any of t h e s e m a t - e r i a l s t o i n c r e a s e physical . p r o p e r t i e s o r c o improve f o r m a b i l i t y are i n d i c a t e d on c h e p a r t s k e t c h e s , d a t a c o l l e c t i o n forms and formats .

Gogrs (Thicknesses)

(I) P a r t t h i c k n e s s i n each m a t e r i a l type w a s :

A luminum: 0. 063 i n c h

Ti tanium: 0.040 i n c h . stec1: 0.032 i n c h

P a r t s were assumed t o be formed us ing s t anda rd bend r a d i i a s d i c t a t e d by t h e m a t e r i a l type and t h i c k n e s s .

P a r t s were assumed t o be manufactured t u il t o l e r a n c e of 2 0.030 i n c h . The c a s t impact O C t i g h t e r o r mom rel.axed to lc rances was addressed as a des ign complexi ty .

( d ) D i s c r e t e Parts

(I) Drawings of t h e sheet-mecal afrospiicc d i s c r e t e p a r t s showing c o n f i g u r a t i o n s , dimensions, j o g g l e s , h o l e s , t r i m , heat t r e a t m e n t , e t c . , were prepared so LhaC each team member may e s t i m a t e base s t anda rd hours i n a c o n s i s t e n t manner.

\c/

( 2 ) The c r o s s - s e c t i o n a l dimensions o f t h e l i n e a l shapes corresponded t o a maxi- mlri envelope of 6 i n c h e s d i ame te r .

( 3 ) The o p e r a t i o n a l sequence necessa ry L O

produce each p a r t , a s r equ i r ed by t h e d e t a i l drawings, i nc luded every o p e r a t i o n r equ i r ed t o f a b r i c a t e the p a r t by t h e manufactur ing mfthod be ing eva lua ted , i . e . , from t h e b l a n k t o completion r eady f o r t h e storeroom a n d assembly inCO t h e a i r f r a m e .

( 4 ) To f a c i l i t a t e t rade-off s t u d i e s , t h e d i s c r e t e p a r t s and M C I D G fo rma t s i n d i c a t e any thermal a n d l o r chemical p rocess ing r e q u i r e d such a s heat t r ea tmen t and anod iz ing , r e s p e c t i v e l y , and a l s o p a i n t i n g , p r i o r t o assembly, a s s p e c i f i e d on t h e d e t a i l drawing.

( e ) Manufacturing Methods

(1) Forming methods used t o f a b r i c a t e t h e r e s p e c t i v e p a r t s were s p e c i f i e d on P a r t S i z e Mat r i ces accompanying each drawing and on t h e Data C o l l e c t i o n I'orma

( 2 ) Wherc more than one manufactur ing t e d - nology were c a n d i d a t e s t o f a b r i c a t c a d i s c r e t e p a r t , d a t a were generatcd f a r each method t o reveal t h e comparn- t i v e c o s t r e1 , a t ionsh ips t o t h e d e s i g n e r .

u

( f ) F a c i l i t i e s

(I) The t y p e s of forming equipment u t i l i z c d i n t h e f a b r i c a t i o n of t h e p a r t s were those l i s t e d i n t h e Part S i ze Matrix accompanying each d i s c r e t e p a r t drawing.

(z) Contract Tooling

(1) necausc of "onuniformity of t o o l n<>"K!Il-

c l a t u r e , each team member company i n d i - c a t e d , on the Data C o l l e c t i o n Farms, t h e t o o l f ami ly requi.rcd t o f a b r i c a t c c n c h d i s c r e t e p a r t . The nomenclature ~ 1 1 0 x 1 1 1 on t h e forms were supplemented w i t l i i n fo rma t ion p rov id ing a complete Loo1 d e s c r i p t i o n , i . e . , D r i l l P r c s s F ix tu re (DPF) .

manufacture t h e t o o l s , a s wel l as tilos(- t o make and chcck t h c p a r t s , i.e., pro- duc t ion check t o o l s .

( 3 ) The average hours p e r t o o l t y p e , i n d i v i d u a l t o o l e s t i m a t e , e t c . , were determined i n accordance w i t h each team member's stall- dard procedures f o r determining c o s t .

( 2 ) Tuo1.s incl.uded were those r e q u i r c d t o

-1

8

Page 10: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

A s e r i e s of f u s e l a g e s h e a r panc l s were ana- lyzed w i t h r ega rd t o weight and manufactur ing Cost by t h r e e a i r f r a m e i n d u s t r y team members, u t i l i z i n g t h e manufactur ing man-hour d a t a p re sen ted on des igne r -o r i en ted fo rma t s i n t h e t h r e e demonstra- t i o n s e c t i o n s , i . e . , "Sheet-Metal Aerospmc D i s c r e t c I'arts,'' "Mechanically Fastened Assfmb 1i.e 5 , '' and "Advanced Composites Fabr i - ca t ion ."

'The primary o b j e c t i v c s of t h e f u s e l a p shca r - panel t r a d e - s t u d i e s were to :

e 1)emonstratr t h e use of t h e LlC/DG .in an i n d u s t r i a l environment dcs ign inc t y p i c a l a i r f r a m e s t r u c t u r e s

Dcterminc whether t h e manufactur ing cost (man-hour) fo rma t s , p rov id ing CDE and C 3 i n fo rma t ion , meet t h e format des ign c r i - t e r i a e s t a b l i s h e d f o r t h e i r dcvelopmcnt

Determine whether t h e CDE and CED formats p rov idc t h e accuracy r e q u i r e d by d e s i g n e r s i n conduct ing r e a l i s t i c comparisons of a i r f r a m e c o n f i g u r a t i o n s u t i l i z i n g bo th m e t a l 1 . i ~ and compositc m a t e r i a l s .

Fuselage panel des igns were s t u d i e d i n t h e fo l lowing s t r u c t u r a l ma te r i . a l s by t h c des ign departments i n each of t h e t l i rec compani.es:

Aluminum alloy--by General Dynamics Corporat ion, F o r t Worth Divi.sion

'Titanium alloy--by Lockhecd-Cali~fornia Company: s tudy summarized below

Graphite/cpoxy--by Rockwell I n t c m a t i o n a l , North American A i r c r a f t D iv i s ion .

Thc r e s u l t s of t h e f u s e l a g e pane l t r a d e s t u d i e s were c r i t i c a l l y reviewed by:

Uoeing Commercial A i rp l ane Company, and . Nort t i roi i Corpora t ion , A i rc ra f 1 Group

'Titanium Fuselage Shear-Panel Tr& by Lockheed-California Company

'This s e c t i o n reviews r e s u l t s obtaincd by a des ign team c o n s i s t i n g of des ign , s t r e s s , we igh t , and p roduc ih i l i . t y e n g i n e e r s , , f o r t h e t rade-s tudy of a t i t a n i u m fuse l age shear-panel . 'The approach used f o r t h i s t r ade - s tudy i s shown i n F igu re 1 9 . T h i s commenced w i t h a review of t h c ground r u l e s and s t r u c t u r a l s e c r i o n s a v n i ~ . n b l e i n t h e H C / D C .

