iceland spar from iceland: a key to the nature of light ... · in england, the astronomer g.b. airy...

29
Iceland spar from Iceland: a key to the nature of light and its interactions with matter Leó Kristjánsson, Emeritus research professor University of Iceland A talk given at the annual conference of the Faculty of Arts, March 2015 Picture: Iceland spar decoration in the ceiling at the entrance of the main building of the University

Upload: others

Post on 22-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Iceland spar from Iceland: a

    key to the nature of light and

    its interactions with matter

    Leó Kristjánsson,

    Emeritus research professor

    University of Iceland

    A talk given at the annual

    conference of the Faculty

    of Arts, March 2015

    Picture: Iceland spar

    decoration in the

    ceiling at the entrance

    of the main building

    of the University

  • A precise relation between the incident and refracted angles of a light ray

    entering a material (Snell’s or Descartes’ Law) was known since ~1630.

    R. Bartholin published in 1669 an

    essay on the behavior of light

    rays in crystals of Iceland spar.

    An incident ray was split in two,

    one obeying the law and the

    other not. The dot A underneath a

    spar crystal thus appeared as two

    fainter dots.

    If the crystal was rotated while

    on the table, the dot representing

    the “extraordinary” ray rotated

    with it.

    This behavior was called double

    refraction. It seemed to depend

    on properties of the material.

  • Christiaan Huygens of Leiden received some Iceland spar crystals from Bartholin,

    and included a chapter about them in his book Traité de la Lumière, 1690.

    In the book, Huygens argued that light is a wave

    motion in a tenuous substance called aether.

    If a particle within a homogeneous material emits

    light, it propagated outwards as a spherical wave.

    In Iceland spar however, the light forms two wave fronts. One is spherical and the

    other is ellipsoidal, with a symmetry axis parallel to a certain direction in the crystal.

    Huygens also noted the presence of double refraction in quartz (rock crystal) where

    it was much less prominent. The same also applied to most natural minerals.

    Iceland spar has therefore always been presented in textbooks and papers as the

    type example of double refraction.

    Iceland spar is a variant species of the mineral calcite (calc spar, CaCO3), having

    exceptional clarity, purity and absence of defects. It occurred in some abundance

    only at a single locality in Iceland, where it was quarried at intervals in 1850-1924.

  • In the book by Isaac Newton, Opticks (1704) he

    viewed light as being a stream of particles, emitted

    by luminous objects and travelling in straight lines

    in homogeneous materials. He proposed a

    tentative explanation of double refraction in 1706.

    Most scientists accepted Newton’s theory, and not

    much happened in optics during the 18th century.

    W.H.Wollaston measured in 1802 how the refract-

    ion of the extraordinary ray in Iceland spar depends

    on its angle of incidence. The results agreed fairly

    well with Huygens’ 1690 undulation theory.

    Thomas Young published in 1802-07 experimental results where he e.g.

    illuminated two narrow closely spaced slits in a screen. Patterns seen on

    the other side of the screen indicated that light behaved like waves on

    a calm liquid surface, or sound. The colors of thin films supported this.

    Young’s papers increased interest in Huygens’ theory, but many remained

    sceptical. The French Academy of Science announced a prize competition

    on the topic of double refraction.

  • The year 1809 marks the beginning of a revolution in optics, with Iceland spar

    playing a central role. Huygens had recorded but not explained a curious fact:

    When a light ray had split in two in an Iceland spar crystal, the emerging rays

    were not just half as faint as the original one, but also somehow different.

    This was not followed up by others, and it may have been regarded as due to

    some peculiarity of the crystals, rather than having a wider significance.

    In 1808 E.L. Malus made a most important discovery while working on an

    essay to be submitted to the Academy’s prize competition on double refraction.

    Biographers record that he happened to look from his rooms at the evening

    sunlight reflected from windows of the Luxembourg palace, through an Iceland

    spar crystal. He then saw that its intensity varied as he rotated the crystal. He

    concluded, following additional experiments, that:

  • A simple translation:

    “Light that is reflected obliquely by a smooth surface of an insulator

    or a metal, undergoes by this to some extent the same change as by

    passing through a doubly refracting crystal”.

