icecube low temperature flow chemistry v2

30
Ice-Cube: Low temperature flow chemistry for enhanced safety and selectivity Heather Graehl, MS, MBA Director of Sales North America

Upload: hgraehl

Post on 11-May-2015

170 views

Category:

Business


0 download

TRANSCRIPT

Page 1: IceCube Low Temperature Flow Chemistry v2

Ice-Cube: Low temperature flow chemistry for enhanced safety and selectivity

Heather Graehl, MS, MBA Director of Sales North America

Page 2: IceCube Low Temperature Flow Chemistry v2

Who  are  we?  

ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

Market  leader:  800  customer  install  base  on  6  conCnents.  33  employees  with  own  chemistry  team.  11  years  old-­‐most  established  flow  reactor  company.  

R&D  Top  100  Award  Winner.

Page 3: IceCube Low Temperature Flow Chemistry v2

Customers (>800 worldwide)

Page 4: IceCube Low Temperature Flow Chemistry v2

What  is  flow  chemistry?  

Performing  a  reacCon  conCnuously,  typically  on  small  scale,  

through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecCon  

Page 5: IceCube Low Temperature Flow Chemistry v2

Mixing  (batch  vs.  flow)  

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Page 6: IceCube Low Temperature Flow Chemistry v2

KineCcs  In  Flow  Reactors  

In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraCon  of  the  reactant  decays  exponenCally  with  distance  along  the  reactor.    

Thus  Cme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

Page 7: IceCube Low Temperature Flow Chemistry v2

MiniaturizaCon:  Enhanced  temperature  control    Large  surface/volume  rate  

Microreactors  have  higher  surface-­‐to-­‐volume  raCo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Page 8: IceCube Low Temperature Flow Chemistry v2

HeaCng  Control  

Batch   Flow  

-­‐  Lower  reacCon  volume.    -­‐  Closer  and  uniform  temperature  control  

Outcome:  

-­‐  Safer  chemistry.  -­‐  Lower  possibility  of  exotherm.  

-­‐  Larger  solvent  volume.    -­‐  Lower  temperature  control.  

Outcome:  

-­‐ More  difficult  reacCon  control.    -­‐   Higher  possibility  of  exotherm.  

Page 9: IceCube Low Temperature Flow Chemistry v2

HeaCng  Control  

Lithium  Bromide  Exchange  

Batch  

Flow  

•   Batch  experiment  shows  temperature  increase  of  40°C.  •   Flow  shows  liile  increase  in  temperature.  

 Ref:  Thomas  Schwalbe  and  Gregor  Wille,  CPC  Systems    

Page 10: IceCube Low Temperature Flow Chemistry v2

Industry  percepCon  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaCon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaCon  

§  SelecCvity  

   Why  move  to  flow?  

Page 11: IceCube Low Temperature Flow Chemistry v2

Low  Temperature  

Chemistry  

Page 12: IceCube Low Temperature Flow Chemistry v2

IceCube  

Safe:  Low  reacCon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcCon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraCon,  lithiaCon,  azide  chemistry,  diazoCzaCon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

Chemical  resistance:  Teflon  weied  parts  

Mul6step  reac6ons:  2  reacCon  zones  in  1  system  Modular:  OpCon  for  Ozone  Module,  more  pumps  

Size:  Stackable  to  reduce  footprint  

Page 13: IceCube Low Temperature Flow Chemistry v2

The  IceCube  family  

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConCnuous  ozone  producCon  

•   Controlled  oxygen  introducCon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producCon  

Pump  Module   Ozone  Module  

Page 14: IceCube Low Temperature Flow Chemistry v2

VerstaClity  to  access  mulCple  working  modes  

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Poten6al  Apps:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Poten6al  Apps:  Azide,  nitra6on,  Swern  oxida6on  

Page 15: IceCube Low Temperature Flow Chemistry v2

ReacCon  zone  cooling  

First  ReacCon  Zone  

Secondary  ReacCon  Zone  

Right  hand  side:    Water  inlet  and  outlet  

Reactor  plate  coiled  with  Teflon  tube  (1/16”)  