F igu re 21. shows t h e s t r u c t u r a l s e c t i o n s s e l e c t e d f o r t h i s t rade-s tudy. I n t h e next s t e p , t h c s t r u c t u r a l des ign premises and t h e g e n e r a l c h a r a c t e r i s t i c s of t h e pane l des ign were s p e c i f i e d . P igu rc 2 0 shows t h e pane l s e l e c t e d of dimensions 36 x 7 2 inches w i t h a cons tan t r a d i u s of G O i n c h e s . The d e s i g n l o a d s , s t r u c t u r a l d c s i g n c r i t e r i a , and s n n i . y s i s mcthodology are summnrizrd i.n F igu re 2 0 . Thesc c r i t e r i a wcre dc r ivcd from t h e f i r s t and second g c n c r a t i o n SST s t u d i e s ; modif ied t o r e f l e c t t h e ground r u l c s s e t f o r t h by thc MC/DC d e v c h p - ment team.

Y

The t h i r d s t e p i n t h e approach t o t h e t r a d e - s t u d y i s t o develop cand ida te des ign c o n f i g u r a t i o n s . A g e n e r a l i z e d drawing of t h e p a n e l is shown i n F igu re 2 2 . Table 2 g i v e s a summary o f t h e des ign concep t s evaluated. The t a b l e provj~des v a l u e s f o r A and R , shown i n F igu re 2 2 , Tor each con- c e p t . It can be seen from t h e t a b l c t h a t t h e number of f rames, s k i n t h i c k n e s s , and t h e number and type a f s t r i n g e r s were t h e v a r i a b l e s . Table 3 p r o v i d e s a d e t a i l e d summary o f t h e concep t s , i n c l u d i n g thc. number, t ype and dimensions o f each p a r t . The number of r i v e t s ( f a s t e n e r count) r e q u i r e d fo r assembly of t h e concep t s , i s a l s o i nc luded i n thi.s t a b l e .

The f i n a l s t e p , conducted as p a r t o f t h e t r u d e - s tudy, was t o e s t i m a t e t h e c o s t and weight o f each panel concept . The weight was e s t i m a t e d by t h e weight eng inee r , u s i n g s t anda rd weight e s t i m a t i n g procedures . To e s t i m a t e t h e c o s t o f each concep t , t h e MC/DG Designer Worksheet was u t i l i z e d and i s shown i n Table 6 . U t i l i z i n g t h e format man-hours (Table 4 ) f o r r e c u r r i n g and non- recu r r ing t o o l i n g c o s t s , t h e d e s i g n e r Can c a l c u l a t e t h e program c o s t . The worksheet i s a u s e f u l a i d t o t h e d e s i g n e r when u s i n g t h e MCIDG, a s it p r o v i d e s an o r d e r l y Out- l i n e o f what must be accomplished t o determine t h e c o s t o f t h e pane l . De ta i l ed computat ions are shown i n Table 5.

Having determined bo th t h e manufactur ing Cost and weight of each p a n e l , t h e d e s i g n e r Can now o r g a n i z e t h e d a t a i n t o a conven ien t form f o r selec- t i o n o f t h e optimum panel des ign . Table 7 summa- r i z e s t h e c o s t and weight o f each concept . Fpr t h i s summary, t h e l e a s t c o s t l y pane l , Concept V I I , was chosen as t h e base d e s i g n . W i t h 3 base des ign s e l c c t e d , a d e l t a f o r wei.ght and c o s t of each pane l can be c a l c u l a t e d r e l a t i v e t o t h e b a s e . These d e l t a s are t hen combined t o g i v e a va lue f o r t h e c o s t o f weight saved, i n d o l l a r s p e r pound. These d a t a are also i nc luded i n Tablc 7 . The d e s i g n e r concludcd from t h e d a t a t h a t Concept I1 should be t h e recommended pane l des ign . I n o r d e r t o confirm t h i s d e c i s i o n , Table 8 was prepared w i t h Concept I1 as t h e base des ign . The d e l t a s and c o s t o f weight saved were a g a i n c a l c u l a t e d . The r e s u l t s show t h a t Concept I1 was t h e c o r r c c t cho ice .

The conc lus ions , based on a rcvicw of t h e t r ade - s tudy , were t h a t t h e MCIDG i s an e f f fc t i .ve tool. f o r the des ign team, and t h a t t h e methodology fol lowed i n t h i s t r ade - s tudy c l e a r l y demonstrated t h c concept of u t i . l i z i n g t h e NCIDG i n t h e ae rospace i n d u s t r y environment. Thc s p c c i f i c conc lus ions are l i s t e d bcl.ow:

In fo rma t ion p resen ted i n d i c a t i v e o f t h e u l t i m a t e f u n c t i o n of t h e MC/DG

Use of MC/DG i n o b t a i n i n g manufactur ing c o s t s and performing s implc c o s t c s t i m a t c s w a s w e l l demonstrated

Dcmonstrated s e l e c t i o n c r i t e r i a of d o l l a r s / pounds weight saved

F u l l y demonstrated use o i t h e MC/DG in developing cos t lwc igh t e f f e c t i v e design

U t i l i z e d cast i .ng mcthodology, developed m a t e r i a l , l a b o r , t o o l i n g and program c o s t .

9

Page 11: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

D o l l a r s i n B i l l i o n s Cost lweight s u m a r y c h a r t and recommenda- t i o n s are of p a r t i c u l a r merit

Review o f each concept (wi th c o s t - e s t i - mating s t e p s ) c l e a r l y shown.

The MC/DC, r c p r c s e n t s an important s t e p i n a r r e s t i n g t h e po ten t i . a l e ros ion of D O D ' s a b i l i . t y t o purchase t h e r e q u i r e d de fense systems. T h i s is duc t o t h c i n c r e a s i n g c o s t s of t h e systems and t h e compe t i t i on of soc i a l and o t h e r n a t i o n a l programs f o r a v a i l a b l e funding. However, under t h e p r c s e n t des ign and cos t - e s t ima t ing procedures i n ae rospace companies, t h e l i m i t e d number of q u a l i f i e d c o s t a n a l y s t s a v a i l a b l e and t h c t ime r e q u i r e d t o con- d u c t adequate c o s t l w e i g h t of t r a d e s t u d i e s arc becoming serious problems. The Ai.r Porce and i n d u s t r y have an u rgcn t nced t o e v a l u a t e a g r c a t e r number of s t r u c t u r a l and a v i o n i c c a n d i d a t e s i n a t ime ly manner p r i o r t o commitments t o a proposed low-cost des ign t h a t meets t h e performance r equ i r emen t s .

The MCIDG, unl.ike many handbooks, w i l l he applicab1.e a t a l l phases of t h e program develop- ment c y c l e ; f o r example, at t h e p re l imina ry des ign phase o r t h e "window of oppor tun i ty" where t h e g r e a t e s t l e v e r a g e e x i s t s t o reduce c o s t , i . e . , when l e s s than 5 p e r c e n t o f t h e t o t a l program C O S t

ha s been expended, y e t deci .s ions have been made which a f f e c t 90 t o 95 pe rcen t of t h e t o t a l program cos ts . When t h e system has been committed t o pro- d u c t i o n , on ly l i m i t e d o p p o r t u n i t i e s remain t o reduce c o s t s .

