· icesat contacts: bob e. schutz, glas science team leader university of texas center for space...

304
ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development Leader NASA/GSFC Wallops Flight Facility Wallops Island, Virginia 23337 H. Jay Zwally, ICESat Project Scientist NASA Goddard Space Flight Center Greenbelt, Maryland 20771 ICESat (GLAS) Science Processing Software Document Series The Algorithm Theoretical Basis Document for Level 1A Processing Version 1.7 Peggy L. Jester/SGT, Inc. Observational Science Branch Laboratory for Hydrospheric Processes NASA/GSFC Wallops Flight Facility Wallops Island, Virginia 23337 David W. Hancock III Observational Science Branch Laboratory for Hydrospheric Processes NASA/GSFC Wallops Flight Facility Wallops Island, Virginia 23337 September 2011

Upload: others

Post on 23-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

ICESat Contacts:

Bob E. Schutz, GLAS Science Team LeaderUniversity of Texas Center for Space ResearchAustin, Texas 78759-5321

David W. Hancock III, Science Software Development LeaderNASA/GSFC Wallops Flight FacilityWallops Island, Virginia 23337

H. Jay Zwally, ICESat Project ScientistNASA Goddard Space Flight CenterGreenbelt, Maryland 20771

ICESat (GLAS) Science Processing

Software Document SeriesThe Algorithm Theoretical Basis Document for Level 1A ProcessingVersion 1.7

Peggy L. Jester/SGT, Inc.Observational Science BranchLaboratory for Hydrospheric ProcessesNASA/GSFC Wallops Flight FacilityWallops Island, Virginia 23337

David W. Hancock IIIObservational Science BranchLaboratory for Hydrospheric ProcessesNASA/GSFC Wallops Flight FacilityWallops Island, Virginia 23337

September 2011

Page 2:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development
Page 3:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page iii Version 1.7

Foreword

The GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) is a part of the EOS program. This laser altimetry mission will be carried on the spacecraft designated EOS ICESat (Ice, Cloud, and Land Elevation Satellite). The GLAS laser is a frequency-doubled, cavity-pumped, solid state Nd:YAG laser. The GLAS instrument will provide both surface laser altimetry and atmo-spheric lidar data. The science goals and requirements are documented in the GLAS Science Requirements Document which is listed in the Bibliography. This document provides the algorithms to convert the instrument data from raw counts into engineering units suitable for input to the science algorithms described in further ATBDs.

This document was prepared by the Observational Science Branch at NASA GSFC/WFF, Wallops Island, VA, in support of Bob E. Schutz, GLAS Science Team Leader for the GLAS Investigation. The information in this document was collected by Peggy L. Jester, SGT, Inc., Instrument Support Facility Lead, in support of the GLAS Instrument Team. This work was performed under the direction of David W. Hancock, III, who may be contacted at (757) 824-1238, [email protected] (e-mail), or (757) 824-1036 (FAX).

Page 4:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Foreword

Version 1.7 Page iv September 2011

Page 5:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page v Version 1.7

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiTable of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vList of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Section 1 IntroductionSection 2 Algorithm Description

2.1 Level 0 to Level 1A Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12.2 Quality Assurance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62.3 Browse Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Section 3 Implementation Considerations3.1 Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.2 Ancillary Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.4 Computational: CPU and Disk Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.5 Software Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Section 4 Constraints, Limitations, and Assumptions4.1 Constraints and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Section 5 BibliographyAppendix A Conversion Tables

A.1 Conversion Description for Each APID . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1A.2 Telemetry Pseudo Engineering Unit Conversion . . . . . . . . . . . . . . . . . . . . A-1A.3 Laser and OTS Enable readbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36A.4 FET Switch Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36A.5 Optical Sensor Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36A.6 Status Command Telemetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36A.7 CD Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36A.8 DC Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-38A.9 PC Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-38A.10 CT Task Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-39A.11 Subsystem Present Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-40A.12 CS Status Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-41A.13 SM Table Operations Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-41A.14 BCRT Control Register Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-41A.15 CD Raw A/D Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-42A.16 CD Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-42A.17 DC Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-42A.18 DC FIFO Flags Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-43A.19 DC LPA Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-43

Page 6:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Table of Contents

Version 1.7 Page vi September 2011

A.20 DC LPA Packet Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-43A.21 PC Hardware Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-44A.22 MD Enable / Disable Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-45A.23 CT Suppressed Event Message Error Flag . . . . . . . . . . . . . . . . . . . . . . . . A-45A.24 CT Loop Heat Pipe Control State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-46A.25 GP Task Status Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-46A.26 AD Software Enable Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-47A.27 AD DSP Trouble Indicator Status Word . . . . . . . . . . . . . . . . . . . . . . . . . A-47A.28 DEM Minimum and Maximum Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . A-48A.29 Range Window Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-48A.30 AD Target Status and Mode Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-49A.31 Etalon Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-49A.32 Time Tagging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-50

Appendix B GLAS Telemetry DescriptionB.1 GLAS Housekeeping and Diagnostic Telemetry Description . . . . . . . . . . . B-2B.2 Science Packet Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-38

Appendix C Background Information for Time Tagging AlgorithmC.1 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1C.2 Problems to Consider:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3C.3 Telemetry Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4

Appendix D GLAS Science PacketsSynchronization and Alignment Information

Appendix E Laser Energy CalibrationAbbreviations & Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Page 7:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page vii Version 1.7

List of Tables

Table 1-1 GLAS Telemetry Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Table 1-2 The GLAS Level 1A Data Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Table A-1 Conversion Description for GLAS Telemetry Data . . . . . . . . . . . . . . . . A-2

Table A-2 Pseudo-Telemetry Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-34

Table A-3 Laser and OTS Readback Interpretation. . . . . . . . . . . . . . . . . . . . . . . . A-36

Table A-4 FET Switch Bank Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-36

Table A-5 Optical Sensor Status Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . A-37

Table A-6 Command Status Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-37

Table A-7 CD Status Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-38

Table A-8 DC Status Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-39

Table A-9 PC Status Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-39

Table A-11 Subsystem Present Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . A-40

Table A-10 CT Task Mode Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-40

Table A-12 CS Status Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-41

Table A-15 CD Raw A/D Output Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . A-42

Table A-16 CD Interrupt Status Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-42

Table A-13 SM Table Operations Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . A-42

Table A-14 BCRT Register Control Word Interpretation . . . . . . . . . . . . . . . . . . . . A-42

Table A-18 DC FIFO Flags Register Interpretation . . . . . . . . . . . . . . . . . . . . . . . . A-43

Table A-19 DC LPA Gain Register Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . A-43

Table A-17 DC Interrupt Mask Register Interpretation . . . . . . . . . . . . . . . . . . . . . . A-43

Table A-21 PC Hardware Mode Status Interpretation . . . . . . . . . . . . . . . . . . . . . . . A-44

Table A-20 DC LPA Packet Count Register Interpretation. . . . . . . . . . . . . . . . . . . A-44

Table A-22 MD Enable /Disable Flag Interpretation. . . . . . . . . . . . . . . . . . . . . . . . A-45

Table A-23 CT Suppressed Event Message Error Flag Interpretation . . . . . . . . . . A-45

Table A-24 CT LHP Control State Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . A-46

Table A-25 GP Task Status Bits Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-46

Table A-26 AD Software Enable Flag Interpretation . . . . . . . . . . . . . . . . . . . . . . . A-47

Table A-27 AD DSP Trouble Indicator Status Word Interpretation . . . . . . . . . . . . A-47

Table A-28 Range Window Status Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . A-48

Page 8:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing List of Tables

Version 1.7 Page viii September 2011

Table A-29 AD Target Status and Mode Flag Word Interpretation . . . . . . . . . . . . A-49

Table A-30 Etalon Flags Word Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-49

Table C-1 APIDs used by Normal I-SIPS Processing . . . . . . . . . . . . . . . . . . . . . . . C-1

Table C-2 Format of PRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4

Table C-3 Time and Position Message Packet Description. . . . . . . . . . . . . . . . . . . C-5

Page 9:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page 1-1 Version 1.7

Section 1

Introduction

The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Soft-ware converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This docu-ment defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Addition-ally, required quality assurance and browse products are defined in this document.

The GLAS Level 0 data consists of a number of different instrument packet types, each type having its own application identifier (APID). Each packet type generally contains data relative to one of the prime GLAS measurements or subsystems. The EOS Data and Operations Sys-tem (EDOS) delivers the instrument packets to the ICESat Science Investigator-led Process-ing System (I-SIPS) in Production Data Sets (PDS). Each PDS is a time-ordered set of packets received during a telemetry dump for a particular APID. At EDOS, the packets are Reed-Sol-omon decoded; redundant packets associated with previous dumps are removed; and some frame error checking is done. The Level 0 APIDs are listed in Table 1-1 "GLAS Telemetry Packets". The level 0 data is described in Appendix B.

Table 1-1 GLAS Telemetry Packets

Packet Name APID

Altimeter Digitizer Data-Large 12

Altimeter Digitizer Data-Small 13

Altimeter Digitize Engineering Mode 14

Photon Counter (PC) Science 15

PC Engineering 16

Cloud Digitizer (CD) Science 17

CD Engineering 18

Ancillary Science 19

Laser Profiler Array Data 26

Command History 39

Laser Monitor Board, Temperature Controller Module, Motor Control System & High Voltage Power Supply Housekeeping Telemetry

20

PDU Housekeeping Telemetry 21

Housekeeping Temperatures #1 Telemetry 22

Housekeeping Temperatures #2 Telemetry 23

Page 10:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Introduction

Version 1.7 Page 1-2 September 2011

The Level 1A Data Products produced by the algorithms described in this document are listed in Table 1-2 "The GLAS Level 1A Data Products". The Level 1A Data Products contents and format are defined in the Level 1A Data Product Specification; listed in the Bibliography in Section 5. Prior to storage in the Level 1A products the Level 1A data in engineering units are scaled to integer. The scale factors are defined in this document. The Level 0 and Level 1A detailed descriptions are not repeated in this document.

Small Software #1 Telemetry 24

Small Software #2 Telemetry 50

Large Software Telemetry #1 25

Large Software Telemetry #2 55

DSP Code Memory Dump 31

DSP Data Memory Dump 32

C&T Dwell 33

Memory Dwell #1 27

Memory Dwell #2 28

Event Message 34

Memory Dump 35

Table Dump 36

Etalon Calibration 37

Boresight Calibration 38

Table 1-1 GLAS Telemetry Packets (Continued)

Packet Name APID

Page 11:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Introduction The Algorithm Theoretical Basis Document for Level 1A Processing

Page 1-3 Version 1.7

Table 1-2 The GLAS Level 1A Data Products

Product ID and Name Description

GLA01 - Altimetry Data Product

Contains the waveforms and the altimeter and timing data required to produce higher level range and elevation products.

GLA02 - Atmosphere Data Product

Contains the normalized backscatter, photon counter, cloud digitizer, timing, and location data required to produce the higher level atmosphere data products.

GLA03 - Engineering Data Product

Contains the GLAS instrument�’s engineering and housekeeping data.

GLA04 - SRS and GPS Data Product

Contains the Global Positioning System data, Stellar Reference System data, and other instrument and spacecraft position and attitude data required to produce the precision orbit and precision attitude data.

Page 12:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Introduction

Version 1.7 Page 1-4 September 2011

Page 13:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page 2-1 Version 1.7

Section 2

Algorithm Description

2.1 Level 0 to Level 1A ConversionsGenerally, each measurement in an APID will have a calibration equation determined during GLAS system testing that will be used to convert the measured counts into engineering units. The conversions of the counts to engineering units will be one or more of several types: straight polynomial conversion based on the measurement counts; multi-variable conversions with dependence on additional measurements such as temperature; special conversions based on a complex dependence of several measurements, interpretation of data, table look-up, and geophysical based conversions. Some data will not require conversion and will be retained in counts. The Stellar Reference System (SRS) attitude and position data and the GPS data will be from standard existing systems similar to those used on other spacecraft. The SRS and GPS data along with the laser pointing monitor data will be packaged into the GLA04 data product and provided to the GLAS Science Team. This document will specify the algorithms that pro-cess the GLAS altimeter, lidar and housekeeping level 0 packets and the position and attitude data. Appendix B contains tables listing the GLAS instrument telemetry.

2.1.1 Polynomial Expansion Conversions

Most of the GLAS data will be converted by simple polynomial equations of fifth degree or less. Temperature, voltage, and current telemetry data are in this category.

The form for the conversion will be

A*(X**5) + B*(X**4) + C*(X**3) + D*(X**2) + E*(X) + F

where X is the raw measured value and A, B, C, D, E and F are constant coefficients.

The polynomial conversion factors for the telemetry data are defined in Appendix A. The table lists the telemetry data that is converted through polynomial expansion, the source APID, the conversion factors, and the resulting units.

2.1.2 Multi-variable Conversions

Multi-variable conversions will primarily be used to apply instrument temperature and volt-age corrections to data. Below is a generic example of this type of correction.

Xeu = Xct* (A*(T1)**2 + B*(T1)) +C

where

Xeu = The telemetry value in engineering unitsXct = The raw telemetry value in countsT1 = telemetry value upon which Xct is dependentA, B, C = conversion coefficients

Some measurements may require more than one such type correction or are dependent on more than one temperature or other telemetry value.

Page 14:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-2 September 2011

For the PDU housekeeping data, the engineering unit conversions are dependent upon monitor calibration values that are telemetered within the PDU packet (APID=21). The conversion for the monitor calibration values and the conversion for the telemetry based on these values in contained in Appendix A, Section A.2.

2.1.3 Special Conversions

There are some conversions that will require special forms based on the analysis of instrument test data or simulations.

2.1.3.1 Bit Interpretation

The interpretation of flags and status words does not usually depend on conversion factors or biases. It is usually a matter of evaluating bits or bit patterns. Appendix A defines those telem-etry values which require interpretation and explains how the values are to be interpreted.

2.1.3.1.1 Instrument State Flag

This flag describes the hardware state of the instrument. It describes which of the instrument�’s redundant systems is operating. The flag is stored in the data product headers and it is com-posed from the bit interpretation of several telemetered status words. The detailed description including source information is in Appendix A.24.

2.1.3.2 1064 nm Transmitted and Received Pulse Energy

To calculate the 1064 nm transmitted and received pulse energies, the telemetry data for the transmitted and received waveforms is inspected. For each, from the peak location, the wave-form is searched (in both directions) until reaching 3% or less of the peak value. The wave-form data between the two points is summed. The pulse energies are the product of the sum of the waveform data and a calibration constant. For now, the constant is set to 1.0.

2.1.3.3 Background Mean and Standard Deviation for all Filters

The background mean and standard deviation for the 4 nanosecond (ns) filter are given in telemetry.

The background mean for the other five filters (8 ns, 16 ns, 32 ns, 64 ns, 128 ns) equals the mean for the 4 ns filter. The standard deviation for each of the other filters is computed as shown in the following equation:

standard deviation for filter i = standard deviation for filter (i-1)/(square root (2)) for (i=2,3,4,5,6)

where i=1 is the 4ns filter whose mean and standard deviation is downlinked, i=2 is the 8ns filter, etc.

2.1.3.4 Table Look-up

Some conversions will be table lookup, based on single or multiple parameters. On past proj-ects it was found that for multiple single byte telemetry values requiring the same conversion factors (temperatures, for example) it was more efficient to use a lookup table to obtain the engineering unit value based on the telemetry counts rather than executing the equation. Table

Page 15:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-3 Version 1.7

lookup will be implemented for the conversion of one byte telemetry values to engineering units, when that conversion is by polynomial expansion.

2.1.3.5 L1A Time Tagging

The L1A time tagging algorithm computes the exact UTC time for each laser shot and the UTC time for all associated data in order to process the GLAS data into L1A granules. See the report, ICESat Observatory Timing and Event Time Reconstruction, which is listed in the Bib-liography in Section 5 for a description of the timing scheme used by the ICESat observatory. This report discusses how the precise times of events on the observatory can be reconstructed from the downlinked telemetry.

The time tagging algorithm requirements are listed in this section. The algorithm specification is contained in Appendix A. Background information for the data alignment and time tagging algorithm are contained in Appendix C.

Algorithm Requirements - General

1) GPS time is to be used as the prime time reference. If GPS is not available space-craft time as determined from the spacecraft vehicle time code word (BVTCW) shall be used as the time reference.

2) The shot time (time of altimeter digitizer bin one (or zero)) in UTC is computed from the Fire Command Time in the ancillary science packet. The UTC time tag for each shot shall be computed by referencing its fire command time word to GPS or spacecraft time.

3) Oscillator frequency offsets and drift between various subsystems will be properly handled.

4) If the ancillary science packet is missing but other packets are present the expected, i.e. predicted, time tag will be assigned to those shots.

5) Time computed for an Expedited Data Set (EDS) will be the same for that data on its Production Data Set (PDS).

6) Alignment must be made to the SRS (LRS, IST, Gyro) data by assigning proper shot number and shot time.

7) Shot and data UTC times will be computed from the reference time that occurs prior to the time of the data, e.g. times will not be backwards interpolated.

Algorithm Requirements - GPS is available

8) GPS can reset and must be handled properly. It takes 10 minutes to recover and pro-vide new position data. During this period the GPS does not provide the once per 10 second pulse, so there is no updated GPS reference time. The previous GPS ref-erence time should be used. This condition can span across PDSs.

9) A record must be kept relating the GPS time used to every time computed.

10) Leapseconds shall be added to the GPS Time to get UTC. The leapseconds correc-tion will be stored in a GPS to UTC Leapseconds file.

Page 16:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-4 September 2011

11) A constant shall be defined that is the GPS time of midnight January 1, 2000 (the UTC reference time). This constant will be negative because it used to remove from the laser shot GPS time the amount of GPS time occurring from the GPS time refer-ence time (January 6, 1980) to the UTC reference time.

Algorithm Requirements - GPS is not available

12) Spacecraft time in UTC (as computed from BVTCW) will be used as the reference time if GPS is not available.

13) The time tagging algorithm will not automatically switch to the BVTCW time ref-erence upon detection of missing GPS.

14) The BVTCW of the 10 hz LRS Data shall be aligned to the correct shot and its fire command time. The 10 Hz shot time shall then be computed based on the UTC of the BVTCW. The 40 Hz shot times and any other data times can be interpolated from the 10 Hz UTC BVTCW shot times.

2.1.3.6 GPS Black Jack to RINEX Format Conversion

A program will be provided from the GLAS Science Team that will convert the downlinked GPS data from the Black Jack format to the RINEX format. The RINEX is a standard ASCII format for the GPS data and is described at the following website: ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt. The GPS data is stored in the GLA04 Data Product.

2.1.3.7 Position and Attitude Telemetry Data Storage in GLA04

The position and attitude data will be telemetered in a spacecraft packet known as the Posi-tion, Rate, and Attitude Packet (PRAP). The position and attitude data is collected from the following systems on-board the spacecraft:

�• spacecraft star tracker (2), also known as Ball Star Tracker 1 (BST1) and Ball Star Tracker 2 (BST2),

�• instrument star tracker (IST),

�• gyro, also known as the IRU, and

�• Laser Reference System (LRS).

The Laser Profiling Array (LPA) data will be telemetered via the instrument. The data from each system will be stored in a separate file in the GLA04 product. The PRAP data conver-sions are defined in the Data Interface Control Document between the ICESat Spacecraft and the EOS Ground System (EGS), referenced in Section 5, the Bibliography.

2.1.4 Geophysical Conversions

Conversions for the Photon Counter and Cloud Digitizer LIDAR data and backgrounds are found in the GLAS Atmospheric Data Products ATBD, referenced in Section 5.

2.1.5 Laser Energy Calculation

The GLAS instrument does not monitor or report the GLAS 1064nm transmitted or received energy. Through ground testing, an algorithm was developed to compute the energy during post-processing of the science data. The energy equation is

Page 17:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-5 Version 1.7

laser_energy(i)=(delta_T*area_txp(i))/(n_circuit*n_optical_new*r_detector*gain_norm*a_cal)

where

i = current shot

delta_T = 1.0E-09

n_circuit = 0.923

n_optical_new = x(depending on laser)

2.9650E-14(LASER 1)

2.7868E-14 (LASER 2)

2.7937E-14 (LASER 3)

r_detector = 2.28E+07

gain= transmitted gain (from telemetry)

gain_normal = gain/255D0

gain_adj (for laser 1) = 1.0 (was not used)

gain_adj (for laser 2) = -2.5616417E-08*gain^3+1.1939701E-05*gain^2-2.2665959E-03*gain + 1.0746249E+00

gain_adj (for laser 3) = -4.0666979D-08*gain^3+1.8456647D-05*gain^2-3.0427996D-03*gain + 1.096532D00

a_cal = 1.12

To compute area_txp(i) (area under the transmit waveform for each shot):

1. Convert the counts (txwf_count) in each bin (47 bins) to volts (txwf_volt):

IF (txwf_count LE 127) THEN

txwf_volt = al*txwf_count + b1

ELSE txwf_volt = a2*txwf_count + b2

where:

a1 = 0.006675

b1 = -0.1953

a2 = 0.006198

b2 = -0.1344

2. Compute the mean (mean-txp) of the first 9 bins of the waveform.

3. Compute the area as the sum of all bins after subtracting the mean from each bin:

area_txp(i) = TOTAL(txwf_volt(i,1:47) - mean_txp)

Page 18:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-6 September 2011

Detailed discussion of the laser energy calibration and gain correction is contained in Appen-dix E.

2.2 Quality AssuranceThis section shall describe the quality assurance data for the Level 1A granules.

2.2.1 Altimetry Product (GLA01)1) Expected number of Ancillary Science packets (APID 19) based on time span of

data.

2) Actual number of Ancillary Science packets based on number read.

3) Percentage missing Ancillary Science packets: [1-(item 2 / item 1)] * 100.

4) Expected number of waveform packets (APIDs 12 and 13) based on time span of data.

5) Actual number of waveform packets based on number read.

6) Percentage missing waveform packets: [1-(item 5 / item 4)] * 100.

7) Percentage of total actual waveform packets that is:

- long waveform data (based on number of APID 12 packets read),

- short waveform data (based on number of APID 13 packets read),

- no signal acquired (from threshold crossing flag in APID 12) for long wave-form data,

- no signal acquired (from threshold crossing flag in APID 13) for short wave-form data,

8) Granule statistics (Maximum, Minimum, Average, Standard Deviation, Number of Points) for:

- transmit peak location,

- difference between last and next to last threshold crossing locations of the received waveform,

- background mean for 4 ns filter,

- background standard deviation for each filter,

- 4 ns filter peak value,

- peak value for each filter (based on when filters are selected by on-board algo-rithm),

- 1064 nm laser transmit energy,

- 1064 nm laser received energy,

- time between each shot, and

Page 19:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-7 Version 1.7

- A/D receiver gain setting.

9) Once per 16 second statistics (Maximum, Minimum, Average) for:

- 1064 nm laser transmit energy,

- 1064 nm laser received energy,

- peak value for selected filter, and

- difference between last and next to last threshold crossing locations of the received waveform.

10) Track the number of times each filter is selected for long waveform data (where signal is detected) over the period of the granule.

11) Track the number of times each filter is selected for short waveform data (where signal is detected) over the period of the granule.

12) Compute the average filter number and average surface type over 16 seconds (it can be a fraction) over the time of the granule. Set a flag indicating during the 16 sec-onds, whether the waveform type is predominately long or short.

2.2.2 Atmosphere Product (GLA02)1) Expected number of photon counter packets (APID 15)

2) Actual number of photon counter packets (APID 15)

3) Percentage missing photon counter packets (APID 15)

4) Expected number of cloud digitizer packets (APID 17)

5) Actual number of cloud digitizer packets (APID 17)

6) Percentage missing cloud digitizer packets (APID 17)

7) Expected number of ancillary science packets (APID 19)

8) Actual number of ancillary science packets (APID 19)

9) Percentage missing ancillary science packets (APID 19)

10) Percentage saturated bins for 10 to -1 km profile

11) Percentage saturated bins for 20 to 10 km profile

12) Percentage saturated bins for 40 to 20 km profile

13) Granule statistics (Maximum, Minimum, Average, Number of Points) for:

- 532 nm laser transmit energy at 40 Hz,

- 1064 nm laser transmit energy at 40 Hz,

- 532 nm Backgrounds (4) at 40 Hz,

- 1064 nm Backgrounds (4) at 40 Hz,

- Cloud Return Peak Signal,

- Ground Return Peak Signal,

Page 20:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-8 September 2011

- Ground Return Peak location, and

- Dual Pin A / 532 transmit energy at 40 Hz.

14) Average 532 integrated return over 16 seconds.

15) Number of 532 laser transmit energy values at 40 Hz from 0 to 10 mJ

16) Number of 532 laser transmit energy values at 40 Hz from 10 to 20 mJ

17) Number of 532 laser transmit energy values at 40 Hz from 20 to 30 mJ

18) Number of 532 laser transmit energy values at 40 Hz from 30 to 40 mJ

19) Number of 532 laser transmit energy values at 40 Hz from above 40 mJ

20) Number of 1064 laser transmit energy values at 40 Hz from 0 to 10 mJ

21) Number of 1064 laser transmit energy values at 40 Hz from 10 to 20 mJ

22) Number of 1064 laser transmit energy values at 40 Hz from 20 to 30 mJ

23) Number of 1064 laser transmit energy values at 40 Hz from 30 to 40 mJ

24) Number of 1064 laser transmit energy values at 40 Hz from above 40 mJ

2.2.3 Engineering Data Product (GLA03)1) Expected number of records per APID (for all APIDs) based on time.

2) Actual number of records per APID based on number read for each APID.

3) Percentage missing data per APID: [1-(item 2 / item 1)] * 100.

4) Change in instrument configuration and time of change.

5) Final instrument configuration.

6) Granule statistics (Maximum, Minimum, Average, Standard Deviation, Number of points, Number of Times Out of Limits) for each temperature, voltage, and current.

7) Once per hour (3600 seconds) statistics (Maximum, Minimum, Average, Standard Deviation, Number of Points) for each temperature, voltage and current.

8) For each status indicator over the granule, compute number of times status changed, and final status.

9) Granule statistics (Maximum, Minimum, Average, Standard Deviation, Number of Points) for:

- the difference between the laser fire command time and the laser fire acknowl-edge time,

- the difference between the spacecraft time (BVTCW) of the spacecraft time and position packet and the GLAS MET of the spacecraft time and position packet,

- sum of Post-Delay pulse waveform bin values (32 bins); average and standard deviation only,

- the peak of the Post-Delay Laser pulse,

Page 21:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-9 Version 1.7

- the pulse width of the Post-Delay Laser pulse,

- the peak of the four OTS laser pulse, and

- the pulse width of the four OTS laser pulses.

10) Etalon tuning QA - TBD

2.2.4 Global Stellar Reference and Global Positioning System Data Product (GLA04)

1) Expected number of records of LPA data (APID 26) based on time.

2) Actual number of records of LPA data based on number read.

3) Percentage missing LPA data: [1-(item 2 / item 1)] * 100.

4) Expected number of records of PRAP data (APID 1984) based on time.

5) Actual number of records of PRAP data based on number read.

6) Percentage missing PRAP data: [1-(item 5 / item 4)] * 100.

7) For the LPA data, store the following data to arrays:

- Computed centroid location statistics over 60 seconds (Maximum, Minimum, Average, Number of Points).

- Area above noise of Transmit waveform statistics over 60 seconds (Maximum, Minimum, Average, Number of Points). Noise = 30 counts; area is equivalent to sum of data from each bin (48) where data is greater than 30 counts. Note: Subtract off the 30 counts of noise prior to summing the data.

- Time of Transmit waveform peak statistics over 60 seconds (Maximum, Mini-mum, Average, Number of Points).

- Sample time: time of first shot in the first and last frames included in the aver-age. These will be the only times stored in the along-track record.

8) For the LPA data for each granule, store:

- First and last LPA 20x20 image.

- Mean and standard deviation of the LPA 20x20 image.

9) For the first valid star for each virtual tracker in the LRS data, store the following data to arrays:

- Encircled energy statistics over 60 seconds (Maximum, Minimum, Average, Number of Points).

- Background bias statistics over 60 seconds (Maximum, Minimum, Average, Number of Points).

- Centroid row statistics over 60 seconds (Maximum, Minimum, Average, Num-ber of Points).

- Centroid column statistics over 60 seconds (Maximum, Minimum, Average, Number of Points).

Page 22:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-10 September 2011

- Sample time: time of first shot in the first and last frames included in the aver-age. These will be the only times stored in the along-track record.

10) First and last valid LRS laser images of the granule with the start and end times of the record in which they occur.

11) For the LRS data, collect once per granule data for:

- Number of points processed

- Number of shot numbers that are zero

- Number of messages incomplete

- Number of time tag rollovers

- Number of valid and invalid stars by tracker: star, laser, and CRS.

- Number of stars by star tracker by magnitude from 0 to 6.3 with .5 magnitude categories.

- For each valid virtual tracker for the laser and CRS (Maximum, Minimum, Mean, Standard Deviation, and Number of Points): Encircled energy, Back-ground bias, Centroid row, and Centroid column

- CCD temperature (Minimum, Maximum, Mean, Standard Deviation, and Number of Points)

- Lens Cell temperature (Minimum, Maximum, Mean, Standard Deviation, and Number of Points)

12) Once per 60 seconds statistics (Maximum, Minimum, Mean, Standard Deviation, Number of points) on each valid Gyro�’s (A, B, C, D) integrated angle data. Also report the number of invalid integrated angles for each Gyro.