    This transformation of the light was called polarization by Malus, who

    announced his discovery in 1808-09. He was awarded the Academy

    prize for his theoretical and experimental research on Iceland spar.

    Both Malus and the famous scientists P.S. de Laplace and J.B. Biot

    argued that double refraction could be explained by Newton’s theory.

    According to a modern text on the history of science, “Une nouvelle

    branche de l’optique était née... Les phénomènes de polarisation

    formaient le centre des préoccupations des physiciens” , as Malus’

    work had revealed a hitherto unknown fundamental property of light.

    New major findings in optics were soon announced, aided in many

    significant ways by the Icelandic crystals. See the next slide.

  • -F. Arago showed in 1811 that thin laminas of

    colorless crystals like mica appeared brightly

    colored when viewed through Iceland spar.

    -Polarized light apparently had some directional

    preference. Arago found in 1811 that this direction

    changed gradually when a ray of such light passed

    through a plate of quartz. Biot discovered in 1815

    that this property of “optical activity” also occurred

    in various organic liquids and solutions.

    -In contrast to light from the Sun or from a lamp, he blue light from a clear sky

    showed a degree of polarization properties, depending on the direction of view.

    A 6-cm wide colorless

    lamina of mica, having

    variable thickness. Young explained this color phenomenon in terms

    of the wave theory, in 1814. His arguments were

    confirmed by A. Fresnel’s experiments in 1821.

  • A. Fresnel published in 1816-19 papers describing observations on diffraction,

    i.e. bending of light around obstacles. The results were much in favor of the

    wave theory, but some scientists remained unconvinced.

    Fresnel did realize around 1817 that the wave motion in light had to be

    transverse to the direction of propagation (rather than longitudinal as in

    sound), in order to explain double refraction.

    He did not publish this conclusion until 1821, after he and Arago had carried

    out in 1819 a crucial experiment with the aid of Iceland spar crystals.

    In sunlight and lamplight the aether may be envisaged as oscillating in

    irregularly varying directions, whereas the oscillations in the rays emerging

    from Iceland spar only take place in two mutually perpendicular planes.

    The transverse

    motion is very

    sensitive to

    interactions with

    matter.

  • Fresnel continued proposing new theoretical and experimental approaches to

    the transmission of light in ordinary transparent materials like glass or water.

    Among other things he derived equations for the proportions of polarized light

    reflected and transmitted at a boundary between two such materials. These

    equations are still being taught in University courses on optics.

    He also considered light waves in crystals, deriving on the basis of certain

    assumptions that the propagation of the extraordinary ray agreed with Huygens’

    ellipsoid. This was confirmed later by precise measurements on Iceland spar.

    It was frequently inconvenient to

    have two polarized beams emerging

    from a spar crystal, with overlap.

    W. Nicol found in 1829 a method

    to deflect one beam off to the side.

    It is likely that tens of thousands of

    such “Nicol prisms” were produced.

    In certain classes of crystals, Fresnel’s theory predicted the

    occurrence of a peculiar phenomenon known as “conical

    refraction”. It was indeed observed by H. Lloyd in 1833.

  • G.T. Fechner’s book Repertorium der Experimentalphysik II, Leipzig 1832

    considers the wave theory indispensable for understanding polarization:

    A. Baumgartner states in Die Naturlehre, Supplementband II, Wien 1830 on

    the explanations offered for diffraction, interference, and polarization of light:

  • Understandably, Fresnel’s contributions to wave theory received much support in

    France, and they prompted new research into optics and wave motion in general.

    In particular, the mathematician A.L. Cauchy published tens of papers on these

    subjects in 1830-40. His theoretical approach regarding the transverse motion of

    the aether which differed somewhat from that of Fresnel, was also favored by

    some others including F.E. Neumann in Germany and J. MacCullagh in Ireland.