U t i l i z i n g computers, t h e MCIDG w i l l enab le t h e A i r Force and i n d u s t r y t o r a p i d l y determine the i n f l u e n c e of a b r u p t or p r e d i c t e d changes 'in t h e c o s t and a v a i l a b i l i t y of m a t e r i a l resources , COS: of c a p i t a l , e t c . The ae rospace i n d u s t r y , i n t h e p a s t , has n o t been cons ide red m a t e r i a l i n t en - s i v e , bu t m a t e r i a l s e n s i t i v e . However, r e c e n t l y , and i n t h e f o r e s e e a b l e f u t u r e , t h e a v a i l a b i l i t y and c o s t of m a t e r i a l s w i l l have cons ide rab le impact on c o s t . i n t h e MC/DG t o r a p i d l y r e f l e c t t h c s e changes. he impact of such u n c e r t a i n t i e s of a "on-technical n a t u r e can be a s ses sed i n a more r e l i a b l e manner than i n t h e p a s t and more c r e d i b l e f o r e c a s t s can be achieved by determining t h e impact o f v a r i o u s changes on t h e c o s t o f s t r u c t u r a l systems. S i m i - l a r l y , a p r o p e r l y maintained and updated I.IC/DG will . reduce t h e problem of c o s t d a t a becoming obso- l c t c because of i n f l a t i o n , emerging t e c h n o l o g i e s , and i n c r e a s i n g automation i n a i r c r a f t p l a n t s . When completc, t h c I.Ic/DG w i l l e v e n t u a l l y enab le manufac- t u r i n e c o s t l p e r f o m a n c e t r a d e s t o be conducted w h i c h reducc o p e r a t i o n s and maintenance c o s t s . The e v e n t u a l payoff of u t i l i z i n g m a t e r i a l s , des ign con- c c p t s , and p rocesses which reduce l i f e - c y c l e c o s t s (LCC) is , of coursc, t h e u l t i m a t e o b j e c t i v e . The importance of LCC becomes clear from t h e fo l lowing c o s t breakdown publ ished s e r e r a l years ago f o r a major system:

Computerized d a t a can be updated

P re l imina ry Design RDT&E Acqu i s i t i on Opera t ions

0 . 1 0.5 6 . 0

21.0

Using t h e NCIDC and o t h e r s t r u c t u r a l design g u i d e s , i t w i l l be p o s s i b l e t o examine airframe designs w i t h r ega rd t o manufactur ing COS:, TI&E, f r a c t u r e mechanics, f r a c t u r e t o l e r a n c e , m a i n t a i n a b i l i t y , c t c . The s e n s i t i v i t y o f a i r f r a m e p a r t performance t o some manufactur ing t echno log ie s u t i l i z e d must a l s o bc a s s e s s e d .

Manufacturing c o s t d a t a a rc now becoming avail .- a b l e f o r r e a l i s t i c , c r e d i b l e , cos t - c f f ec t i . veness s t u d i e s t o be conducted when developing structures f o r a t o t a l i n t e g r a t e d system meeting t h c r equ i r ed o p e r a t i o n a l or mission c a p a b i l i t i e s . Furthermore, t h e MC/DG w i l l provi.de an o r d e r l y , c o n s i s t e n t approach t o making c o s t t r a d e s t u d i e s . Th i s c o n s i s - t ency w i l l be h e l p f u l i n e v a l u a t i n g compe t i t i ve p r o p o s a l s and customers w i l l be a b l e t o eva lu - ate manufactur ing c o s t l s c r u c t u r a l performance t r a d e s t u d i e s very e a r l y i n t h c des ign phase of t h e pro- gram, be fo re major d o l l a r commitments and i n v e s t - ments are made. I n d u s t r y use of t h e MCIDG w i l l enab le customers t o e v a l u a t e a given s t r u c t u r a l des ign more r a p i d l y and e f f i c i e n t l y , since i t repre- s e n t s a common base of r e f e r e n c e from which t h e a n a l y s i s was made.

When complete, t h c MCIDG i s expected t o e n a b l e t h e c o s t impact of emerging manufactur ing technolo- g i e s and m a t e r i a l s t o be assessed. The a b i l i t y o f emerging t echno log ie s t o reduce Cost can bc p re sen ted t o des igne r s . Furthermore, t h e c o s t - d r i v e r s a s m c - i a t c d w i t h t h e emerging materials or manufactur ing t echno log ie s can a l so be i d e n t i f i e d t o t h e d e s i g n e r s and t o r e s e a r c h e r s . These emerging technology c o s t - d r i v e r s w i l l be important areas on which t o f o c u s f u t u r e r e s e a r c h and development programs and, lience, a c c e l e r a t e t h e i r a p p l i c a t i o n s . The M C I D G can al.so p rov ide a f o r e c a s t i n g t o o l t o p r e d i c t t h e time-frame when new t echno log ie s w i l l be a v a i l a b l e . Many emerg- i n g t echno log ie s do show promise of p o t e n t i a l C O S :

r educ t ion and, t h e r e f o r e , t h e MCIDG w i l l be an important t o o l t o i d e n t i f y t h e s e c o s t r e d u c t i o n s u s i n g des igne r -o r i en ted formats , and t h e emerging t echno log ie s w i l l t h u s become o f g r e a t e r i n t e r e s t t o d e s i g n e r s and management than basing t h e i r acceptance on s t r u c t u r a l weight r educ t ion p o t e n t i a l a lone .

As t h e MCIDG p r e s e n t s c o s t - d r i v e r s through CDE and CED fo rma t s , t h e MCIDC can , t h e r e f o r e , serve as a p lann ing t o o l , f o r example, by i d e n t i f y i n g t h e a reas i n which I n t e g r a t e d Computer-Aided Manufac- t u r i n g (ICAM) should be d i r e c t e d , i . e . , u s ing ICAM t o reducc c o s t - d r i v e r s .

O p p o r t u n i t i e s f o r c o s t r e d u c t i o n , i . e . , b y a l l e v i a t i n g manufactur ing c a s t - d r i v e r s , w i l l become e v i d e n t t o d e s i g n e r s a t an e a r l i e r s t a g e i n t h e des ign p r o c e s s than now poss ib le , and MCIDG w i l l s e rve a s a communications l i n k between design and manufactur ing, and wi th t h e p r o p e r l y maintained and updated M C I D G , t h e p o s s i b i l i t y of manufacturing man-hour d a t a becoming o b s o l e t e i s reduced.

10

Page 12: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

I t i s i n t e r e s t i n g t o compvrc t h e v a r i o u s de- s i g n approaches where weight and/or c o s t c o n t r o l s are a p p l i e d . The fo l lowinp cornnares t h c annl ica- .. t i o n if t h e K / D C w i t h o t h r r meihods i n con t ro l l i . ng weight o r c o s t :

W

Design weight c o n t r o l o n l y

NO cost c o n t r o l

- Uec.isions based on lowest weieht desi .gn

- Cost i .ncrcases (upward of 1 0 p e r c c n t )

DeCiSiOnS based on cos t lwe igh t c f f c c t i v e - " C S S

- Reduces Cost g e n e r a l l y t o w i t h i n 1.0 per- cent Of t a r g e t s

Design c o s t c o n t r o l

- With Cost c o n t r o l : p r o j e c t e d c o s t g e n e r a l l y reduced t o wi.thin 1 0 pe rcen t

0 HC/DG a p p l i c a t i o n

- P r o j e c t e d p o t e n t i a l c o s t s a v i n g s

(a) When a p p l i e d i n p re l imina ry des ign phase--l0 t o 15 pe rcen t

When a p p l i e d i n p roduc t ion or de- t a i l des ign phase--2 t o 5 perccnt .