13) For the first valid star for each virtual tracker in the Instrument Star Tracker (IST) data, store the following data to arrays at 60 second intervals:

- Sample time

- Encircled energy

- Background bias

- Star magnitude

- Boresight H

- Boresight V

14) For the Instrument Star Tracker (IST) data, collect the once per granule data for:

- Number of points processed

- Number of shot numbers that are zero

- Number of messages incomplete

- Number of time tag rollovers

Page 23:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-11 Version 1.7

- Number of valid and invalid stars by tracker: star, laser, and CRS.

- Number of stars by magnitude from 0 to 6.3 with .5 magnitude categories.

- CCD temperature (Minimum, Maximum, Mean)

- Lens Cell temperature (Minimum, Maximum, Mean)

15) For the first valid star for each virtual tracker in the Ball Star Tracker (BST) data (two BSTs), store the following data to arrays at 60 second intervals:

- Sample time

- Star position X and Y

- Star intensity

16) For both BSTs, collect once per granule data of:

- Number of points processed

- Number of commands received and rejected

- For each tracker, the number of stars by magnitude from 0 to 6.3 with .5 mag-nitude categories.

- CCD temperature (Minimum, Maximum, Mean)

- Lens Cell temperature (Minimum, Maximum, Mean)

- +8 Volt supply voltage (Minimum, Maximum, Mean)

- Background reading (Minimum, Maximum, Mean)

17) For the spacecraft data, for the first valid point, store the following data to arrays at 60 second intervals:

- Sample time

- Solar array 1 position

- Solar array 2 position

- Solar Array 1 autonomous flag

- Solar Array 2 autonomous flag

- Quaternions 1 through 4

18) For the spacecraft data, compute for the granule:

- Number of times solar array 1 is in fixed position and total time in fixed posi-tion

- Number of times solar array 2 is in fixed position and total time in fixed posi-tion

- Number of times solar arrays are in fixed position simultaneously and total time in fixed position

- Number of times GPS time changes

Page 24:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-12 September 2011

2.3 Browse ProductsThis section defines the browse products for the Level 1A granules.

2.3.1 Altimetry Product (GLA01)1) Table (for the granule) showing:

- percent missing waveform packets,

- percent missing ancillary science packets,

- percent data is long waveform data,

- percent data is short waveform data,

- percent of long waveform data where no signal was acquired, and

- percent of short waveform data where no signal was acquired.

2) Statistics table (for the granule) which includes the Maximum, Minimum, Average, Standard Deviation, and Number of Points for:

- transmit peak location,

- sum of transmit waveform bins (average and standard deviation only),

- difference between last and next to last threshold crossing locations,

- background mean for 4 ns filter,

- background standard deviation for each filter,

- 4 ns filter peak value,

- peak value for each filter (based on when filters are selected by on-board algo-rithm),

- 1064 nm laser transmit energy,

- 1064 nm laser received energy,

- time between each shot, and

- A/D receiver gain setting.

3) Color coded plot of the ground track, with colors indicating whether the flight algo-rithms selected long or short waveforms for a location,

4) Histogram of 1064 nm laser transmit energy averaged n per second,

5) Histogram of 1064 nm laser received energy averaged n per second,

6) Histogram of the received waveform average peak value per selected filter per sec-ond,

7) Histogram of the difference between last and next to last threshold crossing loca-tions averaged n per second,

8) Color coded plot of the ground track, with colors indicating the average selected fil-ter number for a location,

Page 25:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-13 Version 1.7

9) Color coded plot of the ground track, with colors indicating the average transmitted and received energy for a location,

10) Histogram of the long waveform data selected filter numbers, and

11) Histogram of the short waveform data selected filter numbers.

2.3.2 Atmosphere Product (GLA02)1) Table (for the granule) showing:

- percent missing photon counter packets,

- percent missing cloud digitizer packets,

- percent missing ancillary science packets,

- percentage of saturated bins for the 10 to -1 km profile,

- percentage of saturated bins for the 20 to 10 km profile, and

- percentage of saturated bins for the 40 to 20 km profile.

2) Statistics table (for the granule) which includes the Maximum, Minimum, Average, and Number of Points for:

- 532 laser transmit energy at 40 Hz,

- 1064 laser transmit energy at 40 Hz,

- 532 backgrounds (4) at 40 Hz,

- 1064 backgrounds (4) at 40 Hz,

- cloud return peak signal,

- ground return peak signal,

- ground return peak location, and

- Dual pin A /532 transmit energy at 40 Hz.

3) Color coded plot of the ground track, with colors indicating 532 integrated return value for a location

4) Histograms of 532 and 1064 transmit energy

- Number of 532 laser transmit energy values at 40 Hz from 0 to 10 mJ,

- Number of 532 laser transmit energy values at 40 Hz from 10 to 20 mJ,

- Number of 532 laser transmit energy values at 40 Hz from 20 to 30 mJ,

- Number of 532 laser transmit energy values at 40 Hz from 30 to 40 mJ,

- Number of 532 laser transmit energy values at 40 Hz from above 40 mJ,

- Number of 1064 laser transmit energy values at 40 Hz from 0 to 10 mJ,

- Number of 1064 laser transmit energy values at 40 Hz from 10 to 20 mJ,

- Number of 1064 laser transmit energy values at 40 Hz from 20 to 30 mJ,

Page 26:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-14 September 2011

- Number of 1064 laser transmit energy values at 40 Hz from 30 to 40 mJ, and

- Number of 1064 laser transmit energy values at 40 Hz from above 40 mJ.

2.3.3 Engineering Data Product (GLA03)1) Plots of average temperatures per hour,

2) Plots of average voltages per hour,

3) Plots of average currents per hour,

4) Table of operating laser, detector, digitizer, oscillator and time instrument configu-ration changed during granule,

5) Table of granule statistics, and

6) Etalon tuning - TBD.

2.3.4 Global Stellar Reference and Global Positioning System Data Product (GLA04)

1) Table and bar chart (for the granule) showing:

- Percentage and number missing LPA data.

- Percentage and number missing PRAP data.

2) Statistics table/bar chart (for the granule) which includes:

- LRS CCD temperature (Minimum, Maximum, Mean)

- LRS Lens Cell temperature (Minimum, Maximum, Mean)

- IST CCD temperature (Minimum, Maximum, Mean)

- IST Lens Cell temperature (Minimum, Maximum, Mean)

- BST1 and BST2 CCD temperature (Minimum, Maximum, Mean)

- BST1 and BST2 Lens Cell temperature (Minimum, Maximum, Mean)

- BST1 and BST2 +8 Volt supply voltage (Minimum, Maximum, Mean)

- BST1 and BST2 Background reading (Minimum, Maximum, Mean)

- Mean and standard deviation of the LPA 20x20 images

3) Star magnitude histogram for the LRS, IST, BST1, and BST2 indicating for each tracker, the number of stars by magnitude from 0 to 6.3 with .5 magnitude catego-ries.

4) First and last laser and LPA images in the granule. The SRS images in the granule cannot be tied unequivocally to a shot or frame number. Instead, the first and last good images in the granule should be labelled with the times of the first and last shots in the frames in which they are found.

5) Number of times solar array 1 is in fixed position and total time in fixed position for the granule.

Page 27:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Algorithm Description The Algorithm Theoretical Basis Document for Level 1A Processing

September 2011 Page 2-15 Version 1.7

6) Number of times solar array 2 is in fixed position and total time in fixed position for the granule.

7) Number of times solar arrays are in fixed position simultaneously and total time in fixed position for the granule.

8) Number of times GPS time changes for the granule.

9) Color coded plots of the granule timeline, with colors indicating when Solar Array 1 autonomous flag is set to auto (1) or off (0).

10) Color coded plots of the granule timeline, with colors indicating when Solar Array 2 autonomous flag is set to auto (1) or off (0).

11) Histograms of:

- Computed centroid location

- Area above noise of Transmit waveform.

- Time of Transmit waveform peak.

Page 28:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Algorithm Description

Version 1.7 Page 2-16 September 2011

Page 29:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page 3-1 Version 1.7

Section 3

Implementation Considerations

The GLAS data level 1A conversion does not require any complicated or interactive process-ing. The data rate is 500 kbps.

3.1 StandardsThe GLAS Level 1A algorithm implementation will follow the software development process defined in the GLAS Science Software Management Plan listed in Section 5.

3.2 Ancillary Inputs3.2.1 Predict (Operational) orbit

The best available orbit predicts will be used to append location to the level 1 A data. No cor-rections will be applied to the data based on the predicted location data. This position data will be replaced on higher level products with the precision orbit data. The predicted location will be used to help with the QA and any quick look analysis of the GLAS data.

3.2.2 GLAS Coefficients and Constants File

Provides the coefficients and constants that are subject to modification based on: pre-flight testing, on-orbit performance, or electronic component aging. To avoid creating and deliver-ing new versions of software due to changes in operating parameters, the GLAS Coefficients and Constants File provides a location to store those software parameters.

Include in the GLAS Coefficients and Constants File, the QA statistical sampling rate in sec-onds for each L1A product. Therefore, if the sampling rates are modified, the L1A Code will not have to be changed. A CR will be written to update this ATBD and the value(s) in the GLAS Coefficients and Constants File.

3.3 AccuracyAll level 1A data conversions will be designed to meet the accuracy of the science require-ments. Where the capability to invert from the level 1A data back to the level 0 raw counts is needed, there will not be any loss of accuracy. GLAS measurement capabilities will not be degraded during the creation of the level 1A product.

3.4 Computational: CPU and Disk StorageGLAS level 1A processing can be done easily within the capabilities of a large workstation. A processing load has been estimated by using the TOPEX Radar Altimeter SDR processing resources and scaling them by the ratio of the data rate. This is considered to be a worst case analysis. Disk storage space has been estimated based on the design of the level 1A data prod-uct.

Page 30:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Implementation Considerations

Version 1.7 Page 3-2 September 2011

3.5 Software ValidationThe validation of the software will be from processing known data from the GLAS instrument testing or the GLAS simulator into a level 1 A product. This product will be compared to the GLAS Instrument team results from ground testing or simulator outputs.

QA processes to automatically provide data product quality information are defined in Section 2.

Page 31:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page 4-1 Version 1.7

Section 4

Constraints, Limitations, and Assumptions

4.1 Constraints and LimitationsThe following is a list of the constraints and limitations that will exist on this algorithm.

1) The GLAS level 1A data products should be ready within 24 hours of the availabil-ity of the level 0.

2) The implementation of this algorithm will follow the software development life cycle described in the GLAS Science Software Management Plan, listed in the Bib-liography in Section 6.

3) The Engineering Data Product (GLA03) should be produced first since data on that product may be used to further correct or calibrate the altimeter or lidar data.

4.2 AssumptionsThe following are assumptions made for the definition, development and use of this algo-rithm.

1) Level 0 data will be time ordered and contain no duplicate data.

2) GLAS instrument data will be within the ground tested limits for the data to be valid. However, checks will be made on the data and flags set indicating data anom-alies.

Page 32:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Constraints, Limitations, and Assumptions

Version 1.7 Page 4-2 September 2011

Page 33:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page 5-1 Version 1.7

Section 5

Bibliography

1) GLAS Level 0 Instrument Data product Specification, Version 2.2, March 1998, NASA Goddard Space Flight Center, Wallops Flight Facility.

2) GLAS Standard Data Products Specification - Level 1, Version 2.0, December 1998, NASA Goddard Space Flight Center, Wallops Flight Facility.

3) GLAS Science Software Management Plan, Version 3.0, August 1998, NASA God-dard Space Flight Center, Wallops Flight Facility.

4) GLAS Science Data Management Plan (GLAS SDMP), Version 4.0, June 1999, NASA Goddard Space Flight Center Wallops Flight Facility, GLAS-DMP-1200.

5) NASA Earth Observing System Geoscience Laser Altimeter System GLAS Science Requirements Document, Version 2.01, October 1997, Center for Space Research, University of Texas at Austin.

6) GLAS Atmospheric Data Products ATBD, Version 3.0, July 1999, NASA Goddard Space Flight Center.

7) ICESat Observatory Timing and Event Time Reconstruction, Rev. G, February 2001

8) I-SIPS Version 2 Delivery Package, TBD

9) Data Interface Control Document between the ICESat Spacecraft and the EOS Ground System (EGS), TBD

Page 34:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Bibliography

Version 1.7 Page 5-2 September 2011

Page 35:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page A-1 Version 1.7

Appendix A

Conversion Tables

A.1 Conversion Description for Each APIDTable A-1 "Conversion Description for GLAS Telemetry Data" lists each telemetry value for all the GLAS APIDs, the conversion type, the conversion description, resulting units, and des-tination L1A product ID. The conversion type can be

�• Interpretation (I)- Evaluates the values of a bit or bits in a telemetry word to determine the value. All flags and status words are assumed to be converted in this manner. The description of the bit values is in the Conversion Description column;

�• Polynomial (P)- A polynomial equation for the conversion from raw counts to engi-neering units. The polynomial equation looks like:Y = A + B*(X) + C*(X**2) +...whereY is the resulting instrument value in engineering unitsX is the raw instrument value in countsand A, B, C,... are the polynomial coefficients.

In the tables the coefficients are listed in the order A, B, C... in the Coefficient Description column;

�• Multi-variable (M) - the conversion for a raw telemetry value requires additional telemetry values (raw or in engineering units), such as temperatures or voltages. Depending on the complexity of the algorithm, the Conversion Description column will include the algorithm or will reference another section containing the algorithm;

�• Table-lookup (T) - Using the raw counts as an index to a table, the converted value is obtained;

�• Geophysical (G) -;

�• None (N) - No conversion is required; and

�• Unknown (U) - the conversion algorithm is currently unknown or not documented.

Page 36:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-2 September 2011

A.2 Telemetry Pseudo Engineering Unit Conversion

Table A-1 Conversion Description for GLAS Telemetry Data

APID Name Conv. Type Conversion Description Units

L1A Product

ID

ALL Primary Header I GLA03

ALL Secondary Header (time stamp) U GLA03

20 LMB Laser 1 Reference Temperature P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 Laser 1 Doubler Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 1 Oscillator Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 1 Electronics Temperature (MEU) P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 LMB Laser 2 Reference Temperature P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 Laser 2 Doubler Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 2 Oscillator Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 2 Electronics Temperature (MEU) P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 LMB Laser 3 Reference Temperature P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 Laser 3 Doubler Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 3 Oscillator Temperature P 20.84,1.032E-1,-2.879E-5,1.446E-7

Deg C GLA03

20 Laser 3 Electronics Temperature (MEU) P -33.84,5.368E-1,-1.622E-5,3.155E-6

Deg C GLA03

20 Laser Osc Current M 1.898 + 0.4878*(Laser Osc Cur-rent counts) - 1.406E-2*(Laser Monitor Board Temperature counts)

Amps GLA03

20 Laser Amp Current M 2.062 + 0.4865*(Laser Amp Current counts) - 1.406E-2*(Laser Monitor Board Tem-perature counts)

Amps GLA03

20 Laser Dr Pulse Width P 131.08,0.512 pulse width in usec

GLA03

Page 37:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-3 Version 1.7

50 OTS Level 1 readback P 40, -0.15625 micro Amps

GLA03

50 OTS Level 2 readback P 40, -0.15625 micro Amps

GLA03

50 OTS Level 3 readback P 40, -0.15625 micro Amps

GLA03

50 OTS Level 4 readback P 40, -0.15625 micro Amps

GLA03

50 OTS Trigger Count 1 readback P 0.0,0.256 micro-seconds

GLA03

50 OTS Trigger Count 2 readback P 0.0,0.256 micro-seconds

GLA03

20 AD Detector Outgoing Gain readback P -1, 0.0078125 Volts GLA03

20 AD Detector Return Gain readback P -1, 0.0078125 Volts GLA03

20 Laser and OTS Enable readbacks I See Section A.3 n/a GLA03

20 Dual Pin A M 0.5609 + 0.3823*(Dual Pin A counts) + 3.848E-5*(Dual Pin A counts^2) - 5.737E-3*(Laser Monitor Board Temperature counts)

% GLA03

20 Dual Pin B M 1.108 + 0.4143*(Dual Pin B counts) -8.671E-5*(Dual Pin B counts^2) - 1.159E-3*(Laser Monitor Board Temperature counts)

% GLA03

20 532 Energy M -0.969 + 0.4095*(532 Energy counts) -6.601E-5*(532 Energy counts^2) + 8.765E-3*(Laser Monitor Board Temperature counts)

% GLA03

20 Primary Altimeter Detector 550 V P 0.0, 3.581 Volts GLA03

20 Secondary Altimeter Detector 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #1 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #2 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #3 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #4 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #5 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #6 550 V P 0.0, 3.581 Volts GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 38:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-4 September 2011

20 SPCM Detector #7 550 V P 0.0, 3.581 Volts GLA03

20 SPCM Detector #8 550 V P 0.0, 3.581 Volts GLA03

20 Internal Temp #1 P - 50.0, 0.781 Deg C GLA03

20 C&T Positive Rail P 9.0, 0.031 Volts GLA03

20 Internal Temp #3 P -50.0, 0.781 Deg C GLA03

20 VC Motor Current P -100.0, 0.048828125 mAmps GLA03

20 VC Motor Current P -100.0, 0.048828125 mAmps GLA03

20 X Position P -10.0, 0.0048828125 Volts GLA03

20 Y Position P -10.0, 0.0048828125 Volts GLA03

21 Primary Monitor Calibration, Upper Byte

M Pseudo Telemetry Eqn 7 GLA03

21 Primary Monitor Calibration, Lower Byte

M Pseudo Telemetry Eqn 7/8 GLA03

21 +28V Bus A Instrument Voltage M Pseudo Telemetry Eqn 9 Volts GLA03

21 Hybrid Supplies Current M Pseudo Telemetry Eqn 10 Amps GLA03

21 HVPS Detector Supplies Current M Pseudo Telemetry Eqn 11 Amps GLA03

21 Operational Heaters Current M Pseudo Telemetry Eqn 12 Amps GLA03

21 Mechanical System Current M Pseudo Telemetry Eqn 13 Amps GLA03

21 +28V Bus B Laser 1 Voltage M Pseudo Telemetry Eqn 14 Volts GLA03

21 +28V Bus B Laser 1 Current M Pseudo Telemetry Eqn 15 Amps GLA03

21 +28V Bus C Laser 2 Voltage M Pseudo Telemetry Eqn 16 Volts GLA03

21 +28V Bus C Laser 2 Current M Pseudo Telemetry Eqn 17 Amps GLA03

21 +28V Bus D Laser 3 Voltage M Pseudo Telemetry Eqn 18 Volts GLA03

21 +28V Bus D Laser 3 Current M Pseudo Telemetry Eqn 19 Amps GLA03

21 Secondary Monitor Calibration, Upper Byte

M Pseudo Telemetry Eqn 20 n/a GLA03

21 Secondary Monitor Calibration, Lower Byte

M Pseudo Telemetry Eqn 20/21 n/a GLA03

21 + 5 V Hybrid # 1 Voltage M Pseudo Telemetry Eqn 22 Volts GLA03

21 + 5 V Hybrid # 1 Current M Pseudo Telemetry Eqn 23 Amps GLA03

21 +12 V Hybrid # 2 Voltage M Pseudo Telemetry Eqn 24 Volts GLA03

21 + 12 V Hybrid # 2 Current M Pseudo Telemetry Eqn 25 Amps GLA03

21 - 12 V Hybrid # 3 Voltage M Pseudo Telemetry Eqn 26 Volts GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 39:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-5 Version 1.7

21 - 12 V Hybrid # 3 Current M Pseudo Telemetry Eqn 27 Amps GLA03

21 + 5 V Hybrid # 4 Voltage M Pseudo Telemetry Eqn 28 Volts GLA03

21 + 5 V Hybrid # 4 Current M Pseudo Telemetry Eqn 29 Amps GLA03

21 - 5 V Hybrid # 5 Voltage M Pseudo Telemetry Eqn 30 Volts GLA03

21 - 5 V Hybrid # 5 Current M Pseudo Telemetry Eqn 31 Amps GLA03

21 - 5 V Hybrid # 6 Voltage M Pseudo Telemetry Eqn 32 Volts GLA03

21 - 5 V Hybrid # 6 Current M Pseudo Telemetry Eqn 33 Amps GLA03

21 + 15 V Boost Post Register Voltage M Pseudo Telemetry Eqn 34 Volts GLA03

21 - 15 V Boost Post Register Voltage M Pseudo Telemetry Eqn 35 Volts GLA03

21 +12 V Prim Osc Thermal Control Cur-rent

M Pseudo Telemetry Eqn 36 Amps GLA03

21 +12 V Sec Osc Thermal Control Cur-rent

M Pseudo Telemetry Eqn 37 Amps GLA03

21 -2 V Discrete Voltage M Pseudo Telemetry Eqn 38 Volts GLA03

21 Hybrid Heatsink Temperature M Pseudo Telemetry Eqn 39 Deg C GLA03

21 FET Switch Bank Heatsink Tempera-ture

M Pseudo Telemetry Eqn 40 Deg C GLA03

21 FET Switch Bank I See Section A.4 n/a GLA03

21 HVPS +0 Volts Reference P 0.0, 0.026 Volts GLA03

21 HVPS +5 V Reference P 0.0, 0.052 Volts GLA03

21 MCS Mux Counter (4-bits) N Counts GLA03

21 Optical Sensor Status I See Section A.5 n/a GLA03

21 Status Cmd Telemetry I See Section A.6 n/a GLA03

22 Housekeeping Board Temperature P -20.4, 0.3984 Deg C GLA03

22 Instrument Processor System Board Temperature

P -23.5, 0.3984 Deg C GLA03

22 Photon Counter Board Temperature P -21.6, 0.3984 Deg C GLA03

22 Cloud Digitizer/Frequency & Time Board Temperature

P -21.6, 0.3984 Deg C GLA03

22 Altimeter Digitizer 1 DSP Temperature P -21.0, 0.3984 Deg C GLA03

22 Altimeter Digitizer 2 DSP Temperature P -21.0, 0.3984 Deg C GLA03

22 Data Collection & Handling Board Temp

P -20.7, 0.3984 Deg C GLA03

22 Laser Monitor Board Temperature P -21.0, 0.3984 Deg C GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 40:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-6 September 2011

22 Temperature Controller Monitor Board Temperature

P -21.0, 0.3984 Deg C GLA03

22 Oven-crystal-controlled Oscillator (OXCO)1 Board Temperature

P -21.0, 0.3984 Deg C GLA03

22 OXCO 2 Board Temperature P -21.0, 0.3984 Deg C GLA03

22 Oscillator Board Temperature P -21.0, 0.3984 Deg C GLA03

22 OTS Board Temperature P -21.0, 0.3984 Deg C GLA03

22 LPA Temperature 1 P -21.0, 0.3984 Deg C GLA03

22 LPA Temperature 2 P -21.0, 0.3984 Deg C GLA03

22 AD 1 ECLA Temperature P -21.0, 0.3984 Deg C GLA03

22 AD 2 ECLA Temperature P -21.0, 0.3984 Deg C GLA03

22 AD 1 ECLB Temperature P -21.0, 0.3984 Deg C GLA03

22 AD 2 ECLB Temperature P -21.0, 0.3984 Deg C GLA03

22 AD 1 ADC Temperature P -21.0, 0.3984 Deg C GLA03

22 AD 2 ADC Temperature P -21.0, 0.3984 Deg C GLA03

22 SPCM Temperature P -18.113, 0.3083 Deg C GLA03

22 Telescope Mount Temperature P -18.113, 0.3083 Deg C GLA03

22 Telescope Baffle Temperature P -18.113, 0.3083 Deg C GLA03

22 AD 1 Temperature P -18.113, 0.3083 Deg C GLA03

22 AD 2 Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 1 LTR to SRS Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 2 LTR to SRS Temperature P -18.113, 0.3083 Deg C GLA03

22 Fiber Delay Line Temperature P -18.113, 0.3083 Deg C GLA03

22 Fiber Box Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 1 Fold Around Bench Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 2 Fold Around Bench Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 1 LTR CRS Temperature P -18.113, 0.3083 Deg C GLA03

22 Face 2 LTR CRS Temperature P -18.113, 0.3083 Deg C GLA03

22 SRS Parabola Temperature P -18.113, 0.3083 Deg C GLA03

22 PRT Cal Low P -18.113, 0.3083 Deg C GLA03

22 PRT Cal High P -18.113, 0.3083 Deg C GLA03

22 Pin Diode Bias Voltage P 0,0.2949 Volts GLA03

22 AD1 High Speed Ram Temperature P -21.0, 0.3984 Deg C GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 41:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-7 Version 1.7

22 Spares N n/a GLA03

23 Laser Select Mechanism 1 Temperature P -1456.13,0.5664055703 Deg C GLA03

23 Laser Select Mechanism 2 Temperature P -1456.13,0.5664055703 Deg C GLA03

23 Altimeter Digitizer Select Mechanism Temperature

P -1456.13,0.5664055703 Deg C GLA03

23 Laser Beam Select Mechanism Elec-tronics Temperature

P -1456.13,0.5664055703 Deg C GLA03

23 Laser Beam Select Mechanism Mirror Temperature

P -1456.13,0.5664055703 Deg C GLA03

23 HOP1 Actuator Current - Heater 1 P -2.0,976.5625E-6 Amps GLA03

23 HOP1 Actuator Current - Heater 2 P -2.0,976.5625E-6 Amps GLA03

23 HOP2 Actuator Current - Heater 1 P -2.0,976.5625E-6 Amps GLA03

23 HOP2 Actuator Current - Heater 2 P -2.0,976.5625E-6 Amps GLA03

23 HOP3 Actuator Current - Heater 1 P -2.0,976.5625E-6 Amps GLA03

23 HOP3 Actuator Current - Heater 2 P -2.0,976.5625E-6 Amps GLA03

23 LHP 1 and 2 Heater Status I LHP 1 Heater Status, Mask=0x01, 0=Off, 1=On; LHP 2 Heater Status, Mask=0x02, 0=Off, 1=On

n/a GLA03

23 Telescope Prim Mirror Heater Enable Readback

I 0=Disabled, 0xFF=Enabled n/a GLA03

23 Telescope Prim Mirror Heater Temp Setpoint Readback

P 0.1586, 0.1027, -4.253E-05, 3.833E-07

Deg C GLA03

23 spares N n/a GLA03

23 Telescope Tower Heater Enable Read-back

I 0=Disabled, 0xFF=Enabled n/a GLA03

23 Telescope Tower Heater Temp Setpoint Readback

P 0.1392, 0.104, -5.962E-05, 4.304E-07

Deg C GLA03

23 Etalon Heater Enable Readback I 0=Disabled, 0xFF=Enabled n/a GLA03

23 Etalon Heater Temp Setpoint Readback P 29.27, 0.09251, 9.919E-06, 1.022E-07

Deg C GLA03

23 LHP 1 Enable Readback I 0=Disabled, 0xFF=Enabled n/a GLA03

23 LHP 1 Temp Setpoint Readback P 0.02609, 0.1173, -6.871E-05, 2.629E-07

Deg C GLA03

23 LHP 2 Enable Readback I 0=Disabled, 0xFF=Enabled n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 42:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-8 September 2011

23 LHP 2 Temp Setpoint Readback P -7.696, 0.11, -5.1E-05,2.007E-07

Deg C GLA03

23 Thermistor Select - Tscope Prim Mirror - Status Readback

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Thermistor Select - Tscope Sec Mirror - Status Readback

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Thermistor Select Tscope Sec Support Structure Status Readback

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Thermistor Select LHP1(lasers) Status Readback

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Thermistor Select LHP2(rest of instru-ment) Status Readback

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Thermistor Select Etalon Status Read-back

I 0=Thermistor 1,0xFF=Thermistor 2

n/a GLA03

23 Spare N n/a GLA03

50 Telescope Primary Mirror Temperature P 0.1586, 0.1027, -4.253E-05, 3.833E-07

Deg C GLA03

50 Telescope Secondary Mirror Tempera-ture

P 0.02506,0.1051,-6.469E-05,4.376E-07

Deg C GLA03

50 Telescope Tower Temperature P 0.1392, 0.104, -5.962E-05, 4.304E-07

Deg C GLA03

50 Etalon Temperature P 29.27, 0.09251, 9.919E-06, 1.022E-07

Deg C GLA03

50 LHP 1 Temperature P 0.02609, 0.1173, -6.871E-05, 2.629E-07

Deg C GLA03

50 LHP 2 Temperature P -7.696, 0.11, -5.1E-05,2.007E-07

Deg C GLA03

50 Telescope Primary Mirror Heater drive current

P 0.0008, 0.003678 Amps GLA03

50 Telescope Secondary Mirror Heater drive current

P 0.0008, 0.003113 Amps GLA03

50 spares N n/a GLA03

50 Etalon Drive Heater Current P 1.35E-3, 0.003468 Amps GLA03

50 Delay Line All Temperature P -33.84, 0.5368, -1.622E-3, 3.155E-6

Deg C GLA03

50 Delay Line Mid Temperature P -2.406, 0.06459, -7.58E-6, 5.591E-8

Deg C GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 43:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-9 Version 1.7