Ideal for dangerous/exotherm chemistry -Water (high specific heat) used in peltier cooler -Aluminum reactor plate has high thermal conductivity (205 W/mK)

Page 16: IceCube Low Temperature Flow Chemistry v2

Control  –  Graphical  User  Interface  

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Seamless control of all the modules on a touch screen interface

For custom flow configurations, flexible to allow control of each module on their own (pump, ozone generator, cooler)

Page 17: IceCube Low Temperature Flow Chemistry v2

?   Halogena6on  9  653  

Nitra6on  26  701  

Azides  89  718  

Mul6step  reac6ons  

Modular  

Lithia6on  9  432  

Ozonolysis  9  655  

Swern  Oxida6on  3  289  

Exothermic  ReacCons  #  of  hits  in  sciencedirect.com  

Main  applicaCon  areas  

Page 18: IceCube Low Temperature Flow Chemistry v2

Why  ozonolysis  is  neglected?  

Highly  exothermic  reacCon,  high  risk  of  explosion    

Normally  requires  low  temperature:  -­‐78°C.  In  addiCon,  the  batchwise  accumulaCon  of  ozonide  is  associated  again  with  risk  of  explosion  

There  are  alternaCve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaCon  (CrO3,  H2SO4)  

•  Swern  oxidaCon  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Page 19: IceCube Low Temperature Flow Chemistry v2

What  is  ozonolysis?  

Ozonolysis  is  a  technique  that  cleaves  double  and  

triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Page 20: IceCube Low Temperature Flow Chemistry v2

How  does  it  work?  

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

Page 21: IceCube Low Temperature Flow Chemistry v2

Olefins  using  as  masked  terminal  aldehydes/  alcohols  

Biologically  acCve  natural  product  

Synthesis  of  a  Key  intermediate  for  Indolizidine  215F  

S.  Van  Ornum    et  al,  Chem.  Rev.106,    2990-­‐3001  (2006)    

Oxandrolone,  anabolic  steroid  used  to  promote  weight  gain  following  extensive  surgery,  chronic  infecCon  

Page 22: IceCube Low Temperature Flow Chemistry v2

Flow  Ozonolysis  of  Styrenes  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 23: IceCube Low Temperature Flow Chemistry v2

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

Flow  Ozonolysis  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 24: IceCube Low Temperature Flow Chemistry v2

Flow  Ozonolysis  Of  Thioanisole  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 25: IceCube Low Temperature Flow Chemistry v2

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacCon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaCon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Axer  purificaCon  

Swern  OxidaCon  on  IceCube  

When  compared  to  batch  condiCons,  IceCube  can  sCll  control  reacCons  at  warmer  temperatures  due  to  beier  mixing  and  more  efficient  heat  transfer.  

Page 26: IceCube Low Temperature Flow Chemistry v2

DiazoCzaCon  and  azo-­‐coupling  in  the  IceCube  

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaCc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiCve  

Page 27: IceCube Low Temperature Flow Chemistry v2

Safe reaction of azides using Ice-Cube

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Page 28: IceCube Low Temperature Flow Chemistry v2

Novel  scaffold  synthesis  from  explosive  intermediates  

NitraCon  of  AromaCc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecCvity  (%)  

SoluCon  Flow  rate  (ml/

min)   SoluCon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesCgaCng  selecCvity  at  lower  temperatures  on  IceCube  

Page 29: IceCube Low Temperature Flow Chemistry v2

Coming  soon…  

•  LithiaCon  experiments  (collaboraCons)  

•  FluorinaCon  experiments  (collaboraCons)  

•  Low  temperature  selecCve  reacCons,  not  certainly  from

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiCons  required  liquid  nitrogen  temperature  or

 below  

Page 30: IceCube Low Temperature Flow Chemistry v2

Thank  you  for  your  aienCon!