(b)

Based on these p r o j e c t e d c o s t s a v i n g s , which werc dctfrmined from d i s c u s s i o n s w i t h experienced d e s i g n e r s a t t h e team-mcmber companies, i t i s use- fu.1 t o make a n approximate assessment of t h c d o l l a r s a v i n g s r e p r e s e n t c d by t h e s e p r e d i c t e d pc rcen tages :

-__ 'Transport A i r c r a f t

From the A i r Force "Manufacturing Cost Rcduct ian Study" (AFML-"WLT-73-1; January, 1973) ; Transport S t r u c t u r e Cost U i s t r i b u t i o n (F igu re 8-2 i n r e p o r t ; Ref. 1)

- Airframe s t ruc tu re - -$2 ,900 ,000 lA~FT . I ' r o j ec t ing a 2 t o 5 pe rcen t c o s t s a v i n g s over 200 ACFT by u t i l i z i n g t h e M c l D G d u r i n g p roduc t ion des ign phase:

- A 2 pe rcen t s a v i n g s = $58,00O/ACFT o r $11,600,000 for t h e program

v

- A 5 p e r c e n t savings = $145,00O/ACFT o r $29,000,000 Tor t h e program

F i g h t e r A=

From t h e A i r Force "Manufacturing Cost Reduction Study" (hFNL-l?-LT-73-1; January, 1973) ; F i g h t e r S t r u c t u r c Cost D i s t r i b u t i o n (F igu re 8-14 i n r e p o r t ; R c i . I.)

P r o j e c t i n g a 2 t o 5 pe rcen t s a v i n g s over 500 ACFT by u t i l i z i n g t h e MClDG du r ing t h e product ion d e s i g n phase:

- A 2 pe rcen t s a v i n g s = $1+,120,000 f o r

- A 5 p e r c c n t s av ings = $10,800,000 f o r

t h e program

tlie program.

The c o s t s a v i n g s p o s s i b l e w i t h f u t u r e supe r - s o n i c advanced a.ircraft, which will use l a r g e r

i n g s i e t c . , are expccted t o he g r e a t e r . With t h e s e advanced a i r c r a f t , t h e X / D C w i l l s t i rni l la te t h e

- q u a n t i t i e s o f s t e e l , t i t an ium, composi tcs , c a s t -

11

d e s i g u c r t o develop i n n a v a t i v c s t r u c t u r a l configu- r a t i o n s a t t h e PD s t a g e which u t i l i z i : t h c lowest c o s t manufactur ing t echno log ie s a f bo th conventi .ona1 and emerging c a t e g o r i e s . A t p r e s e n t , o n l y a l i m i t e d number of c o s t s t u d i e s can be accomplished on d e s i g n Concepts of a i r c r a f t t ypes p r i o r t o p roduc t ion re- lease, due t o t h e time-consuming process o f oh ta in - i n g r e q u i r e d c o s t i n fo rma t ion and e s t i m a t e s . T h i s sometimes r e s u l t s i n a more c o s t l y des ign be ing s e l e c t e d . I f i t is n o t p o s s i b l e t o accomplish t h c s c s t u d i e s p r i o r t o t h e i n i t i a l release of t h e drawings and p roduc t ion go-ahead, t h e c o s t associ- a t e d wi th maki.ng a change becomes so high t h a t many of t h e c o s t r e d u c t i o n o p p o r t u n i t i e s a re l o s t .

The MCIDG w i l l be used to s u p p o r t d c t a i l d r -

T h i s w i l l a l l o w s i g n d e c i s i o n s i n sclecting a des ign approach a t t h e des igne r lg roup l e a d e r l e v e l . f o r r e l a t i v e l y f a s t d e c i s i o n s to be made without t h c need for h i g h e r l e v e l d i r c c t i o n . Dec i s ions t h a t can be suppor t ed w i t h ha rd f a c t s w i l l be made a t t h e d e s i g n l a y o u t t a b l e . A g r e a t e r b read th w i l l be provided t o t h e d e s i g n e r and t h e problem o f t h e "point" des igne r s e l f c t i n g too narrow a scope, re- s u l t i n g i n p e n a l t i e s i n t h e p r o g r a m , w i l l be minimized.

The MCIDG w i l l educa te d e s i g n e r s o f v a r i o u s levels o f expe r i ence w i t h r ega rd t o less c o s t l y a l t e r n a t i v e s which w i l l improve f u t u r e d c s i g n s . It w i l l be used t o i l l u s t r a t e and support eng inee r - i ng lmanufac tu r ing d e c i s i o n s concerning t h e d e s i g n approaches which reduce c o s t .

A s d i scussed l a t e r , t h e MC/DG Can serve a s an impor t an t t r a i n i n g document f o r young and l e s s experienced d e s i g n e r s . It can equip them t o p a r t i c i p a t e i n design-to-- lowest c o s t programs. It w i l l also Serve as course m a t e r i a l f o r u n i v e r - s i t i e s and c o l l e g e s t h a t are sometimes weak i n t each ing d e s i g n s y n t h e s i s and a n a l y s i s responding t o i n d u s t r y s t a f f i n g r equ i r emen t s .

It i s ev iden t t h a t t h e MCIDG w i l l . scrvc as an important t o o l t o mot iva t e a l l members of des ign tcams i n t o a design-to- lowest c o s t a t t i t u d e . I t wi.11 p rov ide c o s t i n fo rma t ion t o t l ie d e s i g n e r i n a manner f a m i l i a r t o him through t h e des igne r - o r i e n t e d fo rma t s (Fi.gures 1 0 ti, 1 8 ) .

There are a number of a d d i t i o n a l p o t e n t i a l o p p o r t u n i t i e s to u t i l i z e t h e MC/IlC, d a t a developed t o s t i m u l a t e des ign lmanufac tu r ing i n t e r a c t i o n towards lower c o s t . These are summarized u s fol lows:

Pocket-s izcd book i l l u s t r a t i n g t h e h igh c o s t - d r i v e r s r f p r e s e n t i n g 80 pe rcen t of a i r f r a m e c o s t s and cross r e f e r e n c i n g w i t h MCIDG

- Would c o n t a i n c h a r t s and serve as impor- t a n t t o o l on t h e p l a n t f l o o r i n d i scus - s i o n s on designlmanufactur ing i n t c r - a c t i o n

e Pocket computfr t o enab le s e l e c t i o n of manufactur ing p rocesscs which avo id o r a l l c v i a t e c a s t - d r i v e r s

Page 13: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

ILC/DG can be used as a f o r e c a s t i n g t o o l

MCIDG, which q u a n t i t a t i v e l y i d c n t i f i e s c o s t - d r i v e r s , can be u t i l i z e d f o r planning purposes

MCIDG can be uscd t o j u s t i f y a c q u i s i t i o n o f new equipment, f o r example, by i n d i - c a t i n g when equipment should be r ep laced due t o t h c emergence o f a c o s t - d r i v e r such as energy r equ i r emen t s .