50 Delay Line Hi Temperature P 13.33, 0.06518, -5.261E-6, 4.076E-8

Deg C GLA03

50 Spares N n/a GLA03

24 HS Task Cmd Processed Counter N n/a GLA03

24 HS Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 CS Task Cmd Processed Counter N n/a GLA03

24 CS Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 TC Task Cmd Processed Counter N n/a GLA03

24 TC Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 SB Task Cmd Processed Counter N n/a GLA03

24 SB Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 SM Task Cmd Processed Counter N n/a GLA03

24 SM Task Cmd Rejected (or Error) Counter

N n/a GLA03

24 RT Task Cmd Processed Counter N n/a GLA03

24 RT Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 RT Task RCH3 (SA22-25, CSA 26) Commands Received

N n/a GLA03

24 RT Task RCH3 (SA22-25, CSA 26) Commands Rejected

N n/a GLA03

24 MD Task Cmd Processed Counter N n/a GLA03

24 MD Task Cmd Rejected (or Error) Counter

N n/a GLA03

24 AD Task Cmd Processed Counter N n/a GLA03

24 AD Task Cmd Rejected (or Error) Counter

N n/a GLA03

24 AD Target Status and Mode Flags I See Section A.30 n/a GLA03

24 CD Task CMD Processed Counter N n/a GLA03

24 CD Task CMD Rejected (or Error) Counter

N n/a GLA03

24 CD Status Flags I See Section A.7 n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 44:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-10 September 2011

24 DC Task Cmd Processed Counter N n/a GLA03

24 DC Task Cmd Rejected (or Error) Counter

N n/a GLA03

24 DC Status flag I See Section A.8 n/a GLA03

24 GP Task Cmd Processed Counter N n/a GLA03

24 GP Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 GP Status Bits I See Section A.25 n/a GLA03

24 GP Spare N n/a GLA03

24 PC Task Cmd Processed Counter N n/a GLA03

24 PC Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 PC Status Flag I See Section A.9 n/a GLA03

24 CT Task Cmd Processed Counter N n/a GLA03

24 CT Task Cmd Rejected (or Error) Coun-ter

N n/a GLA03

24 CT Task Mode I See Section A.10 n/a GLA03

25 HS Processor Previous Mode I 0,1,4=Unknown, 2=PROM, 3=EEPROM

n/a GLA03

25 HS Processor Current Mode I 0,1,4=Unknown, 2=PROM, 3=EEPROM

n/a GLA03

25 Subsystem Present Flags I See Section A.11 n/a GLA03

25 HS Warm Restart Count N n/a GLA03

25 HS Cold Restart Count N n/a GLA03

25 HS Max Warm Restart Count N n/a GLA03

25 HS Cold-Warm Flag N n/a GLA03

25 HS OS Caused Reset Flag N n/a GLA03

25 HS OS Tick Count N n/a GLA03

25 HS HS Exec Count N n/a GLA03

25 HS CS Exec Count N n/a GLA03

25 HS TC Exec Count N n/a GLA03

25 HS SB Exec Count N n/a GLA03

25 HS SM Exec Count N n/a GLA03

25 HS RT Exec Count N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 45:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-11 Version 1.7

25 HS MD Exec Count N n/a GLA03

25 HS AD Exec Count N n/a GLA03

25 HS CD Exec Count N n/a GLA03

25 HS DC Exec Count N n/a GLA03

25 HS GP Exec Count N n/a GLA03

25 HS PC Exec Count N n/a GLA03

25 HS CT Exec Count N n/a GLA03

25 HS FPU Underflow Count N n/a GLA03

25 HS Timer 2 ISR Count N n/a GLA03

25 HS FP ISR Count N n/a GLA03

25 HS TC Fire Cmd ISR Count N n/a GLA03

25 HS RT ISR Count - Low Priority N n/a GLA03

25 HS Spare ISR Count N n/a GLA03

25 HS CT ISR Count N n/a GLA03

25 HS PCI Initiator ISR Count N n/a GLA03

25 HS GPS UART ISR Count N n/a GLA03

25 HS GPS 10 Sec ISR Count N n/a GLA03

25 HS DC ISR Count N n/a GLA03

25 HS PC ISR Count N n/a GLA03

25 HS WD ISR Count N n/a GLA03

25 HS AD ISR Count N n/a GLA03

25 HS CD ISR Count N n/a GLA03

25 HS OS Event Sequence Number N n/a GLA03

25 HS Peak CPU Utilization N n/a GLA03

25 HS Last CPU Utilization N n/a GLA03

25 HS OS PCI Bus Target Enable and Interrupt status

N n/a GLA03

25 HS OS Performance Log Enable Flag I 0x01; 0=Disabled, 1=Enabled n/a GLA03

25 HS OS Performance Log Item Count N n/a GLA03

25 HS OS Performance Log Filter Start Address

N n/a GLA03

25 HS OS Performance Log Filter Mask N n/a GLA03

25 Spares N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 46:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-12 September 2011

25 CS Status Flags I See Section A.12 n/a GLA03

25 CS Code Segment Error Count N n/a GLA03

25 CS EEPROM Segment Error Count N n/a GLA03

25 CS Table Ram Segment Error Count N n/a GLA03

25 CS Table ID of last Code Error N n/a GLA03

25 CS Table ID of last EEPROM Error N n/a GLA03

25 CS Table ID of last Table RAM Error N n/a GLA03

25 CS Code Segment Master Checksum N n/a GLA03

25 CS Table RAM Master Checksum N n/a GLA03

25 CS EEPROM Master Checksum N n/a GLA03

25 CS Checksum of EEPROM Boot Mem-ory

N n/a GLA03

25 CS Checksum of EEPROM Memory N n/a GLA03

25 CS Checksum of PROM Memory N n/a GLA03

25 CS Spare N n/a GLA03

25 TC GLAS MET Upper 2 bytes U 0xFF0000 GLA03

25 TC GLAS MET Lower 4 bytes U 0x00FFFF GLA03

25 TC Fire Command Time Increment Upper 2 bytes

U GLA03

25 TC Fire Command Time Increment Lower 4 bytes

U GLA03

25 TC GLAS MET Working Time seconds U GLA03

25 TC GLAS MET Working Time micro-seconds

U GLA03

25 Spare N n/a GLA03

25 SB Send Error Count N n/a GLA03

25 SB Receive Error Count N n/a GLA03

25 SB OS Error Count N n/a GLA03

25 SB Queue Full Error Count N n/a GLA03

25 SB Buffer overrun Error Count N n/a GLA03

25 SB last buffer overrun - Stream Id N n/a GLA03

25 SB last buffer overrun - Pipeline Id N n/a GLA03

25 SB last buffer overrun - Sender Task ID N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 47:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-13 Version 1.7

25 SB last queue full - Stream Id N n/a GLA03

25 SB last queue full - Pipeline Id N n/a GLA03

25 SB last queue full - Sender Task ID N n/a GLA03

25 SB Spare N n/a GLA03

25 SM number of remaining copies to be dumped

N n/a GLA03

25 SM table/memory dump in progress flag I 0=False, 1=True n/a GLA03

25 SM table operations flag I See Section A.13 n/a GLA03

25 SM table operations from image type I 0=None, 1=EEPROM, 2=RAM, 3=NULL

n/a GLA03

25 SM table id selected N n/a GLA03

25 SM currently selected table size in words

N n/a GLA03

25 SM currently selected table checksum N n/a GLA03

25 SM table commit success count N n/a GLA03

25 SM table commit failure count N n/a GLA03

25 SM table num. of words loaded N n/a GLA03

25 SM FSW build number N n/a GLA03

25 SM FSW version number N n/a GLA03

25 SM spares N n/a GLA03

25 BCRT CONTROL REGISTER WORD I See Section A.14 n/a GLA03

25 BCRT Status Register I 0=RT Mode Disabled, 1=RT Mode Enabled

n/a GLA03

25 BCRT INTERRUPT STATUS REGIS-TER

N n/a GLA03

25 RT 1553 MESSAGE ERRORS N n/a GLA03

25 RT 1553 RETRY COUNT N n/a GLA03

25 RT 1553 INVALID COMMANDS N n/a GLA03

25 RT 1553 INVALID BROADCAST CMDS

N n/a GLA03

25 RT MODE CODES RECEIVED N n/a GLA03

25 SPARE N n/a GLA03

25 RT PACKETS RECEIVED ON RCH1 N n/a GLA03

25 RT PACKETS Rejected ON RCH1 N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 48:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-14 September 2011

25 RT PACKETS SENT ON XCH1 N n/a GLA03

25 RT PACKETS SENT ON XCH2 N n/a GLA03

25 RT Number of Command History Pack-ets Sent

N n/a GLA03

25 RT Checksum Status I 0=Cmd CS Disabled, 1=Cmd CS Enabled

n/a GLA03

25 Spares N n/a GLA03

25 MD Enable/Disable Flag I See Section A.22 n/a GLA03

25 MD Table 1 Address Count N n/a GLA03

25 MD Table 2 Address Count N n/a GLA03

25 MD Table 1 Rate P 0.0,0.125 seconds GLA03

25 MD Table 2 Rate P 0.0,0.125 seconds GLA03

25 MD spare N n/a GLA03

55 AD Software Error Count N n/a GLA03

55 AD Hardware Error Count N n/a GLA03

55 AD Shot Count Value N n/a GLA03

55 AD Shot Count Skip Detected I 0= no skip, 1=skip n/a GLA03

55 AD Synchronized Flag I 0=not in sync, 1=in sync n/a GLA03

55 AD Spare N n/a GLA03

55 AD DSP Laser Fire Count N n/a GLA03

55 AD DSP Alive Count N n/a GLA03

55 AD Ancillary Packets Sent N n/a GLA03

55 AD Engineering Packets Sent N n/a GLA03

55 AD Science Small Packets Sent N n/a GLA03

55 AD Science Large Packets Sent N n/a GLA03

55 AD DSP Load Packets Processed Count N n/a GLA03

55 AD DSP Memory Dump Packets Sent N n/a GLA03

55 AD Memory Load Command Errors N n/a GLA03

55 AD Memory Dump Command Errors N n/a GLA03

55 AD DSP Checksum Rate N n/a GLA03

55 AD DSP Checksum S/W Valid Status I 0=Not Valid, 1=Valid n/a GLA03

55 AD DSP # of times all of memory has been checksummed

N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 49:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-15 Version 1.7

55 AD DSP Bootstrap Checksum Lower 16 bits

N n/a GLA03

55 AD DSP EPROM Checksum Lower 16 bits

N n/a GLA03

55 AD DSP RAM Checksum Lower 16 bits

N n/a GLA03

55 AD DSP Bootstrap Checksum Upper 32 bits

N n/a GLA03

55 AD DSP EPROM Checksum Upper 32 bits

N n/a GLA03

55 AD DSP RAM Checksum Upper 32 bits N n/a GLA03

55 AD DSP S/W Build Number N n/a GLA03

55 AD DSP S/W Version Number N n/a GLA03

55 AD GPS Range Window Packets received

N n/a GLA03

55 AS DSP Patch Checksum bits 15..0 N n/a GLA03

55 AS DSP Patch Checksum bits 47...16 N n/a GLA03

55 AD Auto Reset DSP Flag I 0=False; 1=True n/a GLA03

55 AD Software Enable Flag I See Section A.26 n/a GLA03

55 AD DSP Trouble Indicator Status Word I See Section A.27 n/a GLA03

55 AD DSP Memory Table Load Error Counter

N n/a GLA03

55 AD Fixed Return Gain Setting N n/a GLA03

55 AD Spares N n/a GLA03

55 CD Software Error Count N n/a GLA03

55 CD Shot Count N n/a GLA03

55 CD Science Mode Packets Sent N n/a GLA03

55 CD Engineering Mode Packets Sent N n/a GLA03

55 CD Ancillary Packet Sent N n/a GLA03

55 CD Range Gate Packets Received N n/a GLA03

55 CD 40-bit Counter Packets Sent N n/a GLA03

55 Spare N n/a GLA03

55 CD Background #1 Delay P 0.0,128.0 nanosec-onds

GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 50:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-16 September 2011

55 CD Background #2 Delay P 0.0,128.0 nanosec-onds

GLA03

55 CD Range Gate Delay P 0.0,128.0 nanosec-onds

GLA03

55 Spare N n/a GLA03

55 CD Raw A/D Output Data I See Section A.15 n/a GLA03

55 CD GPS 40 bit Latch Value 32 lsb U GLA03

55 CD Fire Acknowledge 40 bit Latch Value 32 lsb

U GLA03

55 CD Fire Cmd 40 bit Latch Value 32 lsb U GLA03

55 Spare N n/a GLA03

55 CD Fire Cmd 40 bit Latch Value 8 msb U GLA03

55 CD Fire Acknowledge 40 bit Latch Value 8 msb

U GLA03

55 CD GPS 40 bit Latch Value 8 msb U GLA03

55 CD Data Ready Counter I CD Fire Acknowledge Counter mask 0x0000FF00; CD Data Ready Counter mask 0x000000FF

n/a GLA03

55 CD Interrupt Status I See Section A.16 n/a GLA03

55 Spare N n/a GLA03

55 DC Software Fail Count N n/a GLA03

55 DC Shot Count N n/a GLA03

55 DC X Position N n/a GLA03

55 DC Y Position N n/a GLA03

55 DC LPA Packets Sent N n/a GLA03

55 DC Test Mode Rate N n/a GLA03

55 DC Packets Sent N n/a GLA03

55 DC Bytes Sent N n/a GLA03

55 DC Output bit rate in BPS N n/a GLA03

55 DC Interrupt register N n/a GLA03

55 DC Control latch register N n/a GLA03

55 DC Interrupt Mask Register I See Section A.17 n/a GLA03

55 DC fifo flags register I See Section A.18 n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 51:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-17 Version 1.7

55 DC LPA gain register I See Section A.19 n/a GLA03

55 DC LPA packet count register I See Section A.20 n/a GLA03

55 DC Spares N n/a GLA03

55 GP GPS 10 second Interrupt Count N n/a GLA03

55 GP Number of Position Packets received

N n/a GLA03

55 GP Number of Housekeeping packets sent

N n/a GLA03

55 GP Number of Ancillary Packets sent N n/a GLA03

55 GP GPS 10 second Pulse 40-Bit Coun-ter Requests sent

N n/a GLA03

55 GP GPS 10 sec. Pulse 40-Bit Counter Packets Received

N n/a GLA03

55 GP Packets with bad X,Y,Z position data

N n/a GLA03

55 GP Packets with X,Y,Z position data below tolerance

N n/a GLA03

55 GP Number of range packets sent N n/a GLA03

55 GP Spares N n/a GLA03

55 PC Software Error Count N n/a GLA03

55 PC Shot Counter N n/a GLA03

55 PC SCIENCE MODE PACKETS SENT N n/a GLA03

55 PC ENGINEERING MODE PACK-ETS SENT

N n/a GLA03

55 PC ANCILLARY MODE PACKETS SENT

N n/a GLA03

55 PC RANGE GATE DELAY PACKETS RECEIVED

N n/a GLA03

55 PC SPCM Gate Delay P 0.0,128.0 nanosec-onds

GLA03

55 PC Background 1 Delay P 0.0,128.0 nanosec-onds

GLA03

55 PC Background 2 Delay P 0.0,128.0 nanosec-onds

GLA03

55 PC Range Gate Delay P 0.0,128.0 nanosec-onds

GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 52:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-18 September 2011

55 PC Hardware Mode Status Word I See Section A.21 n/a GLA03

55 PC SPCM STATUS I Bits indicate which SPCM are enabled; 0=Enabled, 1=Dis-abled.:SPCM 1: mask 0x00000100; SPCM 2: mask 0x00000200; SPCM 3: mask 0x00000400; SPCM 4: mask 0x00000800; SPCM 5: mask 0x00001000; SPCM 6: mask 0x00002000; SPCM 7: mask 0x00004000; SPCM 8: mask 0x00008000

n/a GLA03

55 PC Data Ready Counter I PC Fire Acknowledge Counter: mask 0x00FF00PC Data Ready Counter: mask 0x0000FF

GLA03

55 PC SPCM 1 THROUGH 4 RAW COUNTS

I SPCM Raw Counts;SPCM 1: mask 0x000000FF SPCM 2: mask 0x0000FF00 SPCM 3: mask 0x00FF0000 SPCM 4: mask 0xFF000000

counts GLA03

55 PC SPCM 5 THROUGH 8 RAW COUNTS

I SPCM Raw Counts;SPCM 5: mask 0x000000FF SPCM 6: mask 0x0000FF00 SPCM 7: mask 0x00FF0000 SPCM 8: mask 0xFF000000

counts GLA03

55 PC SPCM Duty Cycle N GLA03

55 PC Coarse Boresite Calibration X Start Pos

N GLA03

55 PC Coarse Boresite Calibration Y Start Pos

N GLA03

55 PC Fine Boresite Calibration X Start Pos

N GLA03

55 PC Fine Boresite Calibration Y Start Pos

N GLA03

55 PC Coarse Boresite Calibration X Incre-ment

N GLA03

55 PC Coarse Boresite Calibration Y Incre-ment

N GLA03

55 PC Fine Boresite Calibration X Incre-ment

N GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 53:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-19 Version 1.7

55 PC Fine Boresite Calibration Y Incre-ment

N GLA03

55 PC Coarse Boresite Calibration Integra-tion Seconds

N GLA03

55 PC Fine Boresite Calibration Integration Seconds

N GLA03

55 PC Boresite Calibration Best X Position N GLA03

55 PC Boresite Calibration Best Y Position N GLA03

55 PC Boresite Calibration Seconds Remaining

N GLA03

55 Spares N n/a GLA03

55 CT State Machine Current State I 0=Unknown, 1=Reset, 2=Time-out, 3=Acquire Sync, 4=Wait for Muxes, 5=Process Teleme-try, 6=Unknown

n/a GLA03

55 CT COMMAND ECHO ERRORS N n/a GLA03

55 CT LM BOARD CMDS RECEIVED N n/a GLA03

55 CT TM BOARD CMDS RECEIVED N n/a GLA03

55 CT MC BOARD CMDS RECEIVED N n/a GLA03

55 CT HK BOARD CMDS RECEIVED N n/a GLA03

55 CT HVPS Cmds Received N n/a GLA03

55 CT PDU Cmds Received N n/a GLA03

55 CT HW TLM 1 PACKETS SENT N n/a GLA03

55 CT HW TLM 2 PACKETS SENT N n/a GLA03

55 CT HW TLM 3 PACKETS SENT N n/a GLA03

55 CT HW TLM 4 PACKETS SENT N n/a GLA03

55 CT HW TLM 5 PACKETS SENT N n/a GLA03

55 CT DWELL PACKETS SENT N n/a GLA03

55 CT ANCILLARY PACKETS SENT N n/a GLA03

55 CT TIMEOUT COUNT N n/a GLA03

55 CT INTERRUPT COUNT N n/a GLA03

55 CT Shot Counter Errors N n/a GLA03

55 CT Dwell Mode I 0=None, 1=LMB, 2=HK, 4=TCM, 8=MCS, 16=PDU, 32=HVPS

n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 54:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-20 September 2011

55 CT Dwell Channel N n/a GLA03

55 CT Laser Monitor Board Mux Error Counter

N n/a GLA03

55 CT Housekeeping Board Mux Error Counter

N n/a GLA03

55 CT Housekeeping Board Submux Error Counter

N n/a GLA03

55 CT Temperature Controller Board Mux Error Counter

N n/a GLA03

55 CT Mechanism Controller Board Mux Error Counter

N n/a GLA03

55 CT High Voltage Power Supply Mux Error Counter

N n/a GLA03

55 CT Power Distribution Unit Mux Error Counter

N n/a GLA03

55 CT Command Echo Success Count N n/a GLA03

55 CT Suppressed Event Message Error Flags

I See Section A.23 n/a GLA03

55 CT LHP1 Temperature Control State I See Section A.24 n/a GLA03

55 CT LHP2 Temperature Control State I See Section A.24 n/a GLA03

55 CT LHP1 Temperature Setpoint N n/a GLA03

55 CT LHP2 Temperature Setpoint N n/a GLA03

55 CT LHP1 Temperature Control Counter N n/a GLA03

55 CT LHP2 Temperature Control Counter N n/a GLA03

55 CT LHP1 Minimum Temperature N n/a GLA03

55 CT LHP2 Minimum Temperature N n/a GLA03

55 CT LHP1 Temperature Change N n/a GLA03

55 CT LHP2 Temperature Change N n/a GLA03

55 CT LHP1 Temperature Control Cycle Time

N n/a GLA03

55 CT LHP2 Temperature Control Cycle Time

N n/a GLA03

55 CT Misc Status Flags I 0=HK SubMUX Paused1=OK

n/a GLA03

55 CT Spares N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 55:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-21 Version 1.7

31 Dump Packet CRC Error I 0 = No Errors1 = CRC Error Detected

n/a *

31 Start address N *

31 Number of 48-bit words in packet N n/a *

31 Type I 0=data memory, 1=program memory

n/a *

31 Data I 100 48 bit-words. Every 2 con-secutive 32-bit words contain a 48-bit word. The first 32-bit word contains the most signifi-cant 32 bits and the second con-tains the least significant 16-bits with the upper 16 bits zero filled.

*

32 Dump Packet CRC Error I 0 = No Errors1 = CRC Error Detected

n/a *

32 Start address N *

32 Number of 32-bit words in packet N For Altimeter Digitizer one shot mode, multiply this number by 4 to get the number of waveform bins contained in the packet.

n/a *

32 Type I 0=data memory, 1=program memory

n/a *

32 Data N n/a *

33 C&T Board where telemetry point is being dwelled on

I 1= LMB, 2=HK, 4=TCM, 8=MCS, 16=PDU, 32=HVPS

n/a *

33 Telemetry channel (or point) to dwell on N n/a *

33 Data from 1st second (older) N n/a *

33 Data from 2nd second N n/a *

33 Data from 3rd second N n/a *

33 Data from 4th second N n/a *

27/28 The number of words currently used by Dwell Table 1 or 2

N n/a *

27/28 The dwell rate for Table 1 or 2 P [(rate+1)*(1/8) sec], must be greater than 1/2 second, Polyno-mial coeff=(0.125, 0.125)

*

27 /28 The stored values sampled by Memory Dwell Table 1 or 2

N n/a *

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 56:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-22 September 2011

27/28 Spare N n/a *

34 Event Message Characters N 66 bytes that contain a ASCII text message to be displayed on GLAS operator console (may have to be byte swapped)

*

35 Processor ID N n/a *

35 Current Dump Copy Number N n/a *

35 Memory Address of First Word in this Packet

N n/a *

35 Num. of Words Dumped in this Packet N n/a *

35 Dumped Data Words N n/a *

36 Table Id Number N n/a *

36 Current Table Dump Copy Number N n/a *

36 Table Offset N n/a *

36 Num. of Words Dumped in this Packet N n/a *

36 Table Source Type I 1 = EEPROM; 2 = RAM; 4 = BUFFER

n/a *

36 Dumped Table Data Words N n/a *

48 Data Types Packet Fixed Pattern N n/a *

12/13/14

Spare N n/a *

12/13/14

Shot Counter N n/a GLA01

12/13/14

Transmit Pulse Waveform N n/a GLA01, GLA04

12/13/14

Transmit Pulse Waveform Peak Time N ns GLA01, GLA04

12/13/14

Transmit Pulse Waveform Peak Thresh-old Flag

I Bit 0: Software ErrorBit 1: Search Failure (below threshold)Bit 2: Search Failure Latch.Value of 0 = False, 1 = True.

Note: once set to true, Bit 2 can only be cleared by a DSP reset or by a ground command.

n/a GLA01, GLA04

12/13/14

Starting Address of Transmit Pulse Sample

N ns GLA01, GLA04

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 57:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-23 Version 1.7

12/13/14

Ending Address of Range Response Surface Echo Dump

N ns GLA01

12/13/14

Last Threshold Crossing Time(Trailing Edge)

N ns GLA01

12/13/14

Next to Last Threshold Crossing Time(Leading Edge)

N ns GLA01

12/13/14

4ns Filter Peak Value N counts GLA01

12/13/14

8ns Filter Peak Value N counts GLA01

12/13/14

Peak Value for the selected filter N counts GLA01

12/13/14

Time of the Peak Value for the selected filter

N ns GLA01

12/13/14

Filter Selected I 0 = 4 ns filter1 = 8 ns filter2 = 16 ns filter3 = 32 ns filter4 = 64 ns filter5 = 128 ns filter

n/a GLA01

12/13/14

Threshold Value N counts GLA01

12/13/14

Background Noise Mean Value for 4 ns filter

N GLA01

12/13/14

Background Noise Standard Deviation Value for the 4 ns filter

N GLA01

12/13/14

Range Window Status Word I See Section A.29 n/a GLA01

12/13/14

Calculated Weights for all Filters U GLA01

12/13/14

Altimeter Digitizer Gain Setting U GLA01

12/13/14

Surface Echo Sample Padding N n/a GLA01

12/13/14

Surface Echo Compress Type N 0=N, p & q1=r

n/a GLA01

12/13/14

Surface Echo Data Samples (may have been averaged)

N counts GLA01

15 Shot Counter N GLA02

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 58:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-24 September 2011

15 -1 km to 10 km Data N n/a GLA02

15 Background N n/a GLA02

15 error flags N n/a GLA02

15 spares N n/a GLA02

15 10 km to 20 km data N n/a GLA02

15 20 km to 40 km data N n/a GLA02

16 Shot Counter N n/a *

16 40 km to 20 km data N n/a *

16 20 km to 10 km data N n/a *

16 10 km to -1km data N n/a *

17 Shot Counter N n/a GLA02

17 -1 km to 10 km Data N n/a GLA02

17 Background N n/a GLA02

17 10 km to 20 km data N n/a GLA02

18 Shot Counter N n/a *

18 20 km to 10 km data N n/a *

18 10 km to -1 km data N n/a *

19 Shot counter N n/a GLA03

19 Check-In Flags I 1= tlm in ancillary packet, 0=tlm NOT in ancillary packet; AD Checkin Flag:Mask=0x01PC Checkin Flag: Mask 0x02CD Checkin Flag: Mask 0x04GP Checkin Flag: Mask 0x08CT Checkin Flag: Mask 0x10

n/a GLA03

19 Shot Counter N n/a GLA03

19 Altimeter Dig. Range Window Rmin N ns GLA01

19 Altimeter Dig. Range Window Rmax N ns GLA01

19 RMS Noise calculation start time offset N ns GLA01

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 59:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-25 Version 1.7

19 Filter Selection Mask I 0=Filter Disabled, 1=Filter Enabled. 4 ns: Mask=0x00018 ns: Mask=0x000216 ns: Mask=0x000432 ns: Mask=0x000864 ns: Mask=0x0010128 ns: Mask=0x0020

n/a GLA01

19 Shot Counter for PDL waveform N n/a GLA03

19 Post Delay Laser Pulse Response Start Address

N ns GLA03

19 Sampled Post Delay Pulse Waveform N n/a GLA03

19 OTS Laser Pulse Response Start Address

N ns GLA03

19 Shot Counter for OTS N n/a GLA03

19 Sampled OTS Pulse Waveform N n/a GLA03

19 Location of transmit pulse search win-dow (start)

N ns GLA03

19 Number of No Threshold Crossing Shots for Error Condition

N n/a GLA03

19 Spare Telemetry Byte N n/a GLA03

19 Surface Echo Land Type I 0=sea, 1=land, 2=sea/ice, 3=land/ice

n/a GLA01

19 Value of 'p' used for frame N n/a GLA01

19 Value of 'q' used for frame N n/a GLA01

19 Value of 'N' used for frame N n/a GLA01

19 Value of 'r' used for frame N n/a GLA01

19 Transmit Pulse Threshold Value N counts GLA03

19 Filter Weight Param C0 for 4 ns filter N n/a GLA03

19 Filter Weight Param C1 for 4 ns filter N n/a GLA03

19 Filter Weight Param C2 for 4 ns filter N n/a GLA03

19 Filter Weight Param C3 for 4 ns filter N n/a GLA03

19 Filter Weight Param C0 for 8 ns filter N n/a GLA03

19 Filter Weight Param C1 for 8 ns filter N n/a GLA03

19 Filter Weight Param C2 for 8 ns filter N n/a GLA03

19 Filter Weight Param C3 for 8 ns filter N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 60:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-26 September 2011

19 Filter Weight Param C0 for 16 ns filter N n/a GLA03

19 Filter Weight Param C1 for 16 ns filter N n/a GLA03

19 Filter Weight Param C2 for 16 ns filter N n/a GLA03

19 Filter Weight Param C3 for 16 ns filter N n/a GLA03

19 Filter Weight Param C0 for 32 ns filter N n/a GLA03

19 Filter Weight Param C1 for 32 ns filter N n/a GLA03

19 Filter Weight Param C2 for 32 ns filter N n/a GLA03

19 Filter Weight Param C3 for 32 ns filter N n/a GLA03

19 Filter Weight Param C0 for 64 ns filter N n/a GLA03

19 Filter Weight Param C1 for 64 ns filter N n/a GLA03

19 Filter Weight Param C2 for 64 ns filter N n/a GLA03

19 Filter Weight Param C3 for 64 ns filter N n/a GLA03

19 Filter Weight Param C0 for 128 ns filter N n/a GLA03

19 Filter Weight Param C1 for 128 ns filter N n/a GLA03

19 Filter Weight Param C2 for 128 ns filter N n/a GLA03

19 Filter Weight Param C3 for 128 ns filter N n/a GLA03

19 Background Noise A1 Coefficient for 4ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 4ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 4ns Filter