    In England, the astronomer G.B. Airy deals with the wave theory of light on 162

    pages in his Mathematical Tracts, Cambridge 1831. He carried out experiments

    with Iceland spar, interpreted them, and invented optical devices. He says:

    “The Undulatory Theory of Optics is presented to the

    reader as having the same claims to his attention as the

    Theory of Gravitation: namely that it is certainly true, and

    that by mathematical operations of general elegance

    it leads to results of great interest.”

    Airy means by this ...”the hypothesis, namely, that light consists of undulations

    depending on transversal vibrations”... and we must keep in mind that they

    were introduced because longitudinal motions could not account for polarization.

    The colored figure seen in quartz plates in polarized light was explained by Airy.

  • It was considered well into the 19th century that the Sun emitted two types of

    radiation in addition to visible light. They were called rayons calorifiques (heat

    rays) and rayons chimiques, whose effects included darkening of silver salts.

    Some experiments had been made before and around 1830 to test if the above

    types had wave properties. The reults do not seem to have been conclusive,

    But A.M. Ampère was among the first to suggest in 1832 that both the visual

    and the thermal radiations were emitted by vibrating atoms in materials.

    M. Melloni investigated the nature of heat radiation in 1831-54 using a sensitive

    electrical thermometer. He found that it became polarized by reflection, and in

    1836 that the plane of its polarization rotated during passage through quartz.

    J.D. Forbes who began a similar series of experiments in 1835 and obtained the

    same results as Melloni regarding the polarization of heat, said already in 1836:

  • The pioneer Melloni who had originally intended to discover a difference in

    character between light and heat rays, finally agreed with Forbes in 1842:

    Melloni adds here the chemical rays to the two other types. J. Sutherland had

    observed polarization of these with the aid of Iceland spar in 1841, concluding:

  • By the mid-1840s, Nicol prisms were a common tool in optical research. In

    addition to producing polarized light, they also could be used in analyzing

    precisely the state of polarization in a light beam. This applied both to the

    direction of vibration of the light, its intensity, and delays (phase changes).

    One of the most important discov-

    eries in optics during the 1840s

    was made by M. Faraday in 1845.

    A polarized ray of light from the

    mirror 2 passed through a block

    8 of heavy glass in the strong

    magnetic field created by the

    electro-magnet F. With the Nicol

    prism 5, Faraday found that the

    direction of polarization in the

    light had rotated by a small angle.

    This was the first-ever indication that electric or magnetic fields had anything

    to do with light. It generated much interest and new research activity in optics.

  • H. Fizeau and L. Foucault demonstrated the wave-nature of thermal radiation

    in 1847, using Iceland spar in their experiments. H. Knoblauch confirmed its

    double refraction in Iceland spar in 1848. The figure shows the 1849 setup of

    F. de la Provostaye and P. Desains who found the Faraday effect in heat rays.

    These scientists and others studied further properties of heat radiation around 1850

    with the aid of Iceland spar, including the rotation of its plane of polarization in organic

    liquids. This established its identity with visible light, apart from a greater wavelength.

    C and C are

    Nicol prisms,

    D is a glass bar,

    E is a sensitive

    thermal detector

  • Iceland spar continued serving in important research into the nature of light.

    One question was: for how long does a monochromatic ray of light stay “in

    step” with itself before any breaks in it (at stars in the diagram) occur?

    * * * *

    Three pieces of such a ray are shown, with n = about 11, 5, and 8 whole periods.

    H. Fizeau and L. Foucault showed in 1850 that n was at least 7000 on average in

    two narrow wavelength intervals of sunlight. J. Stefan doubled this number for a

    third wavelength interval in 1864. E. Mascart found in 1872 that n in the yellow

    light from a sodium flame reached at least 105000. All of these used Iceland spar,

    Mascart even stating that it was by far the best material to use in his experiment.