The MCIDC can be r e a d i l y used. The des igne r w i l l d e v e h p conf idencc i n t h e in fo rma t ion and, t h e r e f o r c , use .it more e x t e n s i v e l y i n h i s f u t u r e t a s k s . Tho N C I D G w i l l enab le t h e d e s i g n e r t o understand t h e f a c t o r s a f f e c t i n g cost and t h c v a r i o u s t r a d e s which can be made t o rcduce c o s t s . The MCIDG can a l s o be used t o e v a l u a t e c o s t of p o t e n t i a l changes. Fo r example, as new technolo- g i c s become a v a i l a b k , can they be i nco rpora t ed and be c o s t - e f f e c t i v e on an in-product ion program?

Rased on c o n s i d e r a t i o n o f t h e above f a c t o r s , a 5 pe rcen t r cduc t ion i n t h e c o s t of des ign / development i s also expected.

The ElCiDC i n Educ&t&

A t t h e p r e s e n t t ime , it i s d i f f i c u l t f o r t h c aerospace i ndus t ry t o r e c r u i t q u a l i f i e d des ign engi.neers. Thc s h o r t a g e of cng inec r s i s caused by t h e f a c ~ t t h a t s e v e r a l ncw p r o j e c t s are c u r r e n t l y under way i n industry--both commercial and m i l i - t a r y . Because o f t h i s and o t h e r f a c t o r s , univer- s i t y g radua ic s w i l l have t o p l ay an i.mpartant r o l e in t h e aerospace i n d u s t r y i n t h e near f u t u r e .

One o t t h e o t h e r f a c t o r s t h a t w i l l r c q u i r e u n i v e r s i t y g radua te s t o p l ay an i n c r e a s i n g l y impor- t a n t part i s shown i n F igu re 25. This c h a r t , cou r t e sy o € Ilr. R. 11. Hammer, Boeing Commercial A i r p l a n e Company, shows the experience d i s t r i b u t i o n o f ae rospace i n d u s t r y d e s i g n e r s as a f u n c t i o n of age. The t h e o r e t i c a l curve impl i e s t h a t when an eng inee r r c t i r e s , a new person would j o i n t h e com- pany. T h i s a l lows t ime f o r t h e inexpe r i enced des igne r t o develop and g a i n knowledge from t h e seasoned d c s i g n e r s he is a s s o c i a t e d wi th . The optimum curve t a k e s i n t o account e a r l y r e t i r e m e n t and persons t r a n s f e r r i n g from t h e ae rospace indus- t r y t o o t h e r i n d u s t r i e s . The problem is t h a t t h e a c t u a l s i t u a t i o n is not r ep resen ted by t h i s optimum curve. T h i s i s caused by b a s i c a l l y two f a c t o r s . O n e f a c t o r i s tl~e l a r g c i u t l u n U T eng inee r s t h a t occurred dur ing World War I1 and t h e o t h e r i s thii t du r ing l a y o f f s , such as experienced du r ing t h e l a t e I l b O ' s , and t o some c x t c n t , i n r e c e n t y c a r s , t h e l as t persons e n t e r i n g t h e aerospace i n d u s t r y were thc f i r s t ones r e l e a s e d . As t h e curve shows, t h e ave rage age of d e s i g n c r s .is approximately 5 5 y e a r s . Furthermore, many experienced cng ince r s a r e cons ide r ing e a r l y r e t i r emen t w i t h i n t h c nex t few ycor s and unles s some method is developed t o t r a n s f e r t h e v a s t amount o f knowledge, acquired by r e t i r i n g d e s i g n e r s over t h e yea r s , to l e s s e x p e r i - enced d c s i g n e r s , R v a l u a b l e resource w i l l bc l o s t . Thc MCIDG i s one means of documenting and r e t a i n - i ng this experience thus ach iev ing the necdcd t r a n s f e r o f design and manufactur ing knowlcdge.

A f u r t h e r problcm is t h a t thc indus t ry Bas been g e n c m l l y d i sappo in ted by t h e l a c k of design

unde r s t and ing of g radua te s from o u r u n i v c r s i t i . e s and c o l l e g e s . T h i s has r e s u l t e d i n i n d u s t r y having t o conduct cxpcnsive and time-consuming t r a i n i n g programs f o r new h i r e s ; t o f a m i l i a r i z e them w i t h the des ign p rocess employed i n t h e aerospace indus- t r y . Because t h e r e c e n t g radua te w i l l be expected to become involved i n des ign e a r l i e r i n his career, t o o l s are nfeded t o he lp speed up t h e p rocess of t r a n s i t ioning t h e g radua te s t o t h e ae rospace des ign team. Thc MC/DG i.s such a t o o l . It can be i n t e - g r a t e d i n t o t h e u n i v c r s i t y eng inee r ing c u r r i c u l a and i n d u s t r y t r a i n i n g programs.

'J

An important area i n which t h e M C I D G can bc used f o r t r a i n i n g i s i n design-to-cost (DTC) pro- grams. The MCIDG i n t r o d u c c s the des igne r t o design-to-lowest c o s t o b j e c t i v e s , c o s t - d r i v e r s , and mcthodologies seldom covered i n h i s educa t ion . It no t only in t roduces t h e des igne r t o DTC, bu t i L i n d i c a t e s how t o ach icve t h a t g o a l by t h e a i r f r a m c a p p l i c a t i o n examples con ta ined i n t h c MCIDG, tuLo- r i a l s on the computerized system, and by t h e a c t u a l t r a d e s t u d i e s conducted and included i n t h e appen- d i c e s t o thc MCIDC hard copy.

The M C i D G i n t r o d u c e s t h e less expericnced des igne r t o shop f l o o r a c t i v i t i e s . The M C / D G pro- v i d e s an i n s i g h t on how p a r t s arc manufactured and w i l l h e l p g radua te s des ign a p a r t f o r lower c o s t manufacture . T h i s i n fo rma t ion w i l l improve communi- c a t i o n between t h e less expericnced des igne r and h i s co-workers, both i n t h c des ign and manufactur- i.ng o f f i c e s .

I n t h e r e c e n t 67th Wilbur and O r v i l l c Wright Memorial Lcc tu re , Elr. David S . Lewis* s t a t c d t h a t :

"l+cmbers of design teams must have an undcr- s t a n d i n g of s e v e r a l d i s c i p l i n e s ; t h e need w i l l be f o r g e n e r a l i s t s much l i k e t h e ones who s t a r t e d a v i a t i o n on t h e road t o success 75

L'

y e a r s 3go.p-

Th i s s t a t emen t r e i n f o r c e s t h e nccd f o r m u l t i d i s c i p l i n a r y and i n t e r d i s c i p l i n a r y a b i l i t i e s containcd i n t h e fo l lowing d e f i n i t i o n of a goad "designer" given by M r . C. Rodwell, I n s t i t u t e of Mechanical Engineers , London, England:

o f a Good Desizner The Q u a l i t i e s

Inven t iveness - -Ab i l i t y t o th ink or d i scove r v a l u a b l e , u s c f u l i d e a s or concepts f o r t h i n g s or' p r o c e s s f s t o accomplish givcn o b j f c t i v e s . Engineering analysis--The a b i l i t y t o ana- l y z e a given component, system, o r p rocess us ing eng inee r ing o r s c i e n t i f i c p r i n c i p l e i n o r d e r t o a r r i v e qu ick ly a t meaningful answers

e Engineering science--Thorough knowledge and in-depth t r a i n i n g i n an eng inee r ing sc i c i i c r s p e c i a l t y

I n t e r d i s c i p l i n a r y a b i l i t y - - A b i l i t y t o dcal competently and confj .dent ly w i t h h a s i c problems or i deas from d i s c i p l i n e s o u t s i d c of t h c s p e c i a l t y of t h e d e s i g n e r

~d IC "Changing C r i t e r i a i n M i l i t a r y A i r c r a f t Dcsign",

Aerospace J o u d , Royal Aeronautical S o c i e t y , March 1 9 7 9 , pp 16-24.