N n/a GLA03

19 Background Noise A1 Coefficient for 8ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 8ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 8ns Filter

N n/a GLA03

19 Background Noise A1 Coefficient for 16ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 16ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 16ns Filter

N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 61:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-27 Version 1.7

19 Background Noise A1 Coefficient for 32ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 32ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 32ns Filter

N n/a GLA03

19 Background Noise A1 Coefficient for 64ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 64ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 64ns Filter

N n/a GLA03

19 Background Noise A1 Coefficient for 128ns Filter

N n/a GLA03

19 Background Noise A2 Coefficient for 128ns Filter

N n/a GLA03

19 Background Noise A3 Coefficient for 128ns Filter

N n/a GLA03

19 Spare Telemetry Bytes N n/a GLA03

19 Enable/Disable Auto Gain Calculation N 0 = fixed;1 = Auto

n/a GLA03

19 Enable/Disable Use of 8ns Filter for Auto Gain Calculation

N 0 = Selected Filter;1 = 8 ns Filter

n/a GLA03

19 Return Gain Value N n/a GLA03

19 Auto Gain Calculation A1 Parameter N n/a GLA03

19 Auto Gain Calculation A2 Parameter N n/a GLA03

19 Auto Gain Calculation A3 Parameter N n/a GLA03

19 Auto Gain Calculation A4 Parameter N n/a GLA03

19 Auto Gain Calculation B1 Parameter N n/a GLA03

19 Auto Gain Calculation B2 Parameter N n/a GLA03

19 Auto Gain Calculation B3 Parameter N n/a GLA03

19 Auto Gain Calculation B4 Parameter N n/a GLA03

19 Auto Gain Calculation C0 parameter N n/a GLA03

19 Auto Gain Calculation C1 parameter N n/a GLA03

19 Auto Gain Calculation Vref Parameter N n/a GLA03

19 Auto Gain Calculation Zmin Parameter N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 62:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-28 September 2011

19 Auto Gain Calculation Zmax Parameter N n/a GLA03

19 Auto Gain Calculation Vmin Parameter N n/a GLA03

19 Auto Gain Calculation Ginit Parameter N n/a GLA03

19 Auto Gain Calculation Gmin Parameter N n/a GLA03

19 Auto Gain Calculation Gmax Parameter N n/a GLA03

19 Tolerance for Coincidence of Filters N ns GLA03

19 Range Window Dump (waveform time) Offset for 4 ns filter

N ns GLA03

19 Range Window Dump (waveform time) Offset for 8 ns filter

N ns GLA03

19 Range Window Dump (waveform time) Offset for 16 ns filter

N ns GLA03

19 Range Window Dump (waveform time) Offset for 32 ns filter

N ns GLA03

19 Range Window Dump (waveform time) Offset for 64 ns filter

N ns GLA03

19 Range Window Dump (waveform time) Offset for 128 ns filter

N ns GLA03

19 Surface (Pulse) Return Threshold Val-ues for All Filters

N 2 spare bytes; 6 threshold values - one for each filter.

n/a GLA03

19 FIR Filter Coefficients N n/a GLA03

19 Filter Weight Min Standard Deviation N n/a GLA03

19 Filter Noise Minimum thresholds for 4 ns filter

N counts GLA03

19 Filter Noise Minimum thresholds for 8 ns filter

N counts GLA03

19 Filter Noise Minimum thresholds for 16 ns filter

N counts GLA03

19 Filter Noise Minimum thresholds for 32 ns filter

N counts GLA03

19 Filter Noise Minimum thresholds for 64 ns filter

N counts GLA03

19 Filter Noise Minimum thresholds for 128 ns filter

N counts GLA03

19 Filter Reject Mask for Leading Edge Failures

N counts GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 63:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-29 Version 1.7

19 Filter Reject Mask for Trailing Edge Failures

N counts GLA03

19 Spare Telemetry Bytes N n/a GLA03

19 Spare N n/a GLA03

19 SPCM 1-4 Raw Counts N counts GLA02

19 SPCM 5-8 Raw Counts N counts GLA02

19 SPCM Gate Delay and Background #1 Delay

N counts GLA02

19 Background #2 Delays and Range Gate Delay

N counts GLA02

19 SPCM status N counts GLA02

19 Spare N counts GLA02

19 A/D output and CD Amplifier Attenua-tion (gain) setting

N counts GLA02

19 Background #1 Delay N counts GLA02

19 Background #2 and Range Gate Delay N counts GLA02

19 Detector status N counts GLA02

19 Spare N n/a GLA03

19 Shot Counter for start of Frame N n/a GLA03

19 Shot Counter N counts GLA03

19 Fire Acknowledge Time (from Freq and Time Bd)

M GLA03

19 Fire Command Time (from Freq and Time Bd)

M See Section A.32 for shot time tag specification. The raw value will be stored on GLA03. The shot times will be stored on GLA01 and GLA04

GLA03,GLA01, GLA04

19 Latitude N degrees GLA03

19 Longitude N degrees GLA03

19 Height (Hsat) P 0.0, 1000.0 meters GLA02, GLA03

19 Rsat P 0.0, 1000.0 meters GLA01

19 Rmin P 0.0, 1000.0 meters GLA01

19 Rmax P 0.0, 1000.0 meters GLA01

19 Wmin P 0.0, 1000.0 meters GLA01

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 64:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-30 September 2011

19 Wmax P 0.0, 1000.0 meters GLA01

19 Hoffmin (DEM uncertainty + bias) P 0.0, 1000.0 meters GLA01, GLA02

19 Hoffmax (DEM uncertainty - bias) P 0.0, 1000.0 meters GLA01, GLA02

19 Rbmin P 0.0, 1000.0 meters GLA01

19 Rbmax P 0.0, 1000.0 meters GLA01

19 PC Range Bias P 0.0, 1000.0 meters GLA02

19 CD Range Bias P 0.0, 1000.0 meters GLA02

19 Surface Type I 0=ocean & no ice1=land & no ice2=ocean & ice3=land & ice

n/a GLA01

19 Position data valid flag I 0 = no errors detected during position data processingotherwise non-zero.

n/a GLA03

19 Spacecraft time & position packet data N Format is defined in spacecraft ICD.

n/a GLA03

19 Shot Count for 1553 Spacecraft Position and command packet.

N Only lower 8 bits valid n/a GLA03

19 GLAS MET for 1553 Spacecraft Posi-tion and command packet.

U GLA03

19 DEM minimum byte I, P See Section A.28 meters GLA01,GLA02,GLA03

19 DEM maximum byte I, P See Section A.28 meters GLA01, GLA02,GLA03

19 Range data source I 0=s/c time & pos packet 1=uplinked DEM bytes 2=uplinked Rmin/Rmax

n/a GLA01, GLA03

19 GPS 10 Sec Pulse 40 bit count value N n/a GLA03

19 GLAS MET for GPS 0.1 Hz Pulse N n/a GLA03

19 Spare Bytes N n/a GLA03

19 Etalon Calibration - Current mode I 0 = off, 1 = Acquire,2 = Tracking

n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 65:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-31 Version 1.7

19 Etalon State I 0 = Idle, 1 = Init,2 = Set Temperature,3 = Settle, 4 = Average,5 = Open Loop, 6 = Modified

n/a GLA03

19 Etalon Temperature Settle Time N sec GLA02, GLA03

19 Etalon Flags I See Section A.31 n/a GLA02, GLA03

19 Etalon Averaged On-Axis Transmission N n/a GLA02, GLA03

19 Etalon Averaged Off-Axis Transmission N n/a GLA02, GLA03

19 Etalon Temperature Error N C GLA02, GLA03

19 Etalon Tracking Loop Filter Output N n/a GLA02, GLA03

19 Etalon Tracking Failure Average N n/a GLA02, GLA03

19 Etalon Start Temperature for Acquire Command

N C GLA02, GLA03

19 Etalon Stop Temperature for Acquire Command

N C GLA02, GLA03

19 Etalon Temperature Step for Acquire Command

N Deg C GLA02, GLA03

19 Etalon Averaging Time for Acquire Command

N sec GLA02, GLA03

19 Etalon Temperature Settle Time for Acquire Command

N sec GLA02, GLA03

19 Etalon Averaging Update Counter I 0=off, 1=on n/a GLA02, GLA03

19 Spare Bytes N n/a GLA02, GLA03

19 Dual Pin A (Etalon Feedback Monitor Value)

N n/a GLA02, GLA03

19 Dual Pin B (Etalon Feedback Monitor Value)

N n/a GLA02, GLA03

19 Etalon 532 Energy N n/a GLA02, GLA03

26 Spare N n/a GLA03

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 66:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-32 September 2011

Several more complicated conversion equations and conversion equations that are based on telemetered calibration values are titled by the flight software team to be Pseudo equations. These equations are defined in Table A-2 "Pseudo-Telemetry Conversions". Table A-1 refer-ences the appropriate equation by the equation number. In Table A-2, the terms TLM_raw and TLM_proc, refer to the raw telemetry data in counts and the processed telemetry data in engi-neering units respectively.

26 Shot Counter N counts GLA04

26 X Position of Box N pixel number

GLA04

26 Y Position of Box N pixel number

GLA04

26 LPA Data N GLA04

49 Valid Commands in Packet N counts *

49 GLAS Time of Command U *

49 Command (first 20 bytes) U *

126 Shot Counter N n/a *

126 LPA Data N n/a *

38 Calibration Type I 0 = Coarse, 1 = Fine n/a *

38 X Position Of The Mirror U *

38 Y Position Of The Mirror U *

38 Integration Result U *

Table A-2 Pseudo-Telemetry Conversions

Eqn. No. APID / Telemetry Data Pseudo Equation

7 21 / Primary Monitor Calibration, Upper Byte; Primary Monitor Cali-bration, Lower Byte

SLOPE1 = 5.0 / (GPDMON1CALUB - GPDMON1CALLB)note: used in equations 8 - 19

8 21 / Primary Monitor Calibration, Upper Byte

INTERCEPT1 = 5.0 - (SLOPE1 * GPDMON1CALUB)note: used in equations 9 - 19

9 21 / +28V Bus A Instrument

TLM_proc = ((SLOPE1 * TLM_raw) + INTERCEPT1)* 9.22

10 21 / Hybrid Supplies TLM_proc = ((SLOPE1*(TLM_raw - 10.0)) + INTERCEPT1) * 1.52

11 21 / HVPS Detector Supplies

TLM_proc = ((SLOPE1*(TLM_raw - 4.0)) + INTERCEPT1) * 0.408

Table A-1 Conversion Description for GLAS Telemetry Data (Continued)

APID Name Conv. Type Conversion Description Units

L1A Product

ID

Page 67:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-33 Version 1.7

12 21 / Operational Heaters TLM_proc = ((SLOPE1*(TLM_raw - 2.0)) + INTERCEPT1) * 0.41

13 21 / Mechanical System TLM_proc = ((SLOPE1*(TLM_raw - 3.0)) + INTERCEPT1) * 0.407

14 21 / +28V Bus B Laser 1

TLM_proc = ((SLOPE1 * TLM_raw) + INTERCEPT1) * 9.2

15 21 / +28V Bus B Laser 1

TLM_proc = ((SLOPE1 * (TLM_raw - 8.0)) + INTERCEPT1) * 1.25

16 21 / +28V Bus C Laser 2

TLM_proc = ((SLOPE1 * TLM_raw) + INTERCEPT1) * 9.25

17 21 / +28V Bus C Laser 2

TLM_proc = ((SLOPE1*(TLM_raw - 10.0)) + INTERCEPT1) * 1.25

18 21 / +28V Bus D Laser 3

TLM_proc = ((SLOPE1 * TLM_raw) + INTERCEPT1) * 9.25

19 21 / +28V Bus D Laser 3

TLM_proc = ((SLOPE1 * (TLM_raw - 13.0)) + INTERCEPT1) * 1.25

20 21 / Secondary Monitor Calibration, Upper Byte; Secondary Monitor Cali-bration, Lower Byte

SLOPE2 = 5.0 / (GPDMON2CALUB - GPDMON2CALLB)note: used in equations 21 - 40

21 21 / Secondary Monitor Calibration, Upper Byte

INTERCEPT2 = 5.0 - (SLOPE2 * GPDMON2CALUB)note: used in equations 22 - 40

22 21 / + 5 V Hybrid # 1 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 1.514

23 21 / + 5 V Hybrid # 1 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 1.91

24 21 / +12 V Hybrid # 2 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 3.52

25 21 / + 12 V Hybrid # 2 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 0.66

26 21 / - 12 V Hybrid # 3 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * (-3.515)

27 21 / - 12 V Hybrid # 3 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 0.63

28 21 / + 5 V Hybrid # 4 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 1.515

29 21 / + 5 V Hybrid # 4 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 1.91

30 21 / - 5 V Hybrid # 5 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * (-1.532)

31 21 / - 5 V Hybrid # 5 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 1.49

32 21 / - 5 V Hybrid # 6 TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * (-1.52)

33 21 / - 5 V Hybrid # 6 TLM_proc = ((SLOPE2 * (TLM_raw - 3.0))+ INTERCEPT2) * 2.05

34 21 / + 15 V Boost Post Reg

TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * 4.05

35 21 / - 15 V Boost Post Reg

TLM_proc = ((SLOPE2 * TLM_raw) + INTERCEPT2) * (-4.078)

Table A-2 Pseudo-Telemetry Conversions (Continued)

Eqn. No. APID / Telemetry Data Pseudo Equation

Page 68:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-34 September 2011

A.3 Laser and OTS Enable readbacksThe interpretation of the Laser and OTS Readback telemetry word is in Table A-3 "Laser and OTS Readback Interpretation" on page -36.

A.4 FET Switch BankThe interpretation of the FET Switch Bank telemetry word is in Table A-4 "FET Switch Bank Interpretation".

36 21 / +12 V Prim Osc Thermal Control

TLM_proc = ((SLOPE2 * (TLM_raw - 3.0)) + INTERCEPT2) * 0.054

37 21 / +12 V Sec Osc Thermal Control

TLM_proc = ((SLOPE2 * (TLM_raw - 7.0)) + INTERCEPT2) * 0.052

38 21 / -2 V Discrete Volt-age

TLM_proc = (((SLOPE2 * TLM_raw) + INTERCEPT2) * 2.0) - 5.0

39 21 / Hybrid Heatsink Temperature

TLM_proc = (((SLOPE2 * TLM_raw) + INTERCEPT2) * 30.2) - 30.0

40 21 / FET Switch Bank Heatsink Temperature

TLM_proc = (((SLOPE2 * TLM_raw) + INTERCEPT2) * 30.2) - 30.0

Table A-3 Laser and OTS Readback Interpretation

Status Mask Possible Values

Laser 1 Enable/Disable Status 0x01 0=ENABLED,1=DISABLED

Laser 2 Enable/Disable Status 0x02 0=ENABLED,1=DISABLED

Laser 3 Enable/Disable Status 0x04 0=ENABLED,1=DISABLED

OTS Enable/Disable Status 0x08 0=ENABLED,1=DISABLED

Table A-4 FET Switch Bank Interpretation

Flag Mask Possible Values

Primary Oscillator 0x01 0=off, 1=on

Secondary Oscillator 0x02 0=off, 1=on

Primary Altimeter Digitizer 0x10 0=off, 1=on

Secondary Altimeter Digitizer 0x20 0=off, 1=on

Table A-2 Pseudo-Telemetry Conversions (Continued)

Eqn. No. APID / Telemetry Data Pseudo Equation

Page 69:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-35 Version 1.7

A.5 Optical Sensor StatusThe interpretation of the Optical Sensor Status telemetry word is in Table A-5 "Optical Sensor Status Interpretation" on page -37.

A.6 Status Command TelemetryThe interpretation of the Status Command telemetry word is in Table A-6 "Command Status Interpretation".

Table A-5 Optical Sensor Status Interpretation

Status Mask Possible Values

Primary Sensor Position Laser Select Mecha-nism 1, HOP-1

0x0C00 0=In-Deployment, 1=Unknown, 2=Deployed,3=Stowed

Primary Sensor Position Laser Select Mecha-nism 2, HOP-2

0x0300 0=In-Deployment, 1=Unknown, 2=Deployed,3=Stowed

Primary Sensor Position Altimeter Digitizer Detector Select Mechanism, HOP-3

0x00C0 0=In-Deployment, 1=Unknown,2=Detector 2,3=Detector 1

Secondary Sensor Position Laser Select Mechanism 1, HOP-1

0x0030 0=In-Deployment, 1=Unknown, 2=Deployed,3=Stowed

Secondary Sensor Position Laser Select Mechanism 2, HOP-2

0x000C 0=In-Deployment, 1=Unknown, 2=Deployed,3=Stowed

Secondary Sensor Position Altimeter Digi-tizer Detector Select Mechanism, HOP-3

0x0003 0=In-Deployment, 1=Unknown,2=Detector 2,3=Detector 1

Table A-6 Command Status Interpretation

Status Mask Possible Values

HOP Temperature Status 0x0800 0=In Tolerance, 1=Out of Tolerance

ADC Pulse Status 0x0400 0=Not Received, 1= Received

Deployed optic diodes power status 0x0200 0=ON, 1=OFF

Stowed optic diodes power status 0x0100 0=ON, 1=OFF

HOP LED Turn Off 0x0080 0=Armed, 1=Triggered

HOP Temp Turn Off 0x0040 0=Armed, 1=Triggered

Page 70:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-36 September 2011

A.7 CD Status FlagsThe interpretation of the CD Status flag telemetry word is in Table A-7 "CD Status Flag Inter-pretation".

HOP Timer Turn Off 0x0020 0=Armed, 1=Triggered

HOP Command Trigger Status 0x0010 0=Not Received, 1= Received

Reset Latch relay command status 0x0008 0=Not Received, 1= Received

Set latch relay command status 0x0004 0=Not Received, 1= Received

DAC Initial Conversion Signal Status 0x0002 0=Not Sent, 1=Sent

DAC Latch Data Signal Status 0x0001 0=Not Sent, 1=Sent

Table A-7 CD Status Flag Interpretation

Status Mask Possible Values

CD Timeout Occurred Flag 0x01 0 = no timeout1 = timeout

CD Target Present Flag 0x02 0 = not configured1 = configured

CD Event Messages Disable Flag 0x04 0=Enabled, 1=Disabled

CD Measurement Reference Source 0x08 0=Fire Acknowledge1= Fire Command

CD 40Hz Interrupt 0x10 0=Enabled, 1=Disabled

CD AD Detector Selected 0x020 0= AD #1 Selected,1=AD #2 Selected

CD Detector Selected 0x40 0= CD #1 Selected,1=CD #2 Selected

CD AD Board Selected 0x80 0= AD #1 Selected,1=AD #2 Selected

CD Hardware Mode 0x0F00 1=Idle,2=Engineering,4=Science,Other values invalid

CD Software Mode 0xF000 0=Idle,1=Engineering,2=Science,3=Memory test,Other values invalid

Table A-6 Command Status Interpretation (Continued)

Status Mask Possible Values

Page 71:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-37 Version 1.7

A.8 DC Status FlagsThe interpretation of the DC Status flag telemetry word is in Table A-8 "DC Status Flag Inter-pretation".

A.9 PC Status FlagsThe interpretation of the PC Status flag telemetry word is in Table A-9 "PC Status Flag Inter-pretation".

Table A-8 DC Status Flag Interpretation

Status Mask Possible Values

DC TimeoutStatus 0x01 0 = no timeout1 = timeout

DC Target Present Flag 0x02 0 = not present1 = target present

DC Event Messages Disable Flag 0x04 0=Enabled, 1=Disabled

DC Software Mode 0xFF00 0=SSR,1=SSR_LPA,2=TEST

Table A-9 PC Status Flag Interpretation

Status Mask Possible Values

PC Timeout Status 0x01 0 = no timeout1 = timeout

PC Target Present Flag 0x02 0 = not configured1 = configured

PC Calibration Type 0x04 0=Coarse, 1=Fine

PC Event Messages Disable Flag 0x08 0=Enabled, 1=Disabled

PC Range Gate Dither Flag 0x10 0=Disabled, 1=Enabled

PC Measurement Reference Source 0x20 0=Fire Acknowledge1= Fire Command

Page 72:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-38 September 2011

A.10 CT Task ModeThe interpretation of the CT Task Mode telemetry word is in Table A-10 "CT Task Mode Interpretation" on page -40.

A.11 Subsystem Present FlagsThe interpretation of the Subsystem Present Flags is in Table A-11 "Subsystem Present Flag Interpretation" on page -40.

A.12 CS Status Flag The interpretation of the CS Status Flag is in Table A-12 "CS Status Flag Interpretation".

PC Hardware Mode 0x0F00 1=Idle,2=Engineering,4=Science,Other values invalid

PC Software Mode 0xF000 0=Idle,1=Engineering,2=Science,3=Boresite Cal,4=Memory test,Other values invalid

Table A-10 CT Task Mode Interpretation

Status Mask Possible Values

CT Task Software Mode 0x0001 0=Manual, 1=Normal

CT Task C&T Control Hardware Mode Register bit 0x0002 0=Manual, 1=Normal

CT Task Startup Mode, Discrete cmd 0x0004 0=Manual, 1=Auto Power Up Osc/AD

CT Task Startup AD/OSC, Discrete cmd mask 0x0008 0=Primary, 1= Secondary

CT Etalon Mode 0x0070 0=Off, 1=Acquire, 2=Track-ing, 4=Test, 5=Test/Acquire,6=Test/Tracking

CT Etalon Tracking Active Flag 0x0080 0=Paused, 1=Active

CT Etalon Tracking Low Transmission Flag 0x0100 0=Good, 1=Low

CT Etalon Tracking Open-Loop Flag 0x0200 0=Normal, 1=Open-loop

Table A-9 PC Status Flag Interpretation

Status Mask Possible Values

Page 73:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-39 Version 1.7

Table A-11 Subsystem Present Flag Interpretation

Flag Mask Possible Values

HS Subsystem Present Flag 0x0001 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

CS Subsystem Present Flag 0x0002 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

TC Subsystem Present Flag 0x0004 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

SB Subsystem Present Flag 0x0008 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

SM Subsystem Present Flag 0x0010 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

RT Subsystem Present Flag 0x0020 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

MD Subsystem Present Flag 0x0040 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

AD Subsystem Present Flag 0x0080 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

CD Subsystem Present Flag 0x0100 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

DC Subsystem Present Flag 0x0200 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

GP Subsystem Present Flag 0x0400 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

PC Subsystem Present Flag 0x0800 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

CT Subsystem Present Flag 0x1000 0=No, 1=Yes Subsystem Telemetry is present in Small and Large Telemetry Packets

Table A-12 CS Status Flag Interpretation

Flag Mask Possible Values

CS Enable/Disabled Flag 0x03 0=Disabled, 1=Enabled

CS Code Memory Checksum Status 0x0C 0=Disabled,1=Enabled,2=Disabled and Recomputing,3=Enabled and Recomputing

Page 74:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-40 September 2011

A.13 SM Table Operations FlagThe interpretation of the SM Table Operations Flag is in Table A-13 "SM Table Operations Flag Interpretation".

A.14 BCRT Control Register WordThe interpretation of the BCRT Control Register word is in Table A-14 "BCRT Register Con-trol Word Interpretation".

A.15 CD Raw A/D Output DataThe interpretation of the CD Raw A/D Output Data word is in Table A-15 "CD Raw A/D Out-put Data Interpretation".

CS Table Memory Checksum Status 0x30 0=Disabled,1=Enabled,2=Disabled and Recomputing,3=Enabled and Recomputing

CS EEPROM Checksum status flag 0xC0 0=Disabled,1=Enabled,2=Disabled and Recomputing,3=Enabled and Recomputing

Table A-13 SM Table Operations Flag Interpretation

Flag Mask Possible Values

SM Table Session Type 0x3F 0=None,5=DUMP_ONLY, 6=REP_EEPROM, 7=REP_RAM, 8=APPD_ACTV

SM Table Operations Flag 0x40 0=Inactive, 1=Active

Table A-14 BCRT Register Control Word Interpretation

Status Mask Possible Values

RT Channel A Select 0x0080 0=OFF, 1=ON

RT Channel B Select 0x0100 0=OFF, 1=ON

Table A-12 CS Status Flag Interpretation

Flag Mask Possible Values

Page 75:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-41 Version 1.7

A.16 CD Interrupt StatusThe interpretation of the CD Interrupt Status word is in Table A-16 "CD Interrupt Status Inter-pretation".

A.17 DC Interrupt Mask RegisterThe interpretation of the DC Interrupt Mask Register word is in Table A-17 "DC Interrupt Mask Register Interpretation".

A.18 DC FIFO Flags RegisterThe interpretation of the DC FIFO Flags Register is in Table A-18 "DC FIFO Flags Register Interpretation".

A.19 DC LPA Gain RegisterThe interpretation of the DC LPA Gain Register is in Table A-19 "DC LPA Gain Register Interpretation" on page -43.

Table A-15 CD Raw A/D Output Data Interpretation

Flag Mask Possible Values

CD Raw A/D Overflow Flag 0x0100 0=No overflow,1=Overflow

CD Attenuation Settings 0x3E00 1=0.0, 2=1/1.77, 4=1/3.16, 8=1/5.6, 16=1/10

Table A-16 CD Interrupt Status Interpretation

Flag Mask Possible Values

CD Data Ready Interrupt 0x00000008 0=Enabled, 1=Disabled

CD Interrupt Source 0x00003000 1= Fire Command, 2= fire acknowledge

Table A-17 DC Interrupt Mask Register Interpretation

Flag Mask Possible Values

DC Interrupt 1 0x00000001 0=Disabled, 1=Enabled

DC LPA Interrupt 0x00000002 0=Disabled, 1=Enabled

DC Output FIFO Full Interrupt 0x00000004 0=Disabled, 1=Enabled

DC Output FIFO Empty Interrupt 0x00000008 0=Disabled, 1=Enabled

DC RAM Busy Interrupt 0x00000010 0=Disabled, 1=Enabled

DC Interrupt 6 0x00000020 0=Disabled, 1=Enabled

Page 76:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-42 September 2011

A.20 DC LPA Packet Count RegisterThe interpretation of the DC LPA Packet Count Register is in Table A-20 "DC LPA Packet Count Register Interpretation".

A.21 PC Hardware Mode StatusThe interpretation of the PC Hardware Mode Status word is in Table A-21 "PC Hardware Mode Status Interpretation".

Table A-18 DC FIFO Flags Register Interpretation

Flag Mask Possible Values

DC FIFO Full 0x00000001 0=True, 1=False

DC FIFO Almost Full 0x00000004 0=True, 1=False

DC FIFO Almost Empty 0x00000002 0=True, 1=False

DC FIFO Empty 0x00000008 0=True, 1=False

Table A-19 DC LPA Gain Register Interpretation

Flag Mask Possible Values

DC LPA Gain 0x00000007 0=4.00, 1=2.80, 2=2.15, 3=1.75, 4=1.47, 5=1.27, 6=1.12, 7=1.00

DC LPA Reset 0x00000008 0=In Reset, 1=Not in Reset

Table A-20 DC LPA Packet Count Register Interpretation

Flag Mask Possible Values

DC LPA Frame Byte Count 0x00003FFF counter

DC LPA Packet (Frame) Count 0x00FF0000 counter

Table A-21 PC Hardware Mode Status Interpretation

Flag Mask Possible Values

PC Board Hardware Mode 0x00000007 1=Idle, 2=Engineering, 4=Science

PC Interrupt Source 0x00003000 1=Fire Command, 2=Fire Acknowledge

PC Measurement Source 0x00004000 0=Fire Acknowledge, 1=Fire Command

Page 77:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-43 Version 1.7

A.22 MD Enable / Disable FlagThe interpretation of the MD Enable/Disable Flag word is in Table A-22 "MD Enable /Dis-able Flag Interpretation".

A.23 CT Suppressed Event Message Error FlagThe interpretation of the CT Suppressed Event Message Error Flag word is in Table A-23 "CT Suppressed Event Message Error Flag Interpretation".

Table A-22 MD Enable /Disable Flag Interpretation

Flag Mask Possible Values

MD Global Enable/Disable Flag 0x001 0=Disabled1=Enabled

MD Table 1 Enable/Disable Flag 0x002 0=Disabled1=Enabled

MD Table 2 Enable/Disable Flag 0x004 0=Disabled1=Enabled

Table A-23 CT Suppressed Event Message Error Flag Interpretation

Flag Mask Possible Values

CT Event Messages Enabled/Dis-abled Flag

0x0001 0=All Enabled1=Some Disabled

CT Shot Count Error Flag 0x0002 0=OK1=Error

CT Laser Monitor Board Mux Error Flag

0x0004 0=OK1=Error

CT Housekeeping Board Mux Error Flag

0x0008 0=OK1=Error

CT Housekeeping Board Submux Error Flag

0x0010 0=OK1=Error

CT Temperature Controller Board Mux Error Flag

0x0020 0=OK1=Error

CT Mechanism Controller Board Mux Error Flag

0x0040 0=OK1=Error

CT Power Distribution Unit Mux Error Flag

0x0080 0=OK1=Error

Page 78:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-44 September 2011

A.24 CT Loop Heat Pipe Control StateThe interpretation of the CT Loop Heat Pipe (LHP) Control State words for LHP 1 and LHP 2 is in Table A-24 "CT LHP Control State Interpretation".