    Different methods were applied in later estimates of these lengths, which remained

    of considerable interest when quantum theories were applied to light after 1905.

  • Iceland spar was involved in L. Pasteur’s

    1848 revelations regarding optical activity.

    He found that those compounds which in the

    liquid state rotate the plane of polarization of

    light, form crystals in mirror-image versions.

    This discovery was a great step forward

    in the understanding of interactions of

    light and matter. It led directly to ideas

    in 1874 about mirror-image versions of

    active molecules, due to the tetrahedral

    arrangement of carbon’s chemical bonds.

    The figure shows the amino acid alanine.

  • This brings us to J.C. Maxwell’s theory from 1865, on

    light as a wave of transverse electric and magnetic fields.

    Maxwell was quite familiar with polarized light, having ex-

    perimented with it since a schoolboy. He had been given

    a couple of Nicol prisms by W. Nicol himself, and he had

    published papers on the electric and magnetic properties

    of Iceland spar and other crystals.

    The Faraday effect which Maxwell had written about in

    1862, was among the chief pieces of evidence supporting

    his theory. He associated it with molecular current loops.

  • Thus, J. Kerr found in 1875 that liquids became doubly refracting in electric fields:

    Many contemporary colleagues ignored the

    electromagnetic theory, as it did not explain

    various phenomena any better than the old

    view of an elastic aether. However, some

    new clues supporting it appeared gradually.

  • Around 1870, Nicol prisms contributed to fundamental discoveries on the so-

    called scattering of light by small particles. J. Tyndall sent unpolarized white-light

    beams through glass vessels containing smoke, dust, and liquids with colloids.

    He saw that the light scattered sideways was polarized, and that it also became

    more and more bluish in hue as the particles were smaller.

    This therefore provided

    a joint explanation of

    the color and the pol-

    arization of skylight.

    Before long, J.W. Strutt

    (Lord Rayleigh) derived

    theoretical equations

    describing scattering,

    including his famous law

    that its relative intensity

    is proportional to the

    inverse fourth power of

    the wavelength of light.

  • H. Hertz carried out from 1888 experiments on “Strahlen elektrischer Kraft”,

    i.e. electromagnetic waves of wavelengths around 1 m. Hertz proved that

    they had many characteristics of the transverse visual and thermal radiation.

    Above, Hertz describes how he found the direction of oscillation

    In his waves, using a metal-ring detector. F. Trouton polarized

    such waves in 1889, by reflecting them from a large piece of wax.

  • The Iceland spar rhomb K played a role in O. Wiener’s experiment

    in 1890. A polarized light ray was reflected from a polished metal

    plate R which had been coated with a layer of light-sensitive gel.

    The light caused the formation of dark striations in the gel. Their

    distances from the metal surface indicated that the electric field

    of Maxwell’s waves had a much greater effect than the magnetic

    field, and pointed in the direction that Fresnel had assumed to be

    the vibration direction of the aether. P. Drude and W. Nernst found

    equivalent results from a different setup in 1891.

    A.Righi found in 1894 that Hertz’ waves underwent double refraction in wood

    (which has different properties in different directions, like crystals).

    The above and various other pieces of evidence increased the credibility of the

    the electromagnetic theory, although some scientists still ignored it in the 1890s.

    The theory did not agree with Newton’s mechanics, for moving observers. So....

  • The disagreement led to an increased efforts to measure the speed of the Earth

    with respect to the aether which was supposed to be stationary in the Universe.

    Of the many attempts carried out (with rather negative results), at least seven in the

    period 1860-1905 and three in 1906-28 made some use of Iceland spar prisms.

    All these experiments were much discussed at the time, and they were known to

    A.Einstein. However, all are forgotten now except the one by A.A. Michelson and

    E.W. Morley described in 1887. It did not use polarized light.

    D.B. Brace tried in 1904 to detect double refraction in water in a 4-m long trough;

    such an effect might in some interpretations be caused by the Earth’s movement

    through the aether. Items 4 and 11 are Nicol prisms.