~~

1 2

Page 14: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

Decision making--The a b i l i . t y t o make dec i - a.ions in tire f a c e of u n c e r t a i n t y h u t w i t h a f u l l and bn1.anced grasp of a l l t h e fac- t o r s involved

Manufacturing process--Knowl.edge o f , and an a p p r c c i a t i o n f o r , t h e po ten t i a l . and l i m i t n t i o n s o f bo th o l d and new manufac- tur i .ng , lr"CPSSeS

Communication s k i l l - A h i l i t y t o exprcss o n e s c l f c l c a r l y and p e r s u a s i ~ v r l y , gruphi- c a l l y , and 'in w r i t i n g .

BcneSits O S t h e MCIDG t o u n i v e r s i t y profcssors and s t u d e n t s are summarizcd bclow:

.- 'ro tile rrofcssm;

e Provides a r e a l i s t i c , easy-to-use sou rce o f manufactur ing c o s t i n fo rma t ion for acrospace d i s c r e t e p a r t s and subassemblies

Provides g e n e r a l l y appl~i icahlc , up-to-date S U U ~ C C of i n fo rma t ion , a s opposed t o s p e c i f i c i n fo rma t ion from t h e brochures of vendors . F a c i l i t a t e s t h e alignment o f t h e o r c t i c a l ccwrses t o i n d u s t r y s t a f f i n g requirements by enah1i.ng s t r u c t o r u l performancc/manufac- t u r i n g c o s t t r a d e s l u d i e s t o bi, conducted i n t h e classroom

Tlic computerized MC/DC w i l l p rov ide an add? t iona l dimension t o computer a c t i . v i t i . e s i n e n g i n r c r i n g schoo l s .

To t h e Student -- e In t roduces s t u d e n t s t o s y s t e m a t i c method-

o l o g i e s f o r performing t r n d c s t u d i e s

Tcuchcs s t u d e n t t h c impact o f manufactur ing technology s e l e c t i o n , comparative c o s t s , and manuf ac t u r i n g f a c i l i t y requiremcnt s

FdmiliariZCS s t u d e n t s w i t h t h e use of manu- f a c t u r i n g c o s t da ta a t a l l s t a g e s o f t h c design process

Aids s t u d e n t s i.n t h e t r a n s i t i o n from t h e classroom or l a b o x a t m y cnvironmcnt t o i*ndos t r y .

The Sollowing i s a course o u t l i n e an tile use o f the MCIDG:

I n t r o d u c t i o n t o t h e background and need of MCIUC

How MC/DG complements t h c ever-present t i i r u s t o f "design-to-cost"

Explanat ion o f CDE, CED, and Other i n f o r - mat ion presented i.n M C i n c

I l l u s t r a t i o n of how the X / D G i s uscd and a p p l i e d by:

-. Addrcssing cadi manufactur ing tcchnology

- S t r e s s i n g t h e c o s t - d r i v e r s and i l l u s - t r a t i n g t h c s e witli cxamplcs

t i o n s i n a i r f r a m e s t r u c t u r e devflopment

drawings, and des ign c r i t e r i a .

- Crcn t ing t h e o r c t i c a l t rade-o?? s i t u n -

- I l l u s t r a t e w i t h d iagrams, cng ince r ing

Examples o f cornon t r ade -o f f s i t u a t i o n s that con- f r o n t d e s i g n e r s would be uscd . D i r e c t i o n would be providcd on how t o proceed and s i g n i f i c a n c e of r e s u l t s exp la incd . The t r a d e s wou1.d he extended t o i n c l u d e bo th c o s t and weight ( r cqo i . r ing mechanics o f m a t e r i a l s and s t r u c t u r a l ana1ysi .s) .

Current N C / D G Program

T e s t , I n s p e c t i o n and Eva lua t ion (TISE) i s f r e q u e n t l y a c o s t - d r i v e r and guidance needs t o bc provided t o , i n p a r t i c u l a r , d e t a i l d e s i g n e r s on t h e c o s t impact of d e s i g n d e c i s i o n s on T I h E c o s t . A s e c t i o n of t h e MC/DG i s undcr development f o r T I & E f o r c a s t i n g s , composi tes , machining, shee t - metal assembly and f o r some a s p e c t s of a v i o n i c s . F igu res 26 and 27 show t h e complex f a c t o r s involved and which a f f e c t d e s i g n and manufactur ing.

Recent M C I D G U t i l i z a t i o n i n I n d u s t r y

By Design--MX Stage-Four S h e l l S t r u c t u r a l Do%

The MCIDG was u t i l i z e d i n a t r ade - s tudy i n v o l v i n g t h e replacement of an aluminum a l l o y i s o g r i d s h e l l s t r u c t u r e door , t h a t had been dc- signed as a b a s e l i n e f o r t h e MX s t age - fou r s h ~ l l s t r u c t u r e , w i t h 8 composite m i s s i l e door . A d e s i g n eng inee r from Rockricll/N,"AD, u t i l i z i n g t h e CDE and t h c CIID fo rma t s , performed a c o s t t r a d e of t h e t e n d i f f e r e n t composite designs. It is es t ima ted t h a t t h e t r a d e s t u d y was conducted i n 8 hours us ing t h e NC/DG. The normal method of worki.ng w i t h manofoc- t u r i n g and cos t - e s t ima t ing pe r sonne l would have r e q u i r e d approximately 40 h o u r s l a b o r and a ca len - d a r span of one week f o r turnaround. Furthermore, i t would not have been p o s s i b l e wi thou t t h e M C / D G t o review, wi th in t h e schedule l i m i t a t i o n , t h i s "umber of concep t s .

~y Design--Compression Panels and F laps

Lockheed-California Company has used t h e "Advanced Compositcs Fabrication" S e c t i o n o f t h e M C I D G t o make manufactur ing c o s t compnirosns h e t - ween "Hat" VS. "3" s t r u c t u r a l members i n a Com- p r e s s i o n panel stiffness s t u d y proposed to t h e ~ a v a l Air Dcvelopment Cen te r (NADC).

The Advanced Desigp Department of Lockheed- C a l i f o r n i a Company i s a1.m c u r r e n t l y u s i n g t h e NC/DG "Advanced Composites F a b r i c a t i o n " S c c t i o n f o r de t e rmin ing manufvcl.uring c o s t s o f f l a p s t r u c - t u r a l c o n f i g u r a t i o n s .

The use of t h c MCIDC,, a s a v i a b i e t o o l f o r pu rchas ing , was demonstrated r e c e n t l y when a buying s u p e r v i s o r from t h e Rockwell D i v i s i o n r eques t ed " b a l l park" p r i c i n g f i g u r e s fo r a l a r g e aluminum sand c a s t i n g used an a l i q u i d rocko t engine p ropu l s ion system. The c o s t ob ta ined from t h e c o s t - e s t i m a t i n g d a t a (CED) fo rma t s o f t h e X I D G coincided f avorab ly w i t h t h e a c t u a l prim pa id f o r t h e c a s t i n g .