A.25 GP Task Status BitsThe interpretation of the GP Task Status Bits word is in Table A-25 "GP Task Status Bits Interpretation".

CT High Voltage Power Supply Mux Error Flag

0x0100 0=OK1=Error

CT Ancillary Packet Allocation Error FlagMD Global Enable/Disable Flag

0x0200 0=OK1=Error

Table A-24 CT LHP Control State Interpretation

Flag Mask Possible Values

CT LHP Temperature Control Enabled Flag

0x0001 0=Off1=On

CT LHP Temperature Control Active Flag

0x0002 0=Idle1=Active

Table A-25 GP Task Status Bits Interpretation

Flag Mask Possible Values

Position Data Source 0x0003 0= spacecraft1=Ground Hmin/Hmax2=Ground Rmin/Rmax

Position Data Status Flag 0x000C 0=OK1=No data2=Calculation Error

GPS Pulse Received Flag 0x0010 0=Not Receiving Pulse1=Receiving Pulse

GPS Pulse Select 0x0020 0=GPS11=GPS2

Table A-23 CT Suppressed Event Message Error Flag Interpretation (Continued)

Flag Mask Possible Values

Page 79:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-45 Version 1.7

A.26 AD Software Enable FlagsThe interpretation of the AD Software Enable Flags is in Table A-26 "AD Software Enable Flag Interpretation".

A.27 AD DSP Trouble Indicator Status WordThe interpretation of the AD DSP Trouble Indicator Status word is in Table A-27 "AD DSP Trouble Indicator Status Word Interpretation".

Table A-26 AD Software Enable Flag Interpretation

Flag Mask Possible Values

AD Auto Reset DSP Flag 0x0001 0=False, 1=True

AD Auto Gain Use 8ns Filter Flag 0x0010 0=Disabled, 1=Enabled

AD Auto Gain Enable Flag 0x0020 0=Disabled, 1=Enabled

AD Hardware Error Events Flag 0x0040 0=Disabled, 1=Enabled

AD Software Error Events Flag 0x0080 0=Disabled, 1=Enabled

Table A-27 AD DSP Trouble Indicator Status Word Interpretation

Flag Mask Possible Values

Invalid Search 0x0001 0=No problem1=Invalid search

Laser Failure 0x0002 0=No problem1=Laser Failure

Multiple Interrupts 0x0004 0=No problem1=Multiple Interrupts

Buffer Full 0x0008 0=No problem1=Buffer Ful

Invalid Mode 0x0010 0=No problem1=Invalid Mode

Infinite Loop 0x0020 0=No problem1=Infinite Loop

Invalid Range Window 0x0040 0=No problem1=Invalid Range Window

Invalid Tournament 0x0080 0=No problem1=Invalid Tournament

Noise Region Outside Acq Mem-ory

0x0100 0=No problem1=Noise Region Outside Acq Memory

Invalid Sample Size for Noise region

0x0200 0=No problem1=Invalid Sample Size for Noise region

Page 80:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-46 September 2011

A.28 DEM Minimum and Maximum BytesThe DEM Minimum (Min) and Maximum (Max) bytes are converted to Hmin and Hmax in meters by masking off bit 7 and multiplying the result by 125. Bit 7 of the DEM Min and Max bytes is the DEM surface type indicator. Bit 7 of the DEM Min byte indicates the surface is land (=1) or sea (=0). Bit 7 of the DEM Max byte indicates the surface is ice (=1) or no ice (=0). Bit 7 is the most significant bit.

A.29 Range Window StatusThe interpretation of the Range Window Status word is in Table A-28 "Range Window Status Interpretation" on page -48.

Table A-28 Range Window Status Interpretation

Flag Mask Possible Values

No first crossing (rising edge) found on 4ns filter 0x00000001 0=False, 1=True

No first crossing (rising edge) found on 8ns filter 0x00000002 0=False, 1=True

No first crossing (rising edge) found on 16ns filter 0x00000004 0=False, 1=True

No first crossing (rising edge) found on 32ns filter 0x00000008 0=False, 1=True

No first crossing (rising edge) found on 64ns filter 0x00000010 0=False, 1=True

No first crossing (rising edge) found on 128ns filter 0x00000020 0=False, 1=True

No second crossing (falling edge) found on 4ns filter 0x00000040 0=False, 1=True

No second crossing (falling edge) found on 8ns filter 0x00000080 0=False, 1=True

No second crossing (falling edge) found on 16ns filter 0x00000100 0=False, 1=True

No second crossing (falling edge) found on 32ns filter 0x00000200 0=False, 1=True

No second crossing (falling edge) found on 64ns filter 0x00000400 0=False, 1=True

No second crossing (falling edge) found on 128ns filter 0x00000800 0=False, 1=True

First sample in range >= threshold for 4ns filter 0x00001000 0=False, 1=True

First sample in range >= threshold for 8ns filter 0x00002000 0=False, 1=True

First sample in range >= threshold for 16ns filter 0x00004000 0=False, 1=True

First sample in range >= threshold for 32ns filter 0x00008000 0=False, 1=True

First sample in range >= threshold for 64ns filter 0x00010000 0=False, 1=True

First sample in range >= threshold for 128ns filter 0x00020000 0=False, 1=True

All filters were rejected flag. True if bits 0 - 5 are true. 0x00040000 0=False, 1=True

No filters were ever selected; all previous selections failed. (Happens on DSP reset.)

0x00080000 0=False, at least one pre-vious selection suc-ceeded, 1=True

Page 81:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-47 Version 1.7

A.30 AD Target Status and Mode FlagsThe interpretation of the AD Target Status and Mode Flag word is in Table A-29 "AD Target Status and Mode Flag Word Interpretation".

A.31 Etalon FlagsThe interpretation of the Etalon Status Flags word is in Table A-30 "Etalon Flags Word Inter-pretation".

4ns filter failed 0x00100000 0=False, 1=True

8ns filter failed 0x00200000 0=False, 1=True

16ns filter failed 0x00400000 0=False, 1=True

32ns filter failed 0x00800000 0=False, 1=True

64ns filter failed 0x01000000 0=False, 1=True

128ns filter failed 0x02000000 0=False, 1=True

Return range is invalid 0x40000000 0=Range OK, 1=Failure

Science processing is incomplete 0x80000000 0=Ready, 1=Failure

Table A-29 AD Target Status and Mode Flag Word Interpretation

Flag Mask Possible Values

AD Target Present Flag 0x80 0=Not Present,1=Target Present

AD Target Timeout Flag 0x40 0=No Timeout, 1=Timeout

AD Mode of Operations 0x38 0=Idle, 1=Science, 2=OneShot, 3=Load, 4=Dump

AD DSP Software Mode 0x07 0=Science, 1=Idle, 2=Load, 3=Dump

Table A-30 Etalon Flags Word Interpretation

Flag Mask Possible Values

Etalon Tracking Low Transmission Flag 0x01 0=Good, 1=Low

Etalon Tracking Active Flag 0x02 0=Paused, 1=Active

Etalon Tracking Test Mode Flag 0x04 0=Normal, 1=Test

Etalon Tracking Openloop Mode Flag 0x08 0=Normal, 1=Openloop

Etalon Tracking Openloop Update Toggle 0x10

Table A-28 Range Window Status Interpretation

Flag Mask Possible Values

Page 82:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-48 September 2011

A.32 Time Tagging AlgorithmA.32.1 Definitions

The GLAS time tag on all products is the time in seconds from noon January 1, 2000 in Uni-versal Time Code reference frame (includes leap seconds).

The GPS time in the packets received from the Backjack GPS flight receiver is time in sec-onds from the start of GPS time (January 1980). GPS time is continuous and does not include leap seconds. GPS ticks are always on integer seconds.

The GPS to UTC offset is a constant that shall be defined as the GPS time of Noon January 1, 2000 (the UTC reference time). This constant will be negative because it used to remove from the laser shot GPS time the amount of GPS time occurring from the GPS time reference time (January 1, 1980) to the UTC reference time.

A.32.2 Basic Algorithm with GPS

1) Determine the current leapsecond correction to use from the GPS to UTC Leapseconds File.

2) Compute the laser shot time in UTC:

a) Find the largest GLAS GPS latch time (to the .1 Hz GPS pulse) from the frequency and time board (accounting for roll over) less then the first Fire Command Time of packet (note: both times are 40 bit counters found in GLAS APID 19).

b) Until the first Fire Command Time of the packet is greater than the next GLAS GPS latch time compute the laser shot time in GPS. There is a delay between the fire com-mand time and the start of digitization. This delay must be applied to the fire command time to get the correct laser shot time. Also the time from the start of the digitization to the time of the transmit pulse peak must be included in the algorithm to get to the time of the laser shot. Since the 1 Gigahertz oscillator does not operate perfectly the oscilla-tor frequency must be computed and applied to the 40 bit counter time. Compute the laser shot time in GPS units by the equation:

Laser Shot Time in GPS = {[(Fire Command Time �– GLAS GPS latchtime) *freqbrdscale] + time of transmit pulse peak}*oscillator frequency + GPS time + digitizer delay

Where freqbrdscale is the oscillator frequency scale factor to convert counts to sec-onds. The GPS time in GPS seconds is contained in the spacecraft time and position packet which is downlinked in GLAS APID 19. The format of the spacecraft time and position packet is contained in Appendix C. The digitizer delay and oscillator fre-quency are provided by the GLAS instrument operations team. The time of the trans-mit peak is provided in the GLAS waveform data (APIDs 12 and 13).

[Note: any 40 bit counter time from the GLAS frequency and time board can be converted by using the largest GLAS GPS latch time less then the 40 bit counter by the following equation:

40 bit counter time in GPS = [(40 bit counter �– GLAS GPS latch time) *freqbrdscale]*oscillator frequency} + GPS time

Page 83:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-49 Version 1.7

c) For each shot, determine the correct leapsecond correction to use from the GPS to UTC Leapsecond File. Compute the laser shot time in UTC by the following equation:

Laser Shot Time in UTC = Laser Shot Time in GPS + Leapseconds +GPStoUTCoffset

Where, Leapseconds is the correction from the GPS to UTC Leapseconds File and GPStoUTCoffset is the offset from the GPS reference time to the UTC reference time.

3) Convert spacecraft time (Bvtcw) to UTC:

a) Correct for the delay in the reported Bvtcw latched to the GPS .1 Hz pulse and the actual Bvtcw latched to the GPS .1 Hz pulse. The Bvtcw GPS latch time is reported in the spacecraft time and position packet contained in GLAS APID 19. To compute the corrected Bvtcw GPS latch time add a spacecraft time calibration offset (Btimeoffset):

Corrected Bvtcw GPS latch time = Bvtcw GPS latch time + Btimeoffset

b) The Corrected Bvtcw GPS latch time corresponds directly to the GPS time in UTC that is in the spacecraft time and position packet.

c) Any spacecraft time (Bvtcw) can be converted to UTC by using the largest Bvtcw GPS latch time less then the Bvtcw by the following equation:

Bvtcw in UTC = (Bvtcw - Corrected Bvtcw GPS latch time) * BvtcwScale + GPS time in UTC

where BvtcwScale is from the Bvtcw to UTC table.

4) Compute Laser Reference System (LRS) Time Tags:

a) Compute the estimated 10 Hz LRS time of the GLAS laser fire command in UTC using the LRS Bvtcw, the LRS increment time tag, and the GPS time. The LRS incre-ment time tag is latched upon the detection of a GLAS fire command signal and pro-vides the precise timing of the LRS data. The LRS Bvtcw and increment time tag are in the spacecraft�’s Position, Rate, and Attitude Packet (PRAP). The equation is:

estimated LRS fire command time tag in UTC = (LRS Bvtcw �–Corrected Bvtcw GPS latch time)*BvtcwScale + GPS time in UTC +LRS increment time tag

b) Apply the delay from the recording of the time of the LRS 10 Hz data to the actual time of the 10 Hz data to get the corrected LRS fire command time. The delay (Lrs_bvtcw_delay) is constant. The equation is:

corrected LRS fire command time in UTC =estimated LRS fire command time in UTC + Lrs_bvtcw_delay

c) Compute the actual 10 Hz LRS time of the GLAS laser fire command time. Find the nearest (within 12.5 millisecond) actual laser fire command time to the corrected LRS fire command time tag. The time of the LRS 10 Hz sample is the laser fire command time and the LRS Center of Integration (COI) time. The LRS COI time is found in the spacecraft�’s Position, Rate, and Attitude Packet (PRAP). The equation is:

Page 84:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-50 September 2011

LRS sample time in UTC = actual laser fire command time + LRS COI time

d) Determine the corresponding GLAS laser shots for the LRS 10Hz data. Find the Laser Shot Time in UTC that is within 12.5 milliseconds of the LRS sample time in UTC for each LRS sample. Assign the LRS sample this shot number and time. Keep all times with the record.

e) The LRS health data shall be assigned the shot and time of the first 10 Hz sample.

f) The LRS star, laser, and Collimated Reference Source (CRS) images correspond to the shot and time for matching frame numbers of the LRS data samples.

5) Convert Instrument Star Tracker (IST) time tags to UTC:

a) Compute the estimated 10 Hz IST time of the GLAS laser fire command in UTC using the IST Bvtcw, the IST increment time tag, and the GPS time. The IST increment time tag is latched upon the detection of a GLAS fire command signal and provides the pre-cise timing of the IST data. The IST Bvtcw and increment time tag are in the space-craft�’s Position, Rate, and Attitude Packet (PRAP). The equation is:

estimated IST fire command time tag in UTC = (IST Bvtcw �–Corrected Bvtcw GPS latch time) * BvtcwScale + GPS time in UTC +IST increment time tag*IST time scale

b) Apply the delay from the recording of the time of the IST 10 Hz data to the actual time of the 10 Hz data to get the corrected IST fire command time. The delay (Ist_bvtcw_delay) is constant. The equation is:

corrected IST fire command time in UTC =estimated IST fire command time in UTC + Ist_bvtcw_delay

c) Compute the actual 10 Hz IST time of the GLAS laser fire command time. Find the nearest (within 12.5 millisecond) actual laser fire command time to the corrected IST fire command time tag. The time of the IST 10 Hz sample is the laser fire command time and the IST Center of Integration (COI) time. The IST COI time is found in the spacecraft�’s Position, Rate, and Attitude Packet (PRAP). The equation is:

IST sample time in UTC = actual laser fire command time + IST COI time

d) Determine the corresponding GLAS laser shots for the IST 10Hz data. Find the Laser Shot Time in UTC that is within 12.5 milliseconds of the IST sample time in UTC for each IST sample. Assign the IST sample this shot number and time. Keep all times with the record.

6) Convert the 10 Hz IRU time tags to UTC by the method in step 3 above. The IRU Bvtcw is in the spacecraft�’s PRAP. Additionally, the IRU BVTCW needs to be adjusted by the delay from the recording of the time of the IRU 10 Hz data to the actual time of the 10 Hz data. The delay (G_bvtcw_delay) is constant. The equation is:

IRU Bvtcw in UTC = (IRU Bvtcw �– Corrected Bvtcw GPS latch time) *BvtcwScale + G_bvtcw_delay + GPS time in UTC

7) Convert the Ball Star Tracker (BST) time tags to UTC by the method in step 3 above. There

Page 85:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-51 Version 1.7

are two BSTs on the ICESat spacecraft. The BST1 and BST2 Bvtcw are in the spacecraft�’s PRAP. Additionally, the BST BVTCW needs to be adjusted by the delay from the recording of the time of the BST 10 Hz data to the actual time of the 10 Hz data. Each BST has its own delay (B_bvtcw_delay) and the delays are constant. The equation is:

BST Bvtcw in UTC = (BST Bvtcw �– Corrected Bvtcw GPS latch time) *BvtcwScale + B_bvtcw_delay + GPS time in UTC

8) Convert the spacecraft quaternion data time tags to UTC by the method in step 3 above. The quaternion data is time tagged by the ADCS Bvtcw found in the PRAP. The ADCS Bvtcw needs to be adjusted by the delay from the recording of the time of the PRAP to the actual time of the quaternion data. The delay (Q_bvtcw_delay) is constant. The equation is:

Quaternion Data Bvtcw in UTC = (ADCS Bvtcw �–Corrected Bvtcw GPS latch time)*BvtcwScale + Q_bvtcw_delay + GPS time in UTC

9) The IRU and BST data will not be shot aligned to the GLAS data. Assign to the IRU and BST data the first laser shot time in UTC from the GLAS APID 19 that corresponds to that data.

10) If the GLAS APID 19 is missing, estimate the shot time for events by using the secondary header time from the Altimeter Digitizer science packet (GLAS APID 12 or 13 depending on the surface type). The secondary header time must be corrected such that it corresponds to the time of the first laser shot in the packet. For most of the GLAS packets, the secondary header time corresponds to the last shot in the packet. The nominal time between shots is 25 millisec-onds. Use the following equation to estimate the time of a shot:

Estimated Laser Shot Time in UTC =(estimated shot number -1)*25 ms*freqbrdscale +Secondary header time corresponding to the first shot in the packet

A.32.3 Basic Algorithm without GPS1) Compute the LRS 10Hz sample time tags.

a) Compute the time of each 10hz LRS Data pulse in UTC. The LRS data is contained in the spacecraft�’s PRAP. Convert the LRS Bvtcw (VTCW echo) to UTC using the Bvtcw to UTC table. The LRS Bvtcw must be corrected by the increment (LRS incre-ment time tag) to the GLAS 10 Hz pulse to get the correct time of the latch. Addition-ally, the LRS BVTCW needs to be adjusted by the delay from the recording of the time of the LRS 10 Hz data to the actual time of the 10 Hz data. The delay (Lrs_bvtcw_delay) is constant. The equation is for each pulse:

LRS data pulse time in UTC = (LRS Bvtcw �– Bvtcw from table)*BvtcwScale+ Bvtcw from table in UTC + LRS increment time tag*LRS Time scale+ Lrs_bvtcw_delay

Where �‘Bvtcw from table�’ is the largest Bvtcw in the Bvtcw to UTC table just less than the Bvtcw being converted and BvtcwScale is from the Bvtcw to UTC table.

Page 86:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-52 September 2011

b) The time of the LRS 10 Hz sample is the sum of the LRS data pulse time tag and the LRS Center of Integration (COI) time. The LRS COI time is found in the spacecraft�’s Position, Rate, and Attitude Packet (PRAP). The equation is:

LRS sample time in UTC = LRS data pulse time in UTC + LRS COI time

2) Convert GLAS Mission Elapsed Time (MET) of spacecraft time and position packet (posi-tion and command packet) to UTC using the GLAS MET to UTC conversion table. The GLAS MET of the spacecraft time and position packet is in GLAS APID 19.

3) Compute the estimated fire command time in UTC for 40 shots. Use the fire command time (40 bit counter) of the shot corresponding to the spacecraft time and position packet as the ref-erence point. Since the 1 Gigahertz oscillator is not perfect, the oscillator frequency must be computed and applied to the 40 bit counter data. For each shot the equation is:

Estimated fire command time of shot in UTC = [(fire command time of shot - fire command time of time and position packet)*freqbrdscale] *oscillator frequency + GLAS MET of time and position packet in UTC

Where freqbrdscale is the oscillator frequency scale factor the converts the counts to seconds. The oscillator frequency is provided by the GLAS instrument operations team.

[Note: Must take care of rollover of shot and fire command time counters]

4) Time align fire command times in UTC to LRS 10 Hz Data pulse times (prior to LRS COI time being applied).

a) Compare estimated fire command times in UTC to the LRS data pulse time in UTC for each pulse. Align a laser shot to an LRS sample when the difference between the times are within a predetermined range of milliseconds. To start the range will be -9 to 24 milliseconds.

b) Check that the shot numbers corresponding to the LRS samples increment by 4 and the LRS data pulse time in UTC increments by about 100 ms. Set error flag if these condi-tions are not met.

5) Compute the estimated laser shot time in UTC by referencing to the closest matched laser shot/LRS sample pair. The digitizer delay (delay between the fire command time and the start of digitization) and the time from the start of digitization to the transmit pulse peak must be applied. the digitizer delay is provided by the GLAS Instrument Operations team and the time of the transmit pulse peak is contained in the GLAS Altimeter Digitizer packets. The oscilla-tor frequency must also be applied. For each shot:

Corrected laser shot time in UTC = {[(fire command time of shot �–fire command time of first match)*freqbrdscale] + transmit pulse peak} * oscillator frequency + LRS data pulse time in UTC of match + digitizer delay

[Note: Must take care of rollover of shot and fire command time counters.]

6) Determine the corresponding GLAS laser shots for the LRS 10 Hz data and LRS star, laser, and CRS images by the same method used in �“Basic Algorithm with GPS�”, Appendix A.32.2 steps 4.d, 4.e, and 4.f.

Page 87:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-53 Version 1.7

7) Compute the 10 Hz IST Data sample times in UTC. The IST data is contained in the space-craft�’s PRAP.

a) Convert the IST Bvtcw (VTCW echo) to UTC using the Bvtcw to UTC table. The IST Bvtcw must be corrected by the increment (IST increment time tag) to the GLAS 10 Hz pulse to get the correct time of the sample. Additionally, the IST BVTCW needs to be adjusted by the delay from the recording of the time of the IST 10 Hz data to the actual time of the 10 Hz data and the IST Center of Integration (COI) time. The delay (Ist_bvtcw_delay) is constant. The IST COI time is found in the spacecraft�’s Position, Rate, and Attitude Packet (PRAP). The equation is for each sample:

IST data sample times in UTC = (IST Bvtcw �– Bvtcw from table)*BvtcwScale+ Bvtcw from table in UTC + IST time tag*IST time scale + Ist_bvtcw_delay + IST COI time

Where Bvtcw from table is the largest Bvtcw in the Bvtcw to UTC table just less than the Bvtcw being converted and BvtcwScale is from the Bvtcw to UTC table.

b) Determine the corresponding GLAS laser shots for the IST 10 Hz data by the same method used in �“Basic Algorithm with GPS�”, Appendix A.32.2 step 5.d.

8) Convert IRU Bvtcw to UTC using the Bvtcw to UTC table. Additionally, the IRU BVTCW needs to be adjusted by the delay from the recording of the time of the IRU 10 Hz data to the actual time of the 10 Hz data. The delay (G_bvtcw_delay) is constant. The equation is:

IRU Bvtcw in UTC = (IRU Bvtcw �– Bvtcw from table)*BvtcwScale + G_bvtcw_delay + Bvtcw from table in UTC

Where Bvtcw from table is the largest Bvtcw in the Bvtcw to UTC table just less than the Bvtcw being converted and BvtcwScale is from the Bvtcw to UTC table.

9) Convert BST Bvtcw to UTC using the Bvtcw to UTC table. Additionally, the BST BVTCW needs to be adjusted by the delay from the recording of the time of the BST 10 Hz data to the actual time of the 10 Hz data. Each BST has its own delay (B_bvtcw_delay) and the delays are constant.:

BST Bvtcw in UTC = (BST Bvtcw �– Bvtcw from table)*BvtcwScale + B_bvtcw_delay + Bvtcw from table in UTC

Where Bvtcw from table is the largest Bvtcw in the Bvtcw to UTC table just less than the Bvtcw being converted and BvtcwScale is from the Bvtcw to UTC table.

10) Convert spacecraft�’s quaternion data Bvtcw to UTC using the Bvtcw to UTC table. The quaternion data is time tagged by the Bvtcw from the spacecraft�’s PRAP secondary header. Additionally, the PRAP secondary header time (Bvtcw) needs to be adjusted by the delay from the recording of the time of the PRAP to the actual time of the quaternion data. The delay (Q_bvtcw_delay) is constant. The equation is:

Quaternion Data Bvtcw in UTC = (PRAP Bvtcw �– Bvtcw from table) * BvtcwScale + Q_bvtcw_delay + Bvtcw from table in UTC

Where Bvtcw from table is the largest Bvtcw in the Bvtcw to UTC table just less than the Bvtcw being converted and BvtcwScale is from the Bvtcw to UTC table.

Page 88:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-54 September 2011

11) The IRU and BST data will not be shot aligned to the GLAS data. Assign to the IRU and BST data the first laser shot time in UTC from the GLAS APID 19 that corresponds to that data.

12) If the GLAS APID 19 is missing, compute the estimated laser shot time in UTC by the same method used in �“Basic Algorithm with GPS�”, Appendix A.32.2 step 10.

Page 89:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Conversion Tables The Algorithm Theoretical Basis Document for Level

September 2011 Page A-55 Version 1.7

Page 90:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Conversion Tables

Version 1.7 Page A-56 September 2011

Page 91:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page B-1 Version 1.7

Appendix B

GLAS Telemetry Description

The format of the GLAS telemetry packets and their engineering unit conversions are defined in the following sections.

Appendix B.1 contains the housekeeping and diagnostic packet descriptions.

Appendix B.2 contains the science packet descriptions.

Page 92:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-2 September 2011

B.1 GLAS Housekeeping and Diagnostic Telemetry Description

File

nam

e: G

LAS_

HK_P

KTs.

xlsPa

ge 1

of 2

Wor

kshe

et: S

umma

ry

Pkt N

ame

App

idSi

zePk

t Fre

q.Pk

t Int

erva

lRa

teCo

nfid

ence

CCSD

S Pr

imar

y Da

ta u

ses

Out

put

in b

ytes

in H

ertz

in s

econ

dsbp

sSS

RIn

con

tent

sHe

ader

SA R

ange

by T

ask

(max

)HK

Diag

H, M

, Lhe

xCT

HW

Tlm

#120

560.

254

112

Yes

Yes

NoHi

gh#N

AME?

1CT

CT H

W T

lm#2

2156

0.25

411

2Ye

sYe

sNo

High

#NAM

E?1

CTCT

HW

Tlm

#322

560.

0625

1628

Yes

Yes

NoHi

gh#N

AME?

1CT

CT H

W T

lm#4

2356

0.06

2516

28Ye

sYe

sNo

High

#NAM

E?1

CTCT

HW

Tlm

#550

560.

0312

532

14Ye

sYe

sNo

High

#NAM

E?1

CTSm

all S

oftw

are

#1 T

lm24

560.

254

112

Yes

Yes

NoHi

gh#N

AME?

1HS

Larg

e So

ftwar

e Tl

m #

125

300

0.25

460

0Ye

sNo

Yes

High

#NAM

E?3.

.10

HSLa

rge

Softw

are

Tlm

#2

5537

60.

254

752

Yes

NoYe

sHi

gh#N

AME?

3..1

0HS

DSP

Code

Mem

ory

Dum

p31

828

Asyn

c(1)

Yes

NoNo

High

#NAM

E?3.

.10

ADDS

P Da

ta M

emor

y Du

mp

3282

8As

ync(1

)Ye

sNo

NoHi

gh#N

AME?

3..1

0AD

C&T

Dwel

l Pac

ket

3333

6As

ync(2

)Ye

sNo

Yes

High

#NAM

E?3.

.10

CTM

emor

y Dw

ell P

acke

t #1

2721

2As

ync(3

)Ye

sNo

Yes

High

#NAM

E?3.

.10

MD

Mem

ory

Dwel

l Pac

ket #

228

212

Asyn

c(3)

Yes

NoYe

sHi

gh#N

AME?

3..1

0M

DEv

ent M

essa

ge34

80As

ync

Yes

NoYe

sHi

gh#N

AME?

3..1

0HS

Mem

ory

Dum

p35

224

Asyn

c(4)

Yes

NoYe

sHi

gh#N

AME?

3..1

0SM

Tabl

e Du

mp

3622

4As

ync(4

)Ye

sNo

Yes

High

#NAM

E?3.

.10

SMEt

alon

Cal

ibra

tion

3720

76As

ync

Yes

NoNo

Med

#NAM

E?3.

.10

CTG

LAS

Data

Typ

es P

acke

t48

72As

ync

Yes

NoNo

High

#NAM

E?3.

.10

DCSy

nchr

onou

s HK

155

3 Bu

s Da

ta R

ate

406

bps

Max

HK

Band

witd

h44

8bp

sSy

nchr

onou

s DI

AG 1

553

Bus

Data

Rat

e13

52bp

sM

ax D

IAG

Ban

dwid

th11

,808

bps

(1) -

The

se P

acke

ts a

re p

rodu

ced

at a

4 p

kts

per s

econ

d ra

te w

hen

AD is

in Id

le m

ode

(2) -

Thi

s pa

cket

will

be

outp

ut a

t a 4

sec

ond

inte

rval

whe

n on

e of

the

C&T

Boar

ds is

in d

wel

l mod

e.(3

) - D

urin

g a

Mem

ory

Dwel

l the

rate

for t

hese

pac

kets

is c

omm

anda

ble.