  • Iceland spar prisms were involved in the application of Einstein’s quantum

    theory of 1905 to the structure of atoms and their interactions with light.

    One example concerned wavelengths in the line-spectrum of light emitted by

    atomic hydrogen. Only four of these were known in the visible range by 1885,

    and technical problems prevented observations in the ultra-violet.

    W. Huggins used a triangular spar

    prism (e) to analyse stellar spectra,

    as it was better suited than glass

    or quartz. His photographic plates

    (f) from bright whitish stars included

    (from 1877) several ultraviolet lines.

    Their wavelengths appeared to

    follow a regular progression.

  • J.J. Balmer found in 1885 that the formula B.n2/(n2-4) with n = 3, 4, 5,...agreed

    very well with all of the visual and ultraviolet lines. Wavelengths with higher n’s

    fitting the formula were soon found in stellar, solar and laboratory spectra.

    The above formula

    and others for spectral

    series of hydrogen

    were basic to N. Bohr’s

    1913 quantum model

    of the permitted orbits

    for an electron around

    the hydrogen nucleus.

    The atom emits light

    when the electron

    jumps from an outer

    orbit to an inner one.

    Hydrogen atom

  • Further: atoms of the elements emit line spectra reaching from the visual range to

    the ultraviolet, infrared and beyond. In all except hydrogen the wavelengths of the

    lines are distributed very irregularly, as shown below for helium.

    P. Zeeman discovered in 1896 that when atoms emitted light while

    in a strong magnetic field, each of their spectral lines split into 3 to

    9 fainter lines. A full explanation took over 30 years to find.

    Research on the Zeeman effect greatly accelerated progress in the understanding of

    line spectra. This research included observations on the polarization of the emitted

    light and on the absorption of polarized light in metal vapors with Nicol prisms (N).

    E is a magnet

    with a hole

  • The laws of the quantum theory restrict the energies and angular momenta of

    electrons in atoms to certain discrete values (as shown here for sodium).

    The wavelength of a light quantum emitted when an electron moves to a lower

    energy level, depends on the difference in energy between these levels. The

    polarization of this light quantum depends on changes in its angular momentum.

    Iceland spar also was

    essential in research

    related to the Zeeman

    effect, for instance on

    so-called resonance

    radiation which led to

    the development of

    atomic clocks.

  • The last topic to be treated here concerns the spectral analysis of X-rays. They

    are emitted when energetic electrons impact on atoms of the heavier elements.

    This analysis required (from 1915) the use of very perfect crystals, acting like a

    prism to disperse the rays into different directions according to their wavelengths.

    It resulted in precise tables of all the highly complex energy levels of the atoms.

    K is the analysing crystal in the

    X-ray spectrometer shown. For

    this role, Iceland spar (from

    Iceland or from elsewhere) was

    quite commonly chosen until

    1950 at least, along with quartz,

    common salt and gypsum.

    Results also included confirma-

    tion of Einstein’s predictions

    regarding the energy of light

    particles, and their momentum

    (A.H. Compton,1923).

    M. Siegbahn’s spectrometer, 1920s

  • Several other examples of the use of Iceland spar crystals fundamental research

    on the nature of light and light-matter interactions might be mentioned, such as:

    -Various aspects of solar and stellar radiation

    -Direction-dependent properties (anisotropy) as the cause of double refraction

    -Selective absorption of polarized light in some solids (dichroism) and liquids

    -The effect of pressure on light refraction in solids (photoelasticity)

    -Optical activity in ferromagnetic materials (Kerr magneto-optic effect)

    -Absorption of some parts of the spectrum in solids and liquids (Beer’s law)

    -Electro-optic phenomena in crystals (Pockels effect, modulation of light)

    -Emission of electrons from metals when exposed to light (photoelectric effect)

    -The Stark effect, fluorescence, black-body radiation, photochemistry, vision,...

    Further compilations on Iceland spar in science are accessible at www.raunvis.hi.is/~leo