13

Page 15: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

References

(1) Summary of A i r F o r c e l I n d u s t r y Manufactur ing C o s t Kcduction Study, A i r Force Mater ia ls Lahoratoxy, AFML-TM-LT-73-1, J anua ry , 1973.

( 2 ) S u m m r y Report on t h e Low Cost Manufacturing1 Design Seminar , A i r Force Y i t c r i a l s Laboratory, AFMI-TM-TL-74-3, December 15, 1973.

( 3 ) Aerospace Cost Sn"ings--Implications f o r NASA and t h c I n d u s t r y , N a t i o n a l Materials Advisory Ronrd, Na t iona l Ac.ademy of Sc iences , Report No. NMAB-328, 1975.

( 4 ) C o m p u t e r Aided Manufactur ing (CAM) Arcliitcc- ture--Task 111, Sheet Mctal. F a b r i c a t i o n Technology, A i r Force Matfria1.s Laboratory, A i r l'orce Systems Command, I R 765-6, J u l y , 1977.

14

Page 16: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

INTERNAL INTERACTION

v EXTERNAL FORCE5

rig. 1 Complex fac tors affcctmg "desiym-to-loves: c o s t " dec i s ions

Fig. 2 Aerospace design team priorities

Page 17: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

M C / D G VOLUME CONTENTS: "MANUFACTURING TECHNOLOGIES FOR AIRFRAMES"

Table 1

Fig. 3 Decreasing l eve rage t o minimize c o s t as program progresses

16

Page 18: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

Y

COST IMPACT

"F -. DECISION

NUMBER OF

DECISIONS

0 T I C

PERFORMANCE REOUIREMENTS PRODUCT DECISIONS

CONFIGURATION

MATERIAL SELECTION

MAJOR COMPONENTS

SYSTEMS INTEGRATION

AVIONICS SUPPORT REOUIREMENTS PRODUCTION DECISIONS

MAKE OR BUY \ PRODUCTION PLAN

PRODUClBlLlTY PLAN

TOOLING POLICY

PROGRAMCONTROLS MANAGEMENT CONTROLS

PRODUCTION PLANNING COSTISCHEOULE CONTROL:

TOOL OESIGNIFABRICATION

METHODS IMPROVEMENTS

M . T

C

PRE-PROPOSAL A N 0 PROPOSAL DESIGN PHASE PLANNINGITOOLING PHASE MANUFACTURING - TIME

Fig. 4 Acrospace vehic l~e desim d e c i s i o n s and t h e i r c o s t impact

-NEGOTIATE TOOL CARRYOVER . RATES/OUANTITIES SCHEDULE TOOLING POLICY

-MONITOR DESIGN ESTABLISH MANUFACTURING BREAKS APPLY MC/OG PRINCIPLES [DESIGN-TO-COST) APPLY NEW MANUFACTURING TECHNOLOGIES APPROVE DESIGN FOR PROOUClBlLlTY SET TARGE'r COSTS FOR TOOLlNGlPROOUCTlON

ORDER PROOUCTION T W REFINE MANUFACTURING PLAN FSR PRODUCTION PROOF PRODUCTION TOOLING

IMPROVE METHODS

PRODUCTION PHASE

Y a :: :a O E 2

LOW NUMBER OF DECISIONS HIGH

Fig. 5 X n n u f a c t u r i n g decisions and t h e i r cost impact

11

Page 19: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

DESIGN/MANUFACTURING INTERACTION DESIGNER

I ADVANCED COMPOSITE FABRICATION

v'

FORMAT SELECTION AID

CDE SECTION

CEO SECTION

DICE SECTION

MANUFACTURING

CDE SECTION

CED SECTION

MECHANICALLY-FASTENED ASSEMBLIES

FORMAT SELECTION A10

CDE SECTION

CED SECTION Fig. 6 Overview of MC/DG demonstrat ion section con ten t s J

Fig. 7 Factors i n c l u d e d in W / D G for manufacturing c o s t trade-studies

Page 20: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

W

ALUMINUM RIB

Fig. 8 Examples o f "base" par t s

~ i g . 9 ~ x a m p l e o f "discrete" p a r t

19

Page 21: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

A L U M I N U M LIPPED ZEE. S T R A I G H T M E M B E R . LOWEST C O S T PROCESS

BRAKE FORM

m L 4VTITANIUM (LENGTH 8 FEETI

Fig. 12 Sheet metal CED format

2 0

Page 22: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

I u y1

u

c L: " i 0 Y

8

0 u

Y 0 3 N Li .+ y1 m rci

Y i

Page 23: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

COMPOSITE I SECTION TOTAL NON-RECURRING TOOLING COST/PARl

} *Port Length Developed Width

Influenced By {

See Ground Rules for Limitotions and Considerations

[CED-G/E-BI

Fig. 15 CED t o o l i n g f o r m t f o r composite s t r u c t u r a l s e c t i o n

COMPOSITE I SECTION RECURRING COST/PART

Number o f Plies

26 24 22 20 18 16 14 12 IO 8 6 4 2 0 2 4 6 8 IO 12 14 Fully Cured Recurring Cost Man Hours

(For "B" Stage Recurring Cost, Multiply by 0.84)

See Ground Rules for Limitations and Considerations

PartLength - f i

J

IC ED- G / E- 5 ]

F i g . 16 CED r e c u r r i n g Cost format f o r Composite s t r u c t u r a l s e c t i o n

2 2

Page 24: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

~

Y

CUTOUT REINFORCING DOUBLER FOR COCURING : RECURRING COST/ DETAIL

3 Area Number of Plies

Influenced By [

0.28

0.24

I

1

g 0.16 0

3 0.20

c

.- c" 0.12

g 0.08

L L

3

LI:

0.04

I

4 8 12 16 20 24 28 32 Doubler Area -In.'

[CWXU - ( a x b)]

SEE GROUND RULES FOR LIMITATIONS AND CONSIDERATIONS pzzzz] Fig. 11 CED formvt f o r composite "DICE"

ON TOOLING COST OF LINEAL SHAPES I -NUMBER OF BENDS

*TOOL TYPE

2

I Male IFemale I Female & 2 2 2Male& 2Male& Bend Bend I Male Bend Mole Female 2 Female 2 Female

Bends Bends Bends Bends

Fig . 18 CDE format showing t o o l i n g C o s t increases [ CDE-G/E-Ill I as a function of niimber o f bends