(4) -

Dur

ing

mem

ory

or ta

ble

dum

ps th

ese

pack

ets

will

be

outp

ut a

t a m

ax 1

pac

kets

per

sec

ond

rate

Out

put t

o15

53 B

us

Page 93:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-3 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: Sum

mar

y

NOTE

S:1-

The

siz

e of

all

pack

ets

mus

t be

a m

ultip

le o

f 4, T

his

is b

ecau

se th

e SS

R FI

FO w

idth

is 3

2 bi

ts a

nd a

ll pa

cket

s go

to th

e SS

R2-

Max

Pac

ket S

ize

to S

SR is

16

Kbyt

es. T

his

is th

e si

ze o

f the

SSR

inte

rface

FIF

O3-

155

3 Di

ag c

hann

el p

acke

ts w

ill b

e ou

tput

to 1

553

Bus

inte

rface

and

con

tinua

lly re

ad b

y th

e Bu

s Co

ntro

ller,

b

ut o

nly

in G

LAS

Diag

nost

ics

mod

e (1

6 kb

ps) w

ill th

ey b

e te

lem

eter

ed to

the

Gro

und

4- M

nem

onic

s us

e on

ly 'G

' as

pref

ix to

indi

cate

GLA

S(in

stea

d of

the

GL)

5- M

nem

onic

s fo

r the

CCS

DS h

eade

r are

not

in s

prea

dshe

et, b

utSu

gges

ted

Mne

mon

cic

nam

es

Bits

Wor

dM

ask

GPx

xxPV

NO0.

.21s

t0x

E000

GPx

xxPC

KT3

1st

0x10

00G

Pxxx

SHDF

41s

t0x

0800

GPx

xxID

5..1

51s

t0x

07FF

GPx

xxSE

GF

0..1

2nd

0xC

000

GPx

xxSC

NT2.

.15

2nd

0x30

00G

Pxxx

PLEN

0..1

53r

d0x

FFFF

GPx

xxST

IME

4th.

.7th

whe

re x

xx is

the

app

id in

hex

zer

o pa

dded

6-Te

lem

etry

Poi

nts

whi

ch a

re a

t the

sam

e of

fset

and

hav

e a

mas

k as

soci

ated

with

them

indi

cate

that

the

tele

met

ry p

oint

con

sist

s of

onl

y th

e bi

ts

in th

e m

ask

7- T

he S

hot C

ount

er is

alw

ays

a 8

bit c

ount

er, w

here

dep

icte

d as

an

2 or

4 b

yte

entit

y th

ere

is p

addi

ng in

the

uppe

r byt

es

Page 94:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-4 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: Cha

nge

Hist

ory

Nam

eDa

teVe

rsio

nCh

ange

Des

crip

tion

M. M

aldo

nado

22-J

an-9

91

Initi

al C

reat

ion

M.M

aldo

nado

26-J

an-9

91.

1M

.Mal

dona

do30

-Mar

-99

1.1

Adde

d LM

B N

ew T

elem

etry

in v

ersi

on 3

.10

of C

&T d

ocum

ent

M.M

aldo

nado

30-M

ar-9

91.

1Ad

ded

spar

es to

all

pack

ets

to c

ompl

ete

the

56 b

ytes

max

Phil

Paro

ngs

chan

ges

to M

CS

boar

d C

&T V

er 3

.11

M.M

aldo

nado

16-A

pr-9

92

Upd

ated

Mne

mon

cs p

er K

aren

Pha

ms

Cor

rect

ions

. Cor

rect

ed s

ome

pack

et n

ames

.M

.Mal

dona

do12

-May

-99

2.1

Upd

ated

Mne

mon

cs p

er K

aren

Pha

ms

Cor

rect

ions

. Cor

rect

ed s

ome

pack

et n

ames

.M

.Mal

dona

do26

-Jun

-99

2.11

Adde

d tw

o ad

ditio

nal H

VPS

mne

mon

ics

to e

nd o

f app

id 2

1(PD

U)

Adde

d C

omm

anda

ble

MC

S te

lem

etry

to e

nd o

f ap

id 2

1(PD

U)

Ren

amed

HK

Tele

met

ry c

hann

els

23 a

nd 2

4 to

spa

res

R.M

cGra

w17

-Sep

-99

2.12

Upd

ated

HK

Tem

p#1

pkt t

o re

flect

the

33 H

K te

lem

etry

cha

nges

. Som

e ch

ange

s ar

em

ovin

g da

ta fr

om o

ne c

han

to a

noth

er, s

ome

chan

ges

are

rena

min

g te

lem

etry

. Als

oth

e sp

ares

on

HK

chan

23

and

on H

K ch

an 3

9 ar

e no

w b

eing

use

d.

R.M

cGra

w8-

Oct

-99

2.13

Upd

ated

pac

ket 2

0 w

ith th

e 3

Lase

r Mon

itor T

elem

etry

cha

nges

. 'O

sc te

mp'

mov

ed fr

om c

h.1

to c

h.3.

Pow

er S

uppl

y te

mp'

mov

ed fr

om c

h.3

to c

h.4.

And

'Pre

amp

tem

p' m

oved

from

ch.

4 to

ch.

1R

.McG

raw

15-F

eb-0

04

Adde

d a

new

har

dwar

e te

lem

etry

pac

ket(C

T H

W T

LM#5

) with

api

d 50

and

rate

of 3

2 se

cond

sR

enam

ed th

e fo

llow

ing

pack

ets

- api

d 20

,21,

22,2

3M

oved

TC

M's

LHP

tlm b

yte

from

CT

HW

TLM

#1

offs

et 3

4 to

CT

HW

TLM

# 4

offs

et 3

6M

oved

10

byte

s of

hk

subm

ux tl

m fr

om C

T H

W T

LM#4

(offs

et14

-23)

to n

ew C

T H

W T

LM #

5 pk

t(offs

et14

-23)

.Ad

ded

new

HK

subm

ux b

yte

(HK

Brd

OTS

on/

off r

eadb

ack)

to n

ew p

kt C

T H

W T

LM #

5 of

fset

24.

Adde

d ne

w T

CM

tele

met

ry (1

8 by

tes,

ch

1-18

) to

CT

HW

TLM

#4

Smal

l SW

#2

pack

et ra

te c

hang

ed fr

om 1

6 se

cs to

32

secs

(this

is a

spa

re p

acke

t).C

hang

ed th

e C

T dw

ell r

ate

spec

ified

from

5 s

econ

ds to

4 s

econ

d on

sum

mar

y pa

ge.

M M

aldo

nado

4-Ap

r-00

4Ad

ded

chan

ges

to C

T H

W T

LM #

5 fo

r thr

ee a

dditi

onal

LM

B tlm

poi

nts

and

rem

oved

on

e tlm

poi

nt in

sam

e pa

cket

M M

aldo

nado

5-Ap

r-00

4U

pdat

ed S

M M

emor

y D

ump

Pack

et b

y re

mov

ing

a sp

are

2 by

te fi

eld

per A

rt Fe

rrers

3/2

0/20

00 e

-mai

l4

Upd

ated

Lar

ge S

W T

lm P

acke

t per

RJ

M.M

aldo

nado

10-A

pr-0

0R

ev -

Upd

ated

mne

mon

ics

and

desc

riptio

ns b

ased

on

a re

view

with

RJ

Mcg

raw

and

Kar

en P

ham

M.M

aldo

nado

11-A

pr-0

0R

ev -

Upd

ated

ap

id 2

4 fro

m rd

l file

M.M

aldo

nado

28-S

ep-0

0R

ev -

Upd

ated

for G

LAS

FSW

Bui

ld 3

.0 re

leas

eM

.Mal

dona

do29

-Sep

-00

Rev

-C

orre

cted

AD

tele

met

ry in

api

d M

.Mal

dona

do16

-Oct

-00

Rev

-St

eve

Sleg

el C

omm

ents

. Cor

rect

ed in

corre

t mas

ks a

t offs

et 1

72 a

nd 1

76 in

api

d 55

. Sw

appe

d tlm

poi

nts

in a

pid

55 o

ffset

s 12

7 an

d 12

8.C

orre

cted

mas

ks a

t offs

et 3

8 in

apd

i 24

Rem

oved

tlm

poi

nts

in a

pdi 2

4 of

fset

s 38

and

39

M.M

aldo

nado

17-O

ct-0

0R

ev -

Cor

rect

ed A

D tl

m d

escr

iptio

ns fo

r api

d 55

offs

ets

48-5

2 (D

wai

nes

Mol

ocks

Com

men

ts)

Cor

rect

ed in

corre

ct o

ffset

cal

cula

tion

in a

pid

25 a

nd m

inor

tlm

def

s in

api

d 25

SM

and

CS

sect

ions

M.M

aldo

nado

9-N

ov-0

0R

ev A

Adde

d Po

lyno

mia

l con

vers

ion

fact

ors

and

units

to a

ll po

ints

that

hav

e th

em. A

dded

4 n

ew tl

m m

nem

onic

sG

LML1

ENST

, GLM

L2EN

ST, G

LML3

ENST

and

GLM

OTS

ENST

that

def

ine

the

bits

of G

LMLO

TSEN

RB

Adde

d th

e ps

eudo

tlm

con

vers

ions

that

use

GLM

OTS

TC1L

B, G

LMO

TSTC

1UB,

GLM

OTS

TC2L

B, G

LMO

TSTC

2UB

For t

he H

VPS

sect

ion

in a

pp id

20

chan

ged

the

mne

mon

ics

of th

e ra

w c

ount

s us

ed to

cal

cula

te th

e ac

tual

HVP

Svo

ltage

s to

the

actu

al c

onve

rted

valu

es s

o th

at p

seud

o tlm

doe

s no

t nee

d to

be

used

for t

hese

tlm

poi

nts.

Thes

e ar

e th

e ch

ange

d H

VPS

mne

mon

ics:

GH

VPAD

T1V,

GH

VPAD

T2V,

GH

VPSP

CM

1V, G

HVP

SPC

M2V

, GH

VPSP

CM

3VG

HVP

SPC

M4V

, GH

VPSP

CM

5V, G

HVP

SPC

M6V

, GH

VPSP

CM

7V, G

HVP

SPC

M8V

, GH

VPIN

1T, G

HVP

IN2T

GH

VPIN

3T. T

he o

ld m

nem

onic

s di

d no

t hav

e th

e 3r

d le

tter P

that

thes

e ne

w m

nem

onic

s ha

ve.

Adde

d a

new

she

et fo

r Pse

udo

tele

met

ry w

here

mos

t of t

he P

DU

tele

met

ry is

def

ined

.Th

is D

atab

ase

corre

spon

ds to

GLA

S FS

W B

uild

3.0

Rel

ease

This

is th

e ba

selin

e re

leas

e fo

r Bal

l's O

ASYS

dat

abas

e fro

Rea

l Tim

e H

ouse

keep

ing

Tele

met

ryM

.Mal

dona

do28

-Nov

-00

Rev

AC

hang

ed th

e fo

llow

ing

mne

mon

ics:

from

GLM

H1P

POS

to G

MC

H1P

POS;

from

GLM

H2P

POS

to G

MC

H2P

POS;

from

GLM

H3P

POS

to G

MC

H3P

POS;

from

GLM

H1S

POS

to G

MC

H1S

POS;

from

GLM

H2S

POS

to G

MC

H2S

POS;

fro

m G

LMH

3SPO

S to

GM

CH

3SPO

S;R

epla

ced

cons

tant

s in

pse

udo

equa

tions

1, 2

, 3 a

nd 4

to c

orre

ct c

onst

ants

for F

LIG

HT

LASE

RS

Adde

d tw

o ne

w m

nem

onic

s G

PCD

RC

NT

at a

pid

55 o

ffset

266

and

GC

DFA

CKC

TR a

t app

id 5

5 of

fset

130

Adde

d m

asks

to G

PCFA

CKC

TR a

nd G

CD

DR

CN

T w

hich

are

at t

he s

ame

offs

et a

s pr

evio

us m

enm

onic

sM

.Mal

dona

do30

-Nov

-00

Rev

AR

edef

ined

app

id 3

1 an

d 32

pac

kets

to re

flect

real

ity. T

hese

pac

kets

do

not c

ome

dow

n th

e H

K or

DIA

G c

hann

els.

Th

e pa

cket

s co

me

dow

n th

e re

cord

er S

SR a

nd a

re u

sed

for e

ither

one

-sho

t and

dum

p or

for D

SP tr

oubl

esho

otin

g.Th

ey d

o no

t nee

d to

be

defin

ed in

the

Dat

abas

e.M

.Mal

dona

do1-

Dec

-00

Rev

ASu

bstit

uted

mne

mon

ic G

CD

OPM

OD

for G

CD

HW

MO

DE

in a

pid

24 a

t offs

et 3

8 an

d re

mov

ed 0

=Cle

ar m

em fr

om d

ef.

Subs

titut

ed m

nem

onic

GC

DID

LMO

D fo

r GC

DID

LSR

C in

app

id 2

4 at

offs

et 3

8Su

bstit

uted

mne

mon

ic G

CD

RN

GG

ATE

for G

CD

MSM

TSR

C in

app

id 2

4 at

offs

et 3

8Su

bstit

uted

mne

mon

ic G

CD

40H

ZTIM

E fo

r GC

D40

HZI

NT

in a

ppid

24

at o

ffset

39

Subs

titut

ed m

nem

onic

GC

DR

GAT

E fo

r GC

DR

GD

LY in

app

id 5

5 at

offs

et 1

08Su

bstit

uted

mne

mon

ic G

CD

FAC

K40M

for G

CD

FCM

DM

SB in

app

id 5

5 at

offs

et 1

27Su

bstit

uted

mne

mon

ic G

CD

FCM

D40

M fo

r GC

DFA

CKM

SB in

app

id 5

5 at

offs

et 1

28Su

bstit

uted

mne

mon

ic G

CD

GPS

40M

for G

CD

GPS

MSB

in a

ppid

55

at o

ffset

129

M.M

aldo

nado

06-D

ec-0

0R

ev B

Thes

e ch

ange

s co

rresp

ond

to th

e ne

w G

LASF

SW B

uild

3.1

5 N

ew m

nem

onic

in a

ppid

55

star

ting

at o

ffset

70,

whi

ch u

sed

to b

e sp

ares

GAD

PAC

SL, G

ADPA

CSM

, GAD

ARST

D, G

ADSW

EEV,

GAD

HW

EEV

Cha

nged

spa

re a

rray

size

on

mne

mon

ic G

ADSP

ARE

from

18

to 1

0 to

acc

omm

odat

e ne

w m

nem

onic

sD

elet

ed m

nem

onic

GLM

PLSR

at a

pid

20 o

ffset

31.

CC

R-1

08 C

hang

es:

Con

vert

the

4 ac

tive

lase

r tem

pera

ture

s (re

fere

nce,

dou

bler

, osc

illato

r and

ele

ctro

nics

) int

o th

e la

ser 1

tem

pera

ture

s C

hang

ed m

nem

onic

s fo

r Las

er 1

tem

pera

ture

s to

be

cons

iste

nt b

y ad

ding

L1.

Cha

nged

mne

mon

ic G

LMR

EFT

to G

LML1

REF

TC

hang

ed m

nem

onic

GLM

DBT

to G

LML1

DBT

Chan

ge H

isto

ry

Page 95:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-5 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: Cha

nge

Hist

ory

Nam

eDa

teVe

rsio

nCh

ange

Des

crip

tion

Chan

ge H

isto

ry

Cha

nged

mne

mon

ic G

LMO

SCT

to G

LML1

OSC

TC

hang

ed m

nem

onic

GLM

MET

to G

LML1

ETM

ove

the

8 te

lem

etry

poi

nts

star

ting

at a

ppid

20

offs

et 2

1 to

api

d 50

sta

rting

at o

ffset

27

whi

ch a

re c

urre

ntly

spa

res

Mov

ed m

nem

onic

GLM

OTS

LVL1

from

api

d 20

offs

et 2

1 to

api

d 50

offs

et 2

7M

oved

mne

mon

ic G

LMO

TSLV

L2 fr

om a

pid

20 o

ffset

22

to a

pid

50 o

ffset

28

Mov

ed m

nem

onic

GLM

OTS

LVL3

from

api

d 20

offs

et 2

3 to

api

d 50

offs

et 2

9M

oved

mne

mon

ic G

LMO

TSLV

L4 fr

om a

pid

20 o

ffset

24

to a

pid

50 o

ffset

30

Mov

ed m

nem

onic

GLM

OTS

TC1U

B fro

m a

pid

20 o

ffset

25

to a

pid

50 o

ffset

31

Mov

ed m

nem

onic

GLM

OTS

TC1L

B fro

m a

pid

20 o

ffset

26

to a

pid

50 o

ffset

32

Mov

ed m

nem

onic

GLM

OTS

TC2U

B fro

m a

pid

20 o

ffset

27

to a

pid

50 o

ffset

33

Mov

ed m

nem

onic

GLM

OTS

TC2L

B fro

m a

pid

20 o

ffset

28

to a

pid

50 o

ffset

34

Add

8 ne

w m

nem

onic

s fo

r las

er 2

and

lase

r 3 te

mpe

ratu

res

(refe

renc

e, d

oubl

er, o

scilla

tor a

nd e

lect

roni

cs)

The

new

mne

mon

ics

are

GLM

L2R

EFT,

GLM

L2D

BT, G

LML2

OSC

T, G

LML2

ET, G

LML3

REF

T, G

LML3

DBT

, GLM

L3O

SCT

and

GLM

L3ET

. The

y ha

ve b

een

adde

d to

api

d 20

sta

rting

at o

ffset

21

and

they

occ

upy

the

loca

tions

va

cate

d by

mov

ed m

nem

onic

s.M

.Mal

dona

do07

-Dec

-00

Rev

BC

orre

cted

Pol

ynom

ial C

onve

rsio

n Fa

ctor

s fo

r the

follo

win

g m

nem

onic

s in

api

d 23

, sta

rting

at o

ffset

14

GM

CH

OP1

T, G

MC

HO

P2T,

GM

CH

OP3

T, G

MC

VCXT

, GM

CVC

YT, G

MC

HO

P1H

TR1I

, GM

CH

OP1

HTR

2I, G

MC

HO

P2H

TR1I

, G

MC

HO

P2H

TR2I

, GM

CH

OP3

HTR

1I a

nd G

MC

HO

P3H

TR2I

Cha

nged

Uni

ts o

n G

MC

VCXM

TRI a

nd G

MC

VCYM

TRI f

rom

Vol

ts to

Milli

Amps

and

mod

ified

con

vers

ion

fact

ors

acco

rdin

gly

Cha

nged

GM

CXP

OS

and

GM

CYP

OS

conv

ersi

on fa

ctor

s to

be

mor

e pr

ecis

eM

.Mal

dona

do14

-Dec

-00

Rev

BAd

ded

addi

tiona

l vol

tage

and

cur

rent

des

crip

tions

to a

pid

21 m

nem

onic

sC

hang

ed m

nem

onic

GM

CC

ADC

PUL

to G

MC

ADC

PUL

in a

pid

21 o

ffset

54

Adde

d ad

ditio

nal l

aser

mon

itor d

escr

iptio

n to

api

d 50

offs

ets

24, 2

5 &

26C

hang

ed G

GC

TSTA

T to

GC

TSTA

T in

api

d 24

offs

et 5

4N

amed

a s

pare

byt

e at

api

d24

offs

et 5

5GC

TSPA

RE1

Cha

nged

two

disc

rete

con

vers

ions

from

1=A

uto

to 1

=Nor

mal

at a

pid

24 o

ffset

54,

mne

mon

ics

GC

TSW

MO

DE

and

GC

THW

MO

DE

Cha

nged

mne

mon

ic G

CTA

NPS

T to

GC

TAN

PS in

api

d 55

offs

et 3

36 to

be

cons

iste

ntM

.Mal

dona

do15

-Dec

-00

Rev

BC

onve

rted

2 by

tes

of s

pare

s in

app

id 5

5 of

fset

216

into

a te

lem

etry

poi

nt m

nem

onic

GG

PBAD

XYZ

M.M

aldo

nado

05-M

ar-0

1R

ev B

CC

R-1

20, C

hang

ed m

nem

onic

s at

api

d 50

offs

ets

18 a

nd 1

9. F

rom

GH

KLH

P1T

to G

HKL

HP1

CN

TRLT

and

G

HKL

HP2

T to

GH

KLH

P2C

NTR

LTD

. Mol

ock

22-J

un-0

1R

ev B

Upd

ated

AD

fast

and

slo

w te

lem

eter

y pa

cket

to re

flect

cha

nges

mad

e fo

r bui

ld 3

.3S.

Sle

gel

27-J

un-0

1R

ev B

Upd

ated

PC

, CD

, and

DC

Fas

t and

Slo

w T

elem

etry

Pac

ket t

o re

flect

cha

nges

mad

e fo

r bui

ld 3

.3P.

Kut

t03

-Jul

-01

Rev

BU

pdat

ed C

T fa

st a

nd s

low

tele

met

ery

pack

et to

refle

ct c

hang

es m

ade

for b

uild

3.3

:R

epla

ced

spar

e by

te in

CT

fast

tele

met

ry w

ith a

dditi

onal

sta

tus

bits

for e

talo

n.R

epla

ced

2 sp

are

byte

s in

CT

slow

tele

met

ry w

ith s

tatu

s bi

ts fo

r sup

pres

sed

even

t mes

sage

s.R

epla

ced

12 s

pare

byt

es in

CT

slow

tele

met

ry w

ith m

nem

onic

s fo

r LH

P te

mpe

ratu

re c

ontro

l.R

epla

ced

spar

e by

te in

CT

slow

tele

met

ry w

ith s

tatu

s bi

ts fo

r tel

emet

ry u

pdat

es.

K.N

aylo

r10

-Jul

-01

Rev

BU

pdat

ed th

e M

D c

omm

ents

in th

e Su

mm

ary.

Add

ed M

D te

lem

etry

to L

arge

SW

#1.

Upd

ated

MD

Pac

ket (

27,2

8) in

form

atio

n.M

.Mal

dona

do09

-Aug

-01

Rev

BU

pdat

ed M

nem

onic

s pe

r GLA

S-C

CR

-114

Cha

nged

tele

met

ry m

nem

onic

from

GH

KFD

LT to

GH

K1FO

LDT

in a

pid

22 o

ffset

42

Cha

nged

tele

met

ry m

nem

onic

from

GH

KSPC

MT

to G

HKL

IDBO

XT in

api

d 22

offs

et 3

5J.

Pol

k26

-Jun

-02

Rev

CU

pdat

ed "c

onfid

ence

sta

tus"

of m

emor

y dw

ell p

acke

ts fr

om lo

w to

hig

h, a

nd e

talo

n ca

libra

tion

from

low

to m

ediu

m.

Rem

oved

pse

udo

equa

tions

wor

kshe

et, a

nd re

plac

ed a

ll re

fere

nces

to p

seud

o te

lem

etry

in th

e "c

onve

rsio

n fa

ctor

s" c

olum

n w

ith th

e ap

prop

riate

pse

udo

tele

met

ry m

nem

onic

.C

orre

cted

HVP

S m

nem

onic

s by

rem

ovin

g th

e "P

". E

.G.,

GH

VPAD

T1V

to G

HVA

DT1

VC

hang

ed d

efin

ition

of G

MC

H3P

POS

and

GM

CH

3SPO

S bi

ts fr

om 2

="D

EPLO

YED

",3="

STO

WED

" to

2="D

ET#2

",3="

DET

#1"

Cor

rect

ed m

nem

onic

s fo

r GM

CH

OP1

T, G

MC

HO

P2T,

GM

CH

OP3

T, G

MC

VCXT

, and

GM

CVC

YT to

GM

CLS

M1T

, GM

CLS

M2T

,

GM

CAD

SMT,

GM

CLB

SMET

, and

GM

CLB

SMM

T.R

emov

ed T

M m

nem

onic

s G

TMSM

IRH

TR a

nd G

TMSM

IRTS

P, a

nd H

K m

nem

onic

GH

KSM

IRI

Rev

erse

d th

e or

der o

f TM

mne

mon

ics

GTM

SMIR

THSE

L an

d G

TMSS

STH

SEL,

and

HK

mne

mon

ics

GH

KSM

IRT

AND

GH

KTO

WT.

Upd

ated

pol

ynom

ials

for v

ario

us m

nem

onic

s: G

TMTO

WTS

P,G

HKT

OW

T,G

HKS

MIR

T,G

MC

LSM

1T,G

MC

CLS

2T,G

MC

ADSM

T,G

MC

LBSM

ET, G

MC

LBSM

MT,

GH

KTO

WI

Rep

lace

d si

ngle

byt

e (U

B) O

TS tr

igge

r cou

nt v

alue

s w

ith 2

byt

e (U

I) va

lues

. GLM

OTS

TC1U

B/LB

with

GLM

OTS

TC1

and

G

LMO

TSTC

2UB/

LB w

ith G

LMO

TSTC

2.Ad

ded

GP

stat

us b

it m

ask

defin

ition

s in

pac

ket 2

4, a

nd c

orre

cted

mas

ks fo

r AD

, PC

, DC

, and

CD

sof

twar

e/ha

rdw

are

mod

e fla

gsAd

ded

new

(for

Bld

3.8

) Eta

lon

Ope

n-Lo

op fl

ag (G

CTE

OLM

OD

E)In

the

Larg

e SW

Tlm

#1

pack

et (p

kt 2

5): (

a) c

hang

ed G

HSW

DIS

R to

GH

SCD

ISR

, (b)

cha

nged

nam

es o

f unu

sed

ISR

s to

indi

cate

that

they

are

sp

ares

, (c)

cor

rect

ed m

nem

onic

for G

PS 1

0 se

c IS

R c

ount

(GH

SGPS

ISR

to

GH

SGPS

1ISR

), (d

) cor

rect

ed m

nem

onic

for "

AD S

ubsy

stem

Pre

sent

Flag

" fro

m G

HSD

APF

to G

HSA

DPF

, (e)

cor

rect

ed m

ask

for "

CS

Enab

led/

Dis

able

d Fl

ag" f

rom

0x0

1 to

0x0

3, (f

) cor

rect

ed m

ask

for "

SM ta

ble

Ope

ratio

ns F

lag"

from

0xF

F to

0x3

F, (g

) cor

rect

ed "F

ire C

omm

and

Tim

e In

crem

ent"

mne

mon

ic (c

hang

ed G

TCIN

CL4

/GTC

INU

2 to

G

TCIN

CR

L4/G

TCIN

CR

U2)

.In

the

Larg

e SW

Tlm

#2

pack

et (p

kt 5

5): (

a) In

crea

sed

the

size

of t

he C

D A

/D R

aw D

ata

and

Ovc

erflo

w fl

ag fr

om 2

to 4

byt

es a

nd re

mov

ed th

e 2

spar

e by

tes,

(b) c

orre

cted

the

mas

k fo

r the

"DC

O

utpu

t FIF

O F

ull/E

mpt

y In

terru

pt (t

he m

asks

wer

e re

vers

ed),

(c) A

dded

GD

CG

AIN

val

ues,

(d) r

emov

ed G

P st

atus

flag

s an

d ad

ded

GG

PBAD

XYZC

NT,

GG

PTO

LER

XYZ,

and

GG

PRAN

GEP

KTS,

(e

) DC

FIF

O A

lmos

t Ful

l/Alm

ost E

mpt

y m

nem

onic

s w

ere

reve

rsed

(fix

ed th

is).

Adde

d m

nem

onic

nam

es in

mne

mon

ics

colu

mn

for p

acke

ts 3

5 an

d 36

Cha

nged

siz

e of

Eta

lon

Cal

ibra

tion

pack

et (o

n su

mm

ary

page

) fro

m 4

92 to

207

6 , a

nd a

dded

eta

lon

calib

ratio

n pa

cket

to "o

ther

pkt

s" s

prea

dshe

et

24-S

ep-0

2R

epla

ced

poly

nom

ial c

onve

rsio

n fa

ctor

s w

ith p

seud

o tlm

mne

mon

ic fo

r the

follo

win

g: G

LMO

SCI,

GLM

AMPI

, GLM

PIN

A, G

LMPI

NB,

GLM

532N

RG

.

Page 96:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-6 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: C

T H

W T

LM #

1

Pkt N

ame

CT H

W T

LM #

1Si

ze56

Oct

ets

App

Id20

Freq

uenc

y0.

250

HzIn

terv

al4.

000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Lase

r 1 R

efer

ence

Tem

pera

ture

11

GLML1REFT

LMB

Pseudo Mnemonic GLML1REFTP

Cou

nts

15La

ser 1

Dou

bler

Tem

pera

ture

21

GLML1DBT

LMB

Pseudo Mnemonic GLML1DBTP

Cou

nts

16La

ser 1

Osc

illato

r Tem

pera

ture

31

GLML1OSCT

LMB

Pseudo Mnemonic GLML1OSCTP

Cou

nts

17La

ser 1

Ele

ctro

nics

Tem

pera

ture

41

GLML1ET

LMB

Pseudo Mnemonic GLML1ETP

Cou

nts

18La

ser O

sc C

urre

nt6

1GLMOSCI

LMB

Pseudo Mnemonic GLMPOSCCDI

Cou

nts

19La

ser A

mp

Cur

rent

71

GLMAMPI

LMB

Pseudo Mnemonic GLMPAMPCDI

Cou

nts

20La

ser D

r Pul

se W

idth

81

GLMDRPW

LMB

POLY

=(13

1.08

,0.5

12)

puls

e w

idth

in u

sec

21La

ser 2

Ref

eren

ce T

empe

ratu

re24

1GLML2REFT

LMB

Pseudo Mnemonic GLML1REFTP

Cou

nts

22La

ser 2

Dou

bler

Tem

pera

ture

251

GLML2DBT

LMB

Pseudo Mnemonic GLML1DBTP

Cou

nts

23La

ser 2

Osc

illato

r Tem

pera

ture

261

GLML2OSCT

LMB

Pseudo Mnemonic GLML1OSCTP

Cou

nts

24La

ser 2

Ele

ctro

nics

Tem

pera

ture

271

GLML2ET

LMB

Pseudo Mnemonic GLML1ETP

Cou

nts

25La

ser 3

Ref

eren

ce T

empe

ratu

re28

1GLML3REFT

LMB

Pseudo Mnemonic GLML1REFTP

Cou

nts

26La

ser 3

Dou

bler

Tem

pera

ture

291

GLML3DBT

LMB

Pseudo Mnemonic GLML1DBTP

Cou

nts

27La

ser 3

Osc

illato

r Tem

pera

ture

301

GLML3OSCT

LMB

Pseudo Mnemonic GLML1OSCTP

Cou

nts

28La

ser 3

Ele

ctro

nics

Tem

pera

ture

311

GLML3ET

LMB

Pseudo Mnemonic GLML1ETP

Cou

nts

29AD

Det

ecto

r Out

goin

g G

ain

read

back

171

GLMADTOGGN

LMB

POLY

=(-1

, 0.0

0781

25)

Volts

30AD

Det

ecto

r Ret

urn

Gai

n re

adba

ck18

1GLMADTRTNGN

LMB

POLY

=(-1

, 0.0

0781

25)

Volts

31La

ser 1

Ean

ble/

Dis

able

Sta

tus

19GLML1ENST

0x01

LMB

0=EN

ABLE

D, 1

=DIS

ABLE

D31

Lase

r 2 E

anbl

e/D

isab

le S

tatu

s19

GLML2ENST

0x02

LMB

0=EN

ABLE

D, 1

=DIS

ABLE

D31

Lase

r 3 E

anbl

e/D

isab

le S

tatu

s19

GLML3ENST

0x04

LMB

0=EN

ABLE

D, 1

=DIS

ABLE

D31

OTS

Ena

ble/

Dis

able

Sta

tus

19GLMOTSENST

0x08

LMB

0=EN

ABLE

D, 1

=DIS

ABLE

D31

Lase

r and

OTS

Ena

ble

read

back

s19

1GLMLOTSENRB

0xFF

LMB

32D

ual P

in -A

1GLMPINA

LMB

Pseudo Mnemonic GLMPPINACD

Cou

nts

33D

ual P

in -B

1GLMPINB

LMB

Pseudo Mnemonic GLMPPINBCD

Cou

nts

3453

2 En

ergy

1GLM532NRG

LMB

Pseudo Mnemonic GLMP532NRGCD

Cou

nts

35Pr

imar

y Al

timet

er D

etec

tor 5

50 V

1

1GHVADT1V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

36Se

cond

ary

Altim

eter

Det

ecto

r 550

V

21

GHVADT2V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

37SP

CM

Det

ecto

r #1

550

V3

1GHVSPCM1V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

38SP

CM

Det

ecto

r #2

550

V4

1GHVSPCM2V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

39SP

CM

Det

ecto

r #3

550

V5

1GHVSPCM3V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

40SP

CM

Det

ecto

r #4

550

V6

1GHVSPCM4V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

41SP

CM

Det

ecto

r #5

550

V7

1GHVSPCM5V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

42SP

CM

Det

ecto

r #6

550

V8

1GHVSPCM6V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

43SP

CM

Det

ecto

r #7

550

V9

1GHVSPCM7V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

44SP

CM

Det

ecto

r #8

550

V10

1GHVSPCM8V

HVP

SPO

LY=(

0.0,

3.5

81)

Volts

45In

tern

al T

emp

#111

1GHVIN1T

HVP

SPO

LY=(

- 50.

0, 0

.781

)D

eg C

46In

tern

al T

emp

#212

1GHVIN2T

HVP

SPO

LY=(

9.0,

0.0

31)

Deg

C47

Inte

rnal

Tem

p #3

131

GHVIN3T

HVP

SPO

LY=

(-50.

0, 0

.781

)D

eg C

Page 97:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-7 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: C

T H

W T

LM #

1

Pkt N

ame

CT H

W T

LM #

1Si

ze56

Oct

ets

App

Id20

Freq

uenc

y0.

250

HzIn

terv

al4.

000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

48Vo

ice

Coi

l X M

otor

Cur

rent

72

GMCVCXMTRI

MC

SPO

LY=(

-100

, 0.0

4882

8125

)m

illi A

mps

50Vo

ice

Coi

l Y M

otor

Cur

rent

82

GMCVCYMTRI

MC

SPO

LY=(

-100

, 0.0

4882

8125

)m

illi A

mps

52M

irror

X P

ositi

on9

2GMCXPOS

MC

SPO

LY=(

-10,

0.0

0488

2812

5)Vo

lts54

Mirr

or Y

Pos

ition

102

GMCYPOS

MC

SPO

LY=(

-10,

0.0

0488

2812

5)Vo

lts

Page 98:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-8 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 3W

orks

heet

: CT

HW

TLM

#2

Pkt N

ame

CT H

W T

LM #

2Si

ze56

Oct

ets

App

Id21

Freq

uenc

y0.

250

HzIn

terv

al4.

000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Prim

ary

Mon

itor C

alib

ratio

n, U

pper

Byt

e0

1GPDMON1CALUB

PDU

Pseu

do M

nem

onic

SLO

PE1

15Pr

imar

y M

onito

r Cal

ibra

tion,

Low

er B

yte

11

GPDMON1CALLB

PDU

Pseu

do M

nem

onic

INTE

RC

EPT1

16+2

8V B

us A

Inst

rum

ent V

olta

ge2

1GPDBAP28V

PDU

Pseudo Mnemonic GPDPBAP28V

Cou

nts

17H

ybrid

Sup

plie

s C

urre

nt3

1GPDHYPSI

PDU

Pseu

do M

nem

onic

GPD

PHYP

SIC

ount

s18

HVP

S D

etec

tor S

uppl

ies

Cur

rent

41

GPDDTHVI

PDU

Pseu

do G

PDPD

THVI

Cou

nts

19O

pera

tiona

l Hea

ters

Cur

rent

51

GPDOPHTRI

PDU

Pseu

do G

PDPO

PHTR

IC

ount

s20

Mec

hani

cal S

yste

m C

urre

nt6

1GPDMSI

PDU

Pseu

do G

PDPM

SIC

ount

s21

+28V

Bus

B L

aser

1 V

olta

ge7

1GPDBBL1P28V

PDU

Pseu

do G

PDPB

BL1P

28V

Cou

nts

22+2

8V B

us B

La

ser 1

Cur

rent

81

GPDBBL1P28I

PDU

Pseu

do G

PDPB

BL1P

28I

Cou

nts

23+2

8V B

us C

La

ser 2

Vol

tage

91

GPDBCL2P28V

PDU

Pseu

do G

PDPB

CL2

P28V

Cou

nts

24+2

8V B

us C

La

ser 2

Cur

rent

101

GPDBCL2P28I

PDU

Pseu

do G

PDPB

CL2

P28I

Cou

nts

25+2

8V B

us D

La

ser 3

Vol

tage

111

GPDBDL3P28V

PDU

Pseu

do G

PDPB

DL3

P28V

Cou

nts

26+2

8V B

us D

La

ser 3

Cur

rent

121

GPDBDL3P28I

PDU

Pseu

do G

PDPB

DL3

P28I

Cou

nts

27Se

cond

ary

Mon

itor C

alib

ratio

n, U

pper

Byt

e16

1GPDMON2CALUB

PDU

Pseu

do M

nem

onic

SLO

PE2

28

Seco

ndar

y M

onito

r Cal

ibra

tion,

Low

er B

yte

171

GPDMON2CALLB

PDU

Pseu

do M

nem

onic

INTE

RC

EPT2

29

+ 5

V H

ybrid

# 1

Vol

tage

181

GPDHY1P5V

PDU

Pseu

do G

PDPH

Y1P5

VC

ount

s30

+ 5

V H

ybrid

# 1

Cur

rent

191

GPDHY1P5I

PDU

Pseu

do G

PDPH

Y1P5

IC

ount

s31

+12

V H

ybrid

# 2

Vol

tage

201

GPDHY2P12V

PDU

Pseu

do G

PDPH

Y2P1

2VC

ount

s32

+ 12

V H

ybrid

# 2

Cur

rent

211

GPDHY2P12I

PDU

Pseu

do G

PDPH

Y2P1

2IC

ount

s33

- 12

V H

ybrid

# 3

Vol

tage

221

GPDHY3M12V

PDU

Pseu

do G

PDPH

Y3M

12V

Cou

nts

34- 1

2 V

Hyb

rid #

3 C

urre

nt23

1GPDHY3M12I

PDU

Pseu

do G

PDPH

Y3M

12I

Cou

nts

35+

5 V

Hyb

rid #

4 V

olta

ge24

1GPDHY4P5V

PDU

Pseu

do G

PDPH

Y4P5

VC

ount

s36

+ 5

V H

ybrid

# 4

Cur

rent

251

GPDHY4P5I

PDU

Pseu

do G

PDPH

Y4P5

IC

ount

s37

- 5 V

Hyb

rid #

5 V

olta

ge26

1GPDHY5M5V

PDU

Pseu

do G

PDPH

Y5M

5VC

ount

s38

- 5 V

Hyb

rid #

5 C

urre

nt27

1GPDHY5M5I

PDU

Pseu

do G

PDPH

Y5M

5IC

ount

s39

- 5 V

Hyb

rid #

6 V

olta

ge28

1GPDHY6M5V

PDU

Pseu

do G

PDPH

Y6M

5VC

ount

s40

- 5 V

Hyb

rid #

6 C

urre

nt29

1GPDHY6M5I

PDU

Pseu

do G

PDPH

Y6M

5IC

ount

s41

+ 15

V B

oost

Pos

t Reg

Vol

tage

301

GPDBTP15V

PDU

Pseu

do G

PDPB

TP15

VC

ount

s42

- 15

V Bo

ost P

ost R

eg V

olta

ge31

1GPDBTM15V

PDU

Pseu

do G

PDPB

TM15

VC

ount

s43

+12

V P

rim O

sc T

herm

al C

ontro

l Cur

rent

321

GPDTHC1P12I

PDU

Pseu

do G

PDPT

HC

1P12

IC

ount

s

Page 99:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-9 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 3W

orks

heet

: CT

HW

TLM

#2

Pkt N

ame

CT H

W T

LM #

2Si

ze56

Oct

ets

App

Id21

Freq

uenc

y0.

250

HzIn

terv

al4.

000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

44 +

12 V

Sec

Osc

The

rmal

Con

trol C

urre

nt33

1GP

DTHC

2P12

IPD

UPs

eudo

GPD

PTH

C2P

12I

Cou

nts

45-2

V D

iscr

ete

Volta

ge34

1GP

DDIS

M2V

PDU

Pseu

do G

PDPD

ISM

2VC

ount

s46

Hyb

rid H

eats

ink

Tem

pera

ture

351

GPDH

YHST

PDU

Pseu

do G

PDPH

YHST

Cou

nts

47FE

T Sw

itch

Bank

Hea

tsin

k Te

mpe

ratu

re36

1GP

DFET

SBHS

TPD

UPs

eudo

GPD

PFET

SBH

STC

ount

s48

Prim

ary

Osc

illato

r Sta

tus

39GP

DOSC

1ST

0x01

PDU

0=O

ff, 1

=On

48Se

cond

ary

Osc

illato

r Sta

tus

39GP

DOSC

2ST

0x02

PDU

0=O

ff, 1

=On

48Pr

imar

y AD

Sta

tus

39GP

DAD1

ST0x

10PD

U0=

Off,

1=O

n48

Seco

ndar

y AD

Sta

tus

39GP

DAD2

ST0x

20PD

U0=

Off,

1=O

n48

FET

Switc

h Ba

nk C

onfig

urat

ion

391

GPDF

ETSB

PDU

49H

VPS

+0 V

olts

Ref

eren

ce

141

GHVR

EFP0

VH

VPS

BdPO

LY=(

0.0,

0.0

26)

Volts

50H

VPS

+5 V

olts

Ref

eren

ce15

1GH

VREF

P5V

HVP

S Bd

POLY

=(0.

0, 0

.052

)Vo

lts

51M

CS

Mux

Cou

nter

(4-b

its)

1GM

CCTR

INFO

0x0F

MC

S Bd

C

omm

anda

ble

tlmC

ount

s

52Pr

imar

y Se

nsor

Pos

ition

Las

er S

elec

t Mec

hani

sm 1

, H

OP-

1GM

CH1P

POS

0x0C

00

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n,

2=D

eplo

yed,

3=S

tow

ed

52Pr

imar

y Se

nsor

Pos

ition

Las

er S

elec

t Mec

hani

sm 2

, H

OP-

2GM

CH2P

POS

0x03

00

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n,

2=D

eplo

yed,

3=S

tow

ed

52Pr

imar

y Se

nsor

Pos

ition

Alti

met

er D

igiti

zer D

etec

tor

Sele

ct M

echa

nism

, HO

P-3

GMCH

3PPO

S0x

00C

0

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n, 2

=DET

#2,

3=D

ET#1

52Se

cond

ary

Sens

or P

ositi

on L

aser

Sel

ect M

echa

nism

1,

HO

P-1

GMCH

1SPO

S0x

0030

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n,

2=D

eplo

yed,

3=S

tow

ed

52Se

cond

ary

Sens

or P

ositi

on L

aser

Sel

ect M

echa

nism

2,

HO

P-2

GMCH

2SPO

S0x

000C

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n,

2=D

eplo

yed,

3=S

tow

ed

52Se

cond

ary

Sens

or P

ositi

on A

ltim

eter

Dig

itize

r D

etec

tor S

elec

t Mec

hani

sm, H

OP-

3GM

CH3S

POS

0x00

03

MC

S Bd

C

omm

anda

ble

tlm0=

In-D

eplo

ymen

t, 1=

Unk

now

n, 2

=DET

#2,

3=D

ET#1

52O

ptic

al S

enso

r Sta

tus

2GM

COPT

SST

0xFF

FF

MC

S Bd

C

omm

anda

ble

tlm

Page 100:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-10 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

3 o

f 3W

orks

heet

: CT

HW

TLM

#2

Pkt N

ame

CT H

W T

LM #

2Si

ze56

Oct

ets

App

Id21

Freq

uenc

y0.

250

HzIn

terv

al4.

000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

54H

OP

Tem

pera

ture

Sta

tus

GMCH

OPT

0x08

00

MC

S Bd

C

omm

anda

ble

tlm0=

In T

oler

ance

, 1=O

ut o

f Tol

eran

ce

54AD

C P

ulse

Sta

tus

GMCA

DCPU

L0x

0400

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Rec

eive

d, 1

= R

ecei

ved

54D

eplo

yed

optic

dio

des

pow

er s

tatu

sGM

CDPL

YOPT

PWR

0x02

00

MC

S Bd

C

omm

anda

ble

tlm0=

ON

, 1=O

FF

54St

owed

opt

ic d

iode

s po

wer

sta

tus

GMCS

TOPT

PWR

0x01

00

MC

S Bd

C

omm

anda

ble

tlm0=

ON

, 1=O

FF

54H

OP

LED

Tur

n O

ffGM

CHOP

LEDO

F0x

0080

MC

S Bd

C

omm

anda

ble

tlm0=

Arm

ed, 1

=Trig

gere

d

54H

OP

Tem

p Tu

rn O

ffGM

CHOP

TEMP

OF0x

0040

MC

S Bd

C

omm

anda

ble

tlm0=

Arm

ed, 1

=Trig

gere

d

54H

OP

Tim

er T

urn

Off

GMCH

OPTI

MOF

0x00

20

MC

S Bd

C

omm

anda

ble

tlm0=

Arm

ed, 1

=Trig

gere

d

54H

OP

Com

man

d Tr

igge

r Sta

tus

GMCH

OPTR

IG0x

0010

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Rec

eive

d, 1

= R

ecei

ved

54R

eset

Lat

ch re

lay

com

man

d st

atus

GMCR

STLR

LY0x

0008

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Rec

eive

d, 1

= R

ecei

ved

54Se

t lat

ch re

lay

com

man

d st

atus

GMCS

ETLR

LY0x

0004

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Rec

eive

d, 1

= R

ecei

ved

54D

AC In

it C

onve

rsio

n Si

gnal

Sta

tus

GMCI

NCON

SIG

0x00

02

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Sen

t, 1=

Sent

54D

AC L

atch

Dat

a Si

gnal

Sta

tus

GMCD

ACLD

SIG

0x00

01

MC

S Bd

C

omm

anda

ble

tlm0=

Not

Sen

t, 1=

Sent

54St

atus

Cm

d Te

lem

etry

2GM

CSTC

M0x

FFFF

MC

S Bd

C

omm

anda

ble

tlm

Page 101:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-11 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: CT

HW

TLM

#3

Pkt N

ame

CT H

W T

LM #

3Si

ze56

Oct

ets

App

Id22

Freq

uenc

y0.

0625

HzIn

terv

al16

.000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Conv

ersi

on F

acto

rsUn

its0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

8Ti

me

whe

n pa

cket

is s

ent

14H

ouse

keep

ing

Boar

d Te

mpe

ratu

re0

1GHKHKT

HK

POLY

=(-2

0.4,

0.3

984)

Deg

C15

Inst

rum

ent P

roce

ssor

Sys

tem

Boa

rd T

empe

ratu

re1

1GHKIPST

HK

POLY

=(-2

3.5,

0.3

984)

Deg

C16

Phot

on C

ount

er B

oard

Tem

pera

ture

21

GHKPCT

HK

POLY

=(-2

1.6,

0.3

984)

Deg

C

17C

loud

Dig

itize

r/Fre

quen

cy &

Tim

e Bo

ard

Tem

pera

ture

31

GHKCDT

HK

POLY

=(-2

1.6,

0.3

984)

Deg

C18

Altim

eter

Dig

itize

r 1 D

SP T

empe

ratu

re4

1GHKAD1DSPT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C19

Altim

eter

Dig

itize

r 2 D

SP T

empe

ratu

re5

1GHKAD2DSPT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C20

Dat

a C

olle

ctio

n &

Han

dlin

g Bo

ard

Tem

p6

1GHKDCT

HK

POLY

=(-2

0.7,

0.3

984)

Deg

C21

Lase

r Mon

itor B

oard

Tem

pera

ture

71

GHKLMT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C22

Tem

pera

ture

Con

trolle

r Mon

itor B

oard

Tem

pera

ture

81

GHKTMT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C

23O

ven-

crys

tal-c

ontro

lled

Osc

illato

r(OXC

O) 1

Boa

rd

Tem

pera

ture

91

GHKOXCO1T

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C

24O

ven-

crys

tal-c

ontro

lled

Osc

illato

r(OXC

O) 2

Boa

rd

Tem

pera

ture

101

GHKOXCO2T

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C25

Osc

illato

r Boa

rd T

empe

ratu

re11

1GHKOSCT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C26

Opt

ical

Tes

t Sou

rce

(OTS

) Boa

rd T

empe

ratu

re12

1GHKOTST

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C27

Lase

r Pro

filer

Arra

y (L

PA) T

empe

ratu

re 1

131

GHKLPAT1T

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C28

Lase

r Pro

filer

Arra

y (L

PA) T

empe

ratu

re 2

141

GHKLPAT2T

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C29

Altim

eter

Dig

itize

r 1 E

CLA

Tem

pera

ture

151

GHKAD1ECLAT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C30

Altim

eter

Dig

itize

r 2 E

CLA

Tem

pera

ture

161

GHKAD2ECLAT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C31

Altim

eter

Dig

itize

r 1 E

CLB

Tem

pera

ture

171

GHKAD1ECLBT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C32

Altim

eter

Dig

itize

r 2 E

CLB

Tem

pera

ture

181

GHKAD2ECLBT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C33

Altim

eter

Dig

itize

r 1 A

DC

Tem

pera

ture

191

GHKAD1ADCT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C34

Altim

eter

Dig

itize

r 2 A

DC

Tem

pera

ture

201

GHKAD2ADCT

HK

POLY

=(-2

1.0,

0.3

984)

Deg

C35

Lida

r Box

Tem

pera

ture

211

GHKLIDBOXT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

36Te

lesc

ope

Mou

nt T

empe

ratu

re22

1GHKTELMTT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

37Te

lesc

ope

Baffl

e Te

mpe

ratu

re23

1GHKTELBFT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

38Al

timet

er D

etec

tor 1

Tem

pera

ture

241

GHKADT1T

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

39Al

timet

er D

etec

tor 2

Tem

pera

ture

251

GHKADT2T

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

40Fa

ce 1

LTR

to S

RS

Tem

pera

ture

261

GHKF1LTRT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

41Fa

ce 2

LTR

to S

RS

Tem

pera

ture

271

GHKF2LTRT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

42SR

S Fi

rst F

old

Opt

ics

Tem

pera

ture

281

GHK1FOLDT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

43Fi

ber B

ox T

empe

ratu

re29

1GHKFBOXT

HK-

PRT

POLY

=(-1

8.11

3, 0

.308

3)D

eg C

Page 102:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-12 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: CT

HW

TLM

#3

Pkt N

ame

CT H

W T

LM #

3Si

ze56

Oct

ets

App

Id22

Freq

uenc

y0.

0625

HzIn

terv

al16

.000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Conv

ersi

on F

acto

rsUn

its44

Face

1 F

old

Arou

nd B

ench

Tem

pera

ture

301

GHKF

1FAB

TH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C45

Face

2 F

old

Arou

nd B

ench

Tem

pera

ture

311

GHKF

2FAB

TH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C46

Face

1 L

TR C

RS

Tem

pera

ture

321

GHKF

1CRS

TH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C47

Face

2 L

TR C

RS

Tem

pera

ture

331

GHKF

2CRS

TH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C

48St

ella

r Ref

eren

ce S

yste

m (S

RS)

Par

abol

a Te

mpe

ratu

re34

1GH

KSRS

PTH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C49

PRT

Cal

Low

351

GHKC

ALLO

H

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C50

PRT

Cal

Hig

h36

1GH

KCAL

HIH

K-PR

TPO

LY=(

-18.

113,

0.3

083)

Deg

C51

Pin

Dio

de B

ias

Volta

ge38

1GH

KBIA

SVH

KPO

LY=(

0,0.

2949

)Vo

lts52

AD1

Hig

h Sp

eed

Ram

Tem

pera

ture

391

GHKA

D1HS

RTH

KPO

LY=(

-21.

0, 0

.398

4)D

eg C

53Sp

are

1GH

KSPR

154

Spar

e1

GHKS

PR2

55Sp

are

1GH

KSPR

3

Page 103:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-13 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: CT

HW

TLM

#4

Pkt N

ame

CT H

W T

LM #

4Si

ze56

Oct

ets

App

Id23

Freq

uenc

y0.

0625

HzIn

terv

al16

.000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Lase

r Sel

ect M

echa

nism

#1

Tem

pera

ture

0-0

2GMCLSM1T

MC

SPO

LY=(

-145

6.13

, 0.5

6640

5570

3)D

eg C

16La

ser S

elec

t Mec

hani

sm #

2 T

empe

ratu

re0-

12

GMCLSM2T

MC

SPO

LY=(

-145

6.13

, 0.5

6640

5570

3)D

eg C

18Al

timet

er D

etec

tor S

elec

t Mec

hani

sm T

emp.

0-2

2GMCADSMT

MC

SPO

LY=(

-145

6.13

, 0.5

6640

5570

3)D

eg C

20La

ser B

eam

Sel

ect M

ech

Elec

troni

cs T

emp

0-3

2GMCLBSMET

MC

SPO

LY=(

-145

6.13

, 0.5

6640

5570

3)D

eg C

22La

ser B

eam

Sel

ect M

echa

nism

Mirr

or T

emp

0-4

2GMCLBSMMT

MC

SPO

LY=(

-909

.090

909,

0.4

4389

2045

5)D

eg C

24H

OP

1 Ac

tuat

or C

urre

nt -

Hea

ter 1

12

GMCHOP1HTR1I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps26

HO

P 1

Actu

ator

Cur

rent

- H

eate

r 22

2GMCHOP1HTR2I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps28

HO

P 2

Actu

ator

Cur

rent

- H

eate

r 13

2GMCHOP2HTR1I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps30

HO

P 2

Actu

ator

Cur

rent

- H

eate

r 24

2GMCHOP2HTR2I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps32

HO

P 3

Actu

ator

Cur

rent

- H

eate

r 15

2GMCHOP3HTR1I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps34

HO

P 3

Actu

ator

Cur

rent

- H

eate

r 26

2GMCHOP3HTR2I

MC

SPO

LY=(

-2.0

, 976

.562

5E-6

)Am

ps36

Loop

Hea

t Pip

e 1

Hea

ter S

tatu

s, M

ask=

0x01

0GTMLHP1

0x01

TCM

0=O

ff, 1

=On

36Lo

op H

eat P

ipe

2 H

eate

r Sta

tus,

Mas

k=0x

020

1GTMLHP2

0x02

TCM

0=O

ff, 1

=On

37Te

lesc

ope

Prim

Mirr

or H

eate

r Ena

ble

Rea

dbac

k1

1GTMPMIRHTR

0=D

isab

led,

0xF

F=En

able

d

38Te

lesc

ope

Prim

Mirr

or H

eate

r Tem

p Se

tpoi

nt

Rea

dbac

k2

1GTMPMIRTSP

TCM

POLY

=(0.

16, 0

.102

7, -4

.253

E-05

, 3.

833E

-07)

Deg

C39

Tele

scop

e To

wer

Hea

ter E

nabl

e R

eadb

ack

51

GTMTOWHTR

TCM

0=D

isab

led,

0xF

F=En

able

d

40Te

lesc

ope

Tow

er H

eate

r Tem

p Se

tpoi

nt R

eadb

ack

61

GTMTOWTSP

TCM

POLY

=(0.

03, 0

.105

1, -6

.469

E-05

, 4.

376E

-07)

Deg

C41

Spar

e1

GTMSPR3

TCM

42Sp

are

1GTMSPR4

TCM

41Et

alon

Hea

ter E

nabl

e R

eadb

ack

71

GTMETHTR

TCM

0=D

isab

led,

0xF

F=En

able

d

42Et

alon

Hea

ter T

emp

Setp

oint

Rea

dbac

k8

1GTMETTSP

TCM

POLY

=(29

.27,

0.0

9251

, 9.1

9E-0

6,

1.02

2E-0

7)D

eg C

43Lo

op H

eat P

ipe

1 En

able

Rea

dbac

k9

1GTMLHP1HTR

TCM

0=D

isab

led,

0xF

F=En

able

d

44Lo

op H

eat P

ipe

1 Te

mp

Setp

oint

Rea

dbac

k10

1GTMLHP1TSP

TCM

POLY

=(0.

03, 0

.117

3, -6

.871

E-05

, 2.

629E

-07)

Deg

C45

Loop

Hea

t Pip

e 2

Enab

le R

eadb

ack

111

GTMLHP2HTR

TCM

0=D

isab

led,

0xF

F=En

able

d

46Lo

op H

eat P

ipe

2 Te

mp

Setp

oint

Rea

dbac

k12

1GTMLHP2TSP

TCM

POLY

=(-7

.7, 0

.11,

-5.1

E-05

, 2.0

07E-

07)

Deg

C

47Th

erm

iste

r Sel

ect -

Tsc

ope

Prim

Mirr

or -

Stat

us

Rea

dbac

k13

1GTMPMIRTHSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

50Th

erm

iste

r Sel

ect T

scop

e Se

c Su

ppor

t Stru

ctur

e St

atus

Rea

dbac

k15

1GTMSSSTHSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

Page 104:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-14 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: CT

HW

TLM

#4

Pkt N

ame

CT H

W T

LM #

4Si

ze56

Oct

ets

App

Id23

Freq

uenc

y0.

0625

HzIn

terv

al16

.000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

51Th

erm

iste

r Sel

ect -

Tsc

ope

Sec

Mirr

or -

Stat

us

Rea

dbac

k14

1GTMSMIRTHSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

52Th

erm

iste

r Sel

ect L

HP1

(lase

rs) S

tatu

s R

eadb

ack

161

GTMLHP1THSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

53Th

erm

iste

r Sel

ect L

HP2

(rest

of i

nstru

men

t) St

atus

R

eadb

ack

171

GTMLHP2THSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

54Th

erm

iste

r Sel

ect E

talo

n St

atus

Rea

dbac

k18

1GTMETTHSEL

TCM

0=Th

erm

isto

r 1, 0

xFF=

Ther

mis

tor 2

55Sp

are

1GHW4SPR1

Page 105:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-15 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: CT

HW

TLM

#5

Pkt N

ame

CT H

W T

LM #

5Si

ze56

Oct

ets

App

Id50

Freq

uenc

y0.

0313

HzIn

terv

al32

.000

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

Mas

kCo

nver

sion

Fac

tors

Units

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t

14Te

lesc

ope

Prim

ary

Mirr

or T

empe

ratu

re37

a1

GHKPMIRT

HK

SubC

omm

POLY

=(0.

16, 0

.102

7, -4

.253

E-05

, 3.

833E

-07)

Deg

C

15Te

lesc

ope

Tow

er T

empe

ratu

re37

b1

GHKTOWT

HK

SubC

omm

POLY

=(0.