2 3

Page 25: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

I APPROACH I

SPACING

INTERSECTION DETAILS

COMPONENTS

- FRAMEISTRINGER

- SIZING OF A L L

~ NUMBER OF

COSTWEIGHT -- PHASE (4--------------- DESIGN PHASE

..- . .. TOOLING MATERIAL SIPANEL

WEIGHT iLBSl FOR EACH CONFIGURITIOL

I REVIEW

MCIDG GROUND RULES

FOR TRADE STUDY

AVAILABLE STRUCTURAL

SECTIONS

-

AND MATERIAL 1

FORMULATE

~ APPROACH TO LOWEST WEIGHT CONCEPTS

STRUCTURAL DESIGN

~ DESIGN LOADS I PREMISES

I ~ STRUCTURAL DESIGN C R I T E R t A

- ANALYSIS METHODOLOGY

I CONCEPTS

DEVELOP I ESTIMATE

CF" - I naoa DESlGN CONFIGURATlDNS

- FRAME AND STRINGER

MECHANICAL FASTENERS I

1 CONFIGURATIONS

COST/WEIGHT RELATIONSHIP

OF EACH PANEL CONFIGURATION

TO BASELINE

$/LB

vl

Fig. 1 9 Design approach for demonstration o f MCIDC u t . i l i . z a t i o n

STRUCTURAL DESIGN CRITERIA DESIGN IILLOWABLES

MATERIAL PROPERTlES TI bAl.4" M O I N

MIL HDBK 5C ROOM TEMPERATURE OESlGN PROPERrlES

S T R U C T U R U GEOMETRY REDUCED TTNSION *LLOWABLEI

6ATIG"E AND FAlL SAFE

SHEAR - S K I N LOCAL & GENERAL INSTABILITY FAILURE MODES -SHEAR BUCKLING

COMPRESSION MEMBERS LOCAL BUCI(LING 8 CRlPPLlNG

SXCLUDLD FA0MSTRUCTURALI)N~LYSIS E iFE RIZATION I I C LOADING ING STRIKE PROTECTION

'CLE COST V ASSURANCE

F i g . 2 0 Design premises and dimensions of f u s e l a g e shear pane l in titanium

2 4

Page 26: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

-.

c co%Y

Y I

- - -f _ i

----t-------c----c - _

i =Ei=E: j -*r*.__l*: - _ ' ---,-I_- - I I . . - - ~ .

t

B

SKIN THICKNESS.

IN.

0.08

0.08

0.06

0.06

0.075

0.075

0.190

S U M M A R Y OF CONCEPTS

N O . OF FRAMES

4

-

3

4

3

4

3

9

TVPF I

ZEE I 9

ZEE I 9

ZEE I 8

ZEE I 8 + ZEE I 0

TYPE OF STRINGERS

ICLOSEDI

ICLOSEDI

(OPEN)

(OPEN)

:IONS

B

18.0

24.0

18.0

__ __

-

-

- 24.0

-

18.0

- 24.0

__ 8.0

-

DIME

A

2.0

2.0

2.25

- -

-

-

__ 2.25

- 2.25

- 2.25

- - -

Table 2

2s

Page 27: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

ETRlNOERS

,040 HAT..

Table 3

Formats U t i l i z e d

Concept Number c o s t Ifem MCIDG Format Irumber

~

I S k i n CED-T-7 S t r i n g e r s CED-T-5 Frames CED-T-6 Frame A n g l e s CED-T-2 C l i p s CED-T-1 Trim Af te r Forming DICE-13 Assembly CED-KFA-2 and CED-MFA-3

I1 S k i n CED-T-7 s t r i n g e r s CED-T-I Frames CED-T-6 Frame Angles CED-T-2 C l i p s CED-T-1 Trim A f t e r Forming DICE-13 Assemblv CEO-MFA-2 and CED-NFA-3

Ill S k i n CED-T-7 stringers* Future MCIDG Reqvi rement Fr8,l'eS CED-T-6 Frame Angles CED-T-2 C l i p s CED-T-1 Trim After Farming DICE-13 Assembly CED-MFA-2 and CED-NFA-3

I V S k i n CED-T-7

V S k i n CED-T-7 s t r i n g e r s * F u t u r e NCIDG Requi rement Frames CED-T-6 Frame Angles CED-T-2 C l i p s CED-T-1 Trini After Forming DICE-13 Assrmbly CED-NFA-2 and CED-MFA-1

* Manufacturing man-hours d e t e r m i n e d by conventional C o s t - e s f i m a ~ i n g procedures .

Table 4 Formats u t i l i z e d i n t i t a n i u m panel t rade-s tudy

26

J

Page 28: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

COST WORKSHEET ~ SUPPORTING DATA

v CONCEPT I : 9 ZEE S T R I N G E R / 4 FUAME ASSEMBLY

v

P A R T : FRAME, ANGLE - B A S E PART- C € 3 74 4 8 O M U / P T TOOL a

H O i S l t E

MAT'L- CED M I 0 0 4 0 "

5'712 *3' i 1.25 S Q F T @ $ 1 7 / 5 9 F T = $2l.P5/PART

paRT :

ASSEMBLY: PAWEL

C E ~ MFA L AVTO/PA*N ,DRY TOOL 500 M H

761 R I V E T 5 @ 0.020 M H f E b V E I ' 15.22 M U

Y A S ' L - AYE. R I V E T C O S T $0.35 C A L H

7'1 R I V E T S @ * 0.95- s Zdb.55

Tahlc 5 Deta i l ed comota t ions f rom MC/DG formats

Table 6 MC/DT. c o s t worksheet

Page 29: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

V

Fig. 23 J

Fig. 24

28

J

Page 30: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

TITWIUM FUSELAGE SHEAR-PANEL TRAQE-STUDY

C O S T - W ~ I O H I TRADE-OFF SUMMARY

Table 7

Table 8

ACTUAL . /I-- -. Number - - \

\. , Of - Designers THEORETICAI .,' - / / , / - / / -\

1 - / WWll ,,3950 1960 1970 1980 1990 Year . -

22 30 40 50 60 65

Age of Designers

F i g . 25 Experience distribution o f r l f r o ~ p a c e d e s i g n e r s

2 9

Page 31: ICAM 'Manufacturing Cost/Design Guide' /MC/DG/ · ICAM-Manufacturing Anniversary Celebration Cost Design Guide BRYAN R. NOTON, Battelle’s Columbus Labs., Columbus, OH M AlAA 1981

DESIGN. INSPECTION & EVALUATION INTERACTION

.MATERIAL SPECIFICATION .PROCESS SPECIFICATION *FIT FUNCTION REOUIREMENTS

- CHEMICAL -DIMENSIONAL TOLERANCE -DIMENSIONAL TOLERANCE - MECHANICAL -SURFACE FINISH -CRITICALLY - SHELF LIFE -ANOMALY SIZE a FREOUENCY PRIMARY - DIMENSIONAL -PROCESS CYCLE SECONDARY

z w Y n

s2

~ FRACTURE MECHANICS ~ PROTECTIVE SYSTEMS

ENVIRONMENTAL GALVANIC

\ J Y

TEST, INSPECTION & EVALUATION

. m A L ACCEPTANCE *IN-PROCESS ACCEPTANCE .FUNCTIONAL ACCEPTANCE

Y

- FREQUENCY -SEQUENCE -FREOUENCY a - + ~- METHOD METHOD -METHOD STANDARD REPAIR/ ~ STANOARO REPAlRi

REPROCESS REPROCESS

Pig. 26 T e s t , i n s p e c t i o n h c v a l u a t i o n (TIhE) c o n s i d e r a t i o n s f o r MCIDG demonstrat ion s e c t i o n

MC/DG-TI&E IlESTlNSPECllON a E V A L U A T I O N ~ F O R S H E E T METAL J

Fig. 2 7 Overview of TIhE c o n s i d e r a t i o n s f o r sheet me ta l ( s i m i l a r i l l u s t r a t i o n s p repa red f u r o ther manufactur ing t echno log ie s )

30