03, 0

.105

1, -6

.469

E-05

, 4.

376E

-07)

Deg

C

16Te

lesc

ope

Seco

ndar

y M

irror

Tem

pera

ture

37c

1GHKSMIRT

HK

SubC

omm

POLY

=(0.

14,0

.104

,-5.9

62E-

05,4

.304

E-07

)D

eg C

16Et

alon

Tem

pera

ture

37d

1GHKETT

HK

SubC

omm

POLY

=(29

.27,

0.0

9251

, 9.1

9E-0

6,

1.02

2E-0

7)D

eg C

17Lo

op H

eat P

ipe

1 C

ontro

ller T

empe

ratu

re37

e1

GHKLHP1C

TRLT

HK

SubC

omm

POLY

=(0.

03, 0

.117

3, -6

.871

E-05

, 2.

629E

-07)

Deg

C18

Loop

Hea

t Pip

e 2

Con

trolle

r Tem

pera

ture

37f

1GHKLHP2C

TRLT

HK

SubC

omm

POLY

=(-7

.7, 0

.11,

-5.1

E-05

, 2.0

07E-

07)

Deg

C19

Tele

scop

e Pr

imar

y M

irror

Hea

ter d

rive

curre

nt37

g1

GHKPMIRI

HK

SubC

omm

POLY

=(0.

0008

, 0.0

0368

)Am

ps21

Tele

scop

e To

wer

Hea

ter d

rive

curre

nt37

h1

GHKTOWI

HK

SubC

omm

POLY

=(0.

0008

, 0.0

0311

)Am

ps22

HK

Spar

e37

i1

GHKSPR5

HK

SubC

omm

22Et

alon

Driv

e H

eate

r Cur

rent

37j

1GHKETHTRI

HK

SubC

omm

POLY

=(-0

.000

2, 0

.003

47)

Amps

23La

ser M

onito

r Del

ay L

ine

All T

empe

ratu

re21

1GLMDLYALLT

LMB

POLY

=(-3

3.84

, 0.5

368,

-1.6

22E-

3,

3.15

5E-6

)D

eg C

24La

ser M

onito

r Del

ay L

ine

Mid

Tem

pera

ture

221

GLMDLYMIDT

LMB

POLY

=(-2

.406

, 0.0

6459

, -7.

58E-

6,

5.59

1E-8

)D

eg C

25La

ser M

onito

r Del

ay L

ine

Hi T

empe

ratu

re23

1GLMDLYHIT

LMB

POLY

=(13

.33,

0.0

6518

, -5.

261E

-6,

4.07

6E-8

)D

eg C

26O

TS L

evel

1 re

adba

ck9

1GLMOTSLVL1

LMB

POLY

=(40

, -0.

1562

5)m

icro

Am

ps27

OTS

Lev

el 2

read

back

101

GLMOTSLVL2

LMB

POLY

=(40

, -0.

1562

5)m

icro

Am

ps28

OTS

Lev

el 3

read

back

111

GLMOTSLVL3

LMB

POLY

=(40

, -0.

1562

5)m

icro

Am

ps29

OTS

Lev

el 4

read

back

121

GLMOTSLVL4

LMB

POLY

=(40

, -0.

1562

5)m

icro

Am

ps30

OTS

Trig

ger C

ount

1 re

adba

ck13

2GLMOTSTC1

LMB

POLY

=(0.

0, 0

.256

)m

icro

sec

s32

OTS

Trig

ger C

ount

2 re

adba

ck14

2GLMOTSTC2

LMB

POLY

=(0.

0, 0

.256

)m

icro

sec

s34

Spar

es21

GHW5SPR[21]

Page 106:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-16 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 3W

orks

heet

: Sm

all S

W #

1

Pkt N

ame

Smal

l Sof

twar

e #1

Tlm

Size

56O

ctet

sAp

p Id

24Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

HS

Task

Cm

d Pr

oces

sed

Cou

nter

11

GHSC

MDPC

15H

S Ta

sk C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GH

SCMD

EC16

CS

Task

Cm

d Pr

oces

sed

Cou

nter

11

GCSC

MDPC

17C

S Ta

sk C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GC

SCMD

EC18

TC T

ask

Cm

d Pr

oces

sed

Cou

nter

11

GTCC

MDPC

19TC

Tas

k C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GT

CCMD

EC20

SB T

ask

Cm

d Pr

oces

sed

Cou

nter

11

GSBC

MDPC

21SB

Tas

k C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GS

BCMD

EC22

SM T

ask

Cm

d Pr

oces

sed

Cou

nter

11

GSMC

MDPC

23SM

Tas

k C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GS

MCMD

EC24

RT

Task

Cm

d Pr

oces

sed

Cou

nter

11

GRTC

MDPC

25R

T Ta

sk C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GR

TCMD

EC

26R

T Ta

sk R

CH

3 (S

A22-

25, C

SA 2

6) C

omm

ands

R

ecei

ved

31

GRTR

CH3R

XD

oes

not c

ount

spa

cecr

aft p

ositi

on a

nd c

omm

and

pack

et

27R

T Ta

sk R

CH

3 (S

A22-

25, C

SA 2

6) C

omm

ands

R

ejec

ted

41

GRTR

CH3R

JC

omm

ands

are

reje

cted

for C

heck

sum

m p

robl

ems

28M

D T

ask

Cm

d Pr

oces

sed

Cou

nter

11

GMDC

MDPC

29M

D T

ask

Cm

d R

ejec

ted(

or E

rror)

Cou

nter

21

GMDC

MDEC

30AD

Tas

k C

md

Proc

esse

d C

ount

er1

1GA

DCMD

PC31

AD T

ask

Cm

d R

ejec

ted(

or E

rror)

Cou

nter

21

GADC

MDEC

32AD

Tar

get P

rese

nt F

lag

GADT

GTPF

LG0x

800=

Not

Pre

sent

, 1=T

arge

t Pre

sent

32AD

Tar

get T

imeo

ut F

lag

GADT

GTTO

FLG

0x40

0=N

o Ti

meo

ut, 1

=Tim

eout

32AD

Mod

e of

Ope

ratio

nsGA

DSWM

ODE

0x38

0=Id

le, 1

=Sci

ence

, 2=O

neSh

ot, 3

=Loa

d, 4

=Dum

p32

AD D

SP S

oftw

are

Mod

eGA

DDSP

SWMO

DE0x

070=

Scie

nce,

1=I

dle,

2=L

oad,

3=D

ump

32AD

Tar

get S

tatu

s an

d M

ode

Flag

s3

1UN

ION

AD_T

LM_U

33AD

Spa

re T

elem

etry

43

GADS

PARE

[3]

AD S

pare

Tel

emet

ry36

CD

Tas

k C

MD

Pro

cess

ed C

ount

er1

1GC

DCMD

PC37

CD

Tas

k C

MD

Rej

ecte

d(or

Erro

r) C

ount

er2

1GC

DCMD

EC38

CD

Tim

eout

Occ

urre

d Fl

agGC

DTIM

EOUT

0x01

0=N

o Ti

meo

ut, 1

=Tim

eout

38C

D T

arge

t Pre

sent

Fla

gGC

DTAR

CONF

0x02

0=N

ot C

onfig

ured

, 1=C

onfig

ured

38C

D E

vent

Mes

sage

s D

isab

led

Flag

GCDE

VTMF

LG0x

040=

Enab

led,

1=D

isab

led

38C

D M

easu

rem

ent R

efer

ence

Sou

rce

GCDM

SMTS

RC0x

080=

Fire

Ack

, 1=F

ire C

md

38C

D 4

0Hz

Inte

rrupt

GCD4

0HZI

NT0x

100=

Enab

led,

1=D

isab

led

Page 107:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-17 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 3W

orks

heet

: Sm

all S

W #

1

Pkt N

ame

Smal

l Sof

twar

e #1

Tlm

Size

56O

ctet

sAp

p Id

24Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

38C

D A

D D

etec

tor S

elec

tGCDADDET

0x20

0=AD

#1,

1=A

D #

238

CD

Det

ecto

r Sel

ect

GCDCDDET

0x40

0=C

D #

1, 1

=CD

#2

38C

D A

D B

oard

Sel

ect

GCDADBRD

0x80

0=AD

#1,

1=A

D #

2

38C

D H

ardw

are

Mod

eGCDHWMODE

0x0F

001=

Idle

, 2=E

ngin

eerin

g, 4

=Sci

ence

, Oth

er v

alue

s in

valid

38C

D S

oftw

are

Mod

eGCDSWMODE

0xF0

000=

Idle

, 1=E

ngin

eerin

g, 2

=Sci

ence

, 3=M

em T

st,

Oth

er v

alue

s in

valid

38C

D S

tatu

s Fl

ags

240

DC

Tas

k C

md

Proc

esse

d C

ount

er1

1GDCCMDPC

41D

C T

ask

Cm

d R

ejec

ted(

or E

rror)

Cou

nter

21

GDCCMDEC

42D

C T

imeo

ut S

tatu

sGDCTIMEOUT

0x01

0=N

o Ti

meo

ut, 1

=Tim

eout

42

DC

Tar

get P

rese

nt S

tatu

sGDCTGTPRES

0x02

0=N

ot P

rese

nt, 1

=Tar

get P

rese

nt42

DC

Eve

nt M

essa

ge D

isab

led

Flag

GDCEVTMFLG

0x04

0=En

able

d, 1

=Dis

able

d42

DC

Sof

twar

e M

ode

GDCSWMODE

0xFF

000=

SSR

, 1=S

SR_L

PA, 2

=TES

T42

DC

Sta

tus

Flag

s2

44G

P Ta

sk C

md

Proc

esse

d C

ount

er1

1GGPCMDPC

45G

P Ta

sk C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GGPCMDEC

46G

P G

PS P

ulse

Sel

ect

GGPPULSEBIT

0x00

200=

GPS

1, 1

=GPS

246

GP

Rec

eivi

ng G

PS P

ulse

Fla

g

GGPRVCPLS

0x00

100=

Not

rece

ivin

g pu

lse,

1=R

ecei

ving

pul

se46

GP

Posi

tion

Dat

a St

atus

Fla

g

GGPPOSFLG

0x00

0C0=

OK,

1=N

o D

ata,

2=D

ata

Cal

cula

tion

Err

46G

P So

urce

of P

ositi

on D

ata

GGPSRCDAT

0x00

030=

S/C

, 1=G

rd H

min

/Hm

ax, 2

=Grd

Rm

in/R

max

46G

P St

atus

Fla

gs2

0x00

3FG

P st

atus

wor

d, s

ee b

it m

ask

abov

e48

PC T

ask

Cm

d Pr

oces

sed

Cou

nter

11

GPCCMDPC

49PC

Tas

k C

md

Rej

ecte

d(or

Erro

r) C

ount

er2

1GPCCMDEC

50PC

Tim

eout

Sta

tus

GPCTIMEOUT

0x01

0=N

o Ti

meo

ut, 1

=Tim

eout

50PC

Tar

get P

rese

nt S

tatu

sGPCTARCONF

0x02

0=N

ot C

onfig

ured

, 1=C

onfig

ured

50PC

Cal

ibra

tion

Type

GPCCALTYPE

0x04

0=C

oars

e, 1

=Fin

e50

PC E

vent

Mes

sage

s D

isab

led

GPCEVTMFLG

0x08

0=En

able

d, 1

=Dis

able

d50

PC R

ange

Gat

e D

ither

Fla

gGPCRGDIFLG

0x10

0=D

isab

led,

1=E

nabl

ed50

PC M

easu

rem

ent R

efer

ence

Sou

rce

GPCMSMTSRC

0x20

0=Fi

re A

ck, 1

=Fire

Cm

d

50PC

Har

dwar

e M

ode

GPCHWMODE

0x0F

001=

Idle

, 2=E

ngin

eerin

g, 4

=Sci

ence

, Oth

er v

alue

s in

valid

50PC

Sof

twar

e M

ode

GPCSWMODE

0xF0

000=

Idle

, 1=E

ngin

eerin

g, 2

=Sci

ence

, 3=B

ores

ite C

al,

4=M

em T

st, O

ther

val

ues

inva

lid50

PC S

tatu

s Fl

ags

2

Page 108:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-18 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

3 o

f 3W

orks

heet

: Sm

all S

W #

1

Pkt N

ame

Smal

l Sof

twar

e #1

Tlm

Size

56O

ctet

sAp

p Id

24Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

52C

T Ta

sk C

md

Proc

esse

d C

ount

er1

1GC

TCMD

PC53

CT

Task

Cm

d R

ejec

ted(

or E

rror)

Cou

nter

21

GCTC

MDEC

54C

T Ta

sk S

oftw

are

Mod

eGC

TSWM

ODE

0x01

0=M

anua

l, 1=

Nor

mal

54C

T Ta

sk C

&T C

ontro

l Har

dwar

e M

ode,

Reg

iste

r bit

GCTH

WMOD

E0x

020=

Man

ual,

1=N

orm

al54

CT

Task

Sta

rtup

Mod

e, D

iscr

ete

cmd

GCTS

UMOD

E0x

040=

Man

ual,

1=Au

to P

ower

Up

Osc

/AD

54C

T Ta

sk S

tartu

p AD

/OSC

, Dis

cret

e cm

dGC

TSUA

O0x

080=

Prim

ary,

1=

Seco

ndar

y

54C

T Et

alon

Tra

ckin

g M

ode

GCTE

TMOD

E0x

700=

Off,

1=A

cqui

re, 2

=Tra

ckin

g, 4

=Tes

t, 5=

Test

/Acq

uire

, 6=T

est/T

rack

ing

54C

T Et

alon

Tra

ckin

g Ac

tive

Flag

GCTE

TRAC

K0x

800=

Paus

ed, 1

=Act

ive

54C

T Et

alon

Tra

ckin

g Lo

w T

rans

mis

sion

Fla

gGC

TELO

WTR

0x10

00=

Goo

d, 1

=Low

54C

T Et

alon

Tra

ckin

g O

pen-

Loop

Fla

gGC

TEOL

MODE

0x20

00=

Nor

mal

, 1=O

penL

oop

54C

T Ta

sk M

ode

2GC

TMST

ATAl

l bits

toge

ther

Page 109:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-19 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 5W

orks

heet

: Lar

ge S

W #

1

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

1Si

ze30

0O

ctet

sA

pp Id

25Fr

eque

ncy

0.25

0H

zIn

terv

al4.

000

seco

nds

Offs

etN

ame

Idx

Size

inM

nem

onic

sId

ent.#

Des

crip

tion

in O

ctet

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

HS

Proc

esso

r Pre

viou

s M

ode

1GHSPMODE

0,1,

4=U

nkno

wn,

2=P

RO

M, 3

=EEP

RO

M15

HS

Proc

esso

r Cur

rent

Mod

e1

GHSCMODE

0,1,

4=U

nkno

wn,

2=P

RO

M, 3

=EEP

RO

M

16Su

bsys

tem

Pre

sent

Fla

gsGHSSSPF

0xFF

FF0=

No,

1=Y

es S

ubsy

stem

Tel

emet

ry is

pre

sent

in

Sm

all a

nd L

arge

Tel

emet

ry P

acke

ts16

HS

Subs

yste

m P

rese

nt F

lag

GHSHSPF

0x00

010=

No,

1=Y

es16

CS

Subs

yste

m P

rese

nt F

lag

GHSCSPF

0x00

020=

No,

1=Y

es16

TC S

ubsy

stem

Pre

sent

Fla

gGHSTCPF

0x00

040=

No,

1=Y

es16

SB S

ubsy

stem

Pre

sent

Fla

gGHSSBPF

0x00

080=

No,

1=Y

es16

SM S

ubsy

stem

Pre

sent

Fla

gGHSSMPF

0x00

100=

No,

1=Y

es16

RT

Subs

yste

m P

rese

nt F

lag

GHSRTPF

0x00

200=

No,

1=Y

es16

MD

Sub

syst

em P

rese

nt F

lag

GHSMDPF

0x00

400=

No,

1=Y

es16

AD S

ubsy

stem

Pre

sent

Fla

gGHSA

DPF

0x00

800=

No,

1=Y

es16

CD

Sub

syst

em P

rese

nt F

lag

GHSCDPF

0x01

000=

No,

1=Y

es16

DC

Sub

syst

em P

rese

nt F

lag

GHSDCPF

0x02

000=

No,

1=Y

es16

GP

Subs

yste

m P

rese

nt F

lag

GHSGPPF

0x04

000=

No,

1=Y

es16

PC S

ubsy

stem

Pre

sent

Fla

gGHSPCPF

0x08

000=

No,

1=Y

es16

CT

Subs

yste

m P

rese

nt F

lag

2GHSCTPF

0x10

000=

No,

1=Y

es18

HS

War

m R

esta

rt C

ount

2GHSWRC

20H

S C

old

Res

tart

Cou

nt2

GHSCRC

22H

S M

ax W

arm

Res

tart

Cou

nt2

GHSMAXWR

24H

S C

old-

War

m F

lag

2GHSCWF

26H

S O

S C

ause

d R

eset

Fla

g2

GHSOSRST

28H

S O

S Ti

ck C

ount

2GHSOSTICK

30H

S H

S Ex

ec C

ount

4GHSHSEX

34H

S C

S Ex

ec C

ount

2GHSCSEX

36H

S TC

Exe

c C

ount

2GHSTCEX

38H

S SB

Exe

c C

ount

2GHSSBEX

40H

S SM

Exe

c C

ount

2GHSSMEX

42H

S R

T Ex

ec C

ount

2GHSRTEX

44H

S M

D E

xec

Cou

nt2

GHSMDEX

46H

S AD

Exe

c C

ount

2GHSADEX

48H

S C

D E

xec

Cou

nt2

GHSCDEX

50H

S D

C E

xec

Cou

nt2

GHSDCEX

Page 110:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-20 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 5W

orks

heet

: Lar

ge S

W #

1

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

1Si

ze30

0O

ctet

sAp

p Id

25Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eId

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

52H

S G

P Ex

ec C

ount

2GHSGPEX

54H

S PC

Exe

c C

ount

2GHSPCEX

56H

S C

T Ex

ec C

ount

2GHSCTEX

58H

S FP

U U

nder

flow

Cou

nt4

GHSFPUUF

62H

S Sp

are

ISR

Cou

nt 1

4GHST2ISR

66H

S Sp

are

ISR

Cou

nt 2

2GHSFPISR

68H

S TC

Fire

Cm

d IS

R C

ount

2GHSTCFCISR

70H

S R

T IS

R C

ount

- Lo

w P

riorit

y2

GHSRTISR

72H

S Sp

are

ISR

Cou

nt 3

2GHSSPISR

74H

S C

T IS

R C

ount

2GHSCTISR

76H

S Sp

are

ISR

Cou

nt 4

2GHSPCIISR

78H

S Sp

are

ISR

Cou

nt 5

2GHSGPSISR

80H

S G

PS 1

0 Se

c IS

R C

ount

2GHSGPS

1ISR

82H

S D

C IS

R C

ount

2GHSDCISR

84H

S PC

ISR

Cou

nt2

GHSPCISR

86H

S C

D IS

R C

ount

2GHSC

DISR

88H

S AD

ISR

Cou

nt2

GHSADISR

90H

S Sp

are

ISR

Cou

nt 6

2GHSC

SISR

92H

S O

S Ev

ent S

eq N

umbe

r2

GHSOSESN

94H

S Pe

ak C

PU U

tiliz

atio

n1

GHSPCPU

95H

S La

st C

PU U

tililz

atio

n1

GHSLCPU

96H

S O

S PC

I Bus

Tar

get E

nabl

e an

d In

terru

pt s

tatu

s1

GHSPCIFLAGS

97H

S O

S Pe

rform

ance

Log

Ena

ble

Flag

1GHSOSLOG

0x01

0=D

isab

led,

1=E

nabl

ed98

HS

OS

Perfo

rman

ce L

og It

em C

ount

2GHSOSLOGCNT

100

HS

OS

Perfo

rman

ce L

og F

ilter

Sta

rt Ad

dres

s4

GHSLOGADDR

104

HS

OS

Perfo

rman

ce L

og F

ilter

Mas

k4

GHSOSLOGFM

108

Spar

es6

GHSSPARE[6]

114

CS

Enab

le/D

isab

led

Flag

GCSENFLG

0x03

0=D

isab

led,

1=E

nabl

ed

114

CS

Cod

e M

emor

y C

heck

sum

Sta

tus

GCSCMSTFLG

0x0C

0=D

isab

led,

1=E

nabl

ed, 2

=Dis

able

d an

d R

ecom

putin

g, 3

=Ena

bled

and

Rec

ompu

ting

114

CS

Tabl

e M

emor

y C

heck

sum

Sta

tus

GCSTMSTFLG

0x30

0=D

isab

led,

1=E

nabl

ed, 2

=Dis

able

d an

d R

ecom

putin

g, 3

=Ena

bled

and

Rec

ompu

ting

114

CS

EEPR

OM

Che

cksu

m s

tatu

s fla

gGCSEESTFLG

0xC

00=

Dis

able

d, 1

=Ena

bled

, 2=D

isab

led

and

Rec

ompu

ting,

3=E

nabl

ed a

nd R

ecom

putin

g11

4C

S St

atus

Fla

gs1

GCSSTATFLG

0xFF

Page 111:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-21 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

3 o

f 5W

orks

heet

: Lar

ge S

W #

1

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

1Si

ze30

0O

ctet

sAp

p Id

25Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eId

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

115

CS

Cod

e Se

gmen

t Erro

r Cou

nt1

GCSC

SERR

CNT

116

CS

EEPR

OM

Seg

men

t Erro

r Cou

nt1

GCSE

EERR

CNT

117

CS

Tabl

e R

am S

egm

ent E

rror C

ount

1GC

STRE

RRCN

T11

8C

S Ta

ble

ID o

f las

t Cod

e Er

ror

2GC

SIDC

ODEE

RR12

0C

S Ta

ble

ID o

f las

t EEP

RO

M E

rror

2GC

SIDE

EERR

122

CS

Tabl

e ID

of l

ast T

able

RAM

Erro

r2

GCSI

DRAM

ERR

124

CS

Cod

e Se

gmen

t Mas

ter C

heck

sum

2GC

SSEG

MSCS

126

CS

Tabl

e R

AM M

aste

r Che

cksu

m2

GCSR

AMMS

CS12

8C

S EE

PRO

M M

aste

r Che

cksu

m2

GCSE

EMSC

S13

0C

S C

heck

sum

of E

EPR

OM

Boo

t Mem

ory

2GC

SEEB

TMEM

132

CS

Che

cksu

m o

f EEP

RO

M M

emor

y2

GCSE

EMEM

134

CS

Che

cksu

m o

f PR

OM

Mem

ory

2GC

SPRO

MMEM

136

CS

Spar

e18

GCSS

PARE

[18]

154

TC G

LAS

MET

Upp

er 2

byt

esGT

CMET

U20x

FF00

0015

4TC

GLA

S M

ET L

ower

4 b

ytes

GTCM

ETL4

0x00

FFFF

154

TC G

LAS

MET

6GT

CMET

160

TC F

ire C

omm

and

Tim

e In

crem

ent U

pper

2 b

ytes

2GT

CINC

RU2

162

TC F

ire C

omm

and

Tim

e In

crem

ent L

ower

4 b

ytes

4GT

CINC

RL4

166

TC G

LAS

MET

Wor

king

Tim

e se

cond

s4

GTCW

METS

EC17

0TC

GLA

S M

ET W

orki

ng T

ime

mic

ro-s

econ

ds4

GTCW

METM

SEC

174

Spar

e18

GTCS

PARE

[18]

192

SB S

end

Erro

r Cou

nt1

GSBS

NDEC

193

SB R

ecei

ve E

rror C

ount

1GS

BRCV

EC19

4SB

OS

Erro

r Cou

nt1

GSBO

SEC

195

SB Q

ueue

Ful

l Erro

r Cou

nt1

GSBQ

FEC

196

SB B

uffe

r ove

rrun

Erro

r Cou

nt2

GSBB

OVEC

198

SB la

st b

uffe

r ove

rrun

- Stre

am Id

2GS

BOVS

ID20

0SB

last

buf

fer o

verru

n - P

ipel

ine

Id2

GSBO

VPID

202

SB la

st b

uffe

r ove

rrun

- Sen

der T

ask

ID2

GSBO

VTID

204

SB la

st q

ueue

full

- Stre

am Id

2GS

BQFS

ID20

6SB

last

que

ue fu

ll - P

ipel

ine

Id2

GSBQ

FPID

208

SB la

st q

ueue

full

- Sen

der T

ask

ID2

GSBQ

FTID

210

SB S

pare

8GS

BSPA

RE[8

]21

8SM

num

of r

emai

ning

cop

ies

to b

e du

mpe

d 1

GSMD

MPCR

219

SM tb

l/mem

dum

p in

pro

gres

s fla

g1

GSMD

MPFL

G0=

Fals

e, 1

=Tru

e

Page 112:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-22 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

4 o

f 5W

orks

heet

: Lar

ge S

W #

1

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

1Si

ze30

0O

ctet

sAp

p Id

25Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eId

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

220

SM T

able

Ses

sion

Typ

eGS

MTSE

ST0x

3F0=

Non

e, 5

=DU

MP_

ON

LY, 6

=REP

_EEP

RO

M,

7=R

EP_R

AM, 8

=APP

D_A

CTV

220

SM T

able

Ope

ratio

ns F

lag

GSMT

BOAF

0x40

0=In

activ

e, 1

=Act

ive

220

SM ta

ble

oper

atio

ns fl

ag1

GSMT

BLOP

S0x

7F22

1SM

tabl

e op

erat

ions

from

imag

e ty

pe1

GSMI

MGTY

P0=

Non

e, 1

=EEP

RO

M, 2

=RAM

, 3=N

ULL

222

SM ta

ble

id s

elec

ted

2GS

MTBL

ID22

4SM

cur

rent

ly s

elec

ted

tbl s

ize

in w

ords

2GS

MTBL

SZ22

6SM

cur

rent

ly s

elec

ted

tabl

e ch

ecks

um2

GSMT

BLCS

228

SM ta

ble

com

mit

succ

ess

coun

t1

GSMT

CSCN

T22

9SM

tabl

e co

mm

it fa

ilure

cou

nt1

GSMT

CFCN

T23

0SM

tabl

e nu

m. o

f wor

ds lo

aded

2GS

MTBL

WLD

232

SM F

SW b

uild

num

ber

1GS

MSWB

UILD

233

SM F

SW v

ersi

on n

umbe

r1

GSMS

WVER

N23

4SM

spa

res

10GS

MSPA

RE[1

0]24

4BC

RT

CO

NTR

OL

REG

ISTE

R W

OR

DGR

TBCR

TCW

24

4R

T C

hann

el A

Sel

ect

GRTS

ELA

0x00

800=

OFF

, 1=O

N24

4R

T C

hann

el B

Sel

ect

2GR

TSEL

B0x

0100

0=O

FF, 1

=ON

246

BCR

T St

atus

Reg

iste

rGR

TBCR

TSR

24

6R

T St

atus

, RT

Mod

e En

able

d Fl

ag2

GRTA

CT0x

0001

0=D

isab

led,

1=E

nabl

ed24

8BC

RT

INTE

RR

UPT

STA

TUS

REG

ISTE

R2

GRTB

CRTI

SR25

0R

T 15

53 M

ESSA

GE

ERR

OR

S2

GRTM

SGER

R25

2R

T 15

53 R

ETR

Y C

OU

NT

2GR

TRET

RY25

4R

T 15

53 IN

VALI

D C

OM

MAN

DS

1GR

TINV

255

RT

1553

INVA

LID

BR

OAD

CAS

T C

MD

S1

GRTI

NVBC

256

RT

MO

DE

CO

DES

REC

EIVE

D1

GRTM

ODE

257

SPAR

E1

GRTS

P125

8R

T PA

CKE

TS R

ECEI

VED

ON

RC

H1

2GR

TRCH

1RX

260

RT

PAC

KETS

Rej

ecte

d O

N R

CH

12

GRTR

CH1R

J26

2R

T PA

CKE

TS S

ENT

ON

XC

H1

2GR

TXCH

1H

K C

hann

el26

4R

T PA

CKE

TS S

ENT

ON

XC

H2

2GR

TXCH

2D

iag

Cha

nnel

266

RT

Num

ber o

f Com

man

d H

isto

ry P

acke

ts S

ent

2GR

TCMD

HIST

268

RT

Che

cksu

m S

tatu

s2

GRTC

SSTA

T0=

Cm

d C

S D

isab

led,

1=C

md

CS

Enab

led

270

Spar

es8

GRTS

PARE

[8]

278

MD

Glo

bal E

nabl

e/D

isab

le F

lag

GM

DWEL

L0x

010=

Dis

able

d, 1

=Ena

bled

278

MD

Tab

le #

1 En

able

Fla

g

GMDT

BL1

0x02

0=D

isab

led,

1=E

nabl

ed

Page 113:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-23 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

5 o

f 5W

orks

heet

: Lar

ge S

W #

1

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

1Si

ze30

0O

ctet

sAp

p Id

25Fr

eque

ncy

0.25

0Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eId

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

278

MD

Tab

le #

2 En

able

Fla

g1

GMDT

BL2

0x04

0=D

isab

led,

1=E

nabl

ed27

9M

D S

pare

1

GMDS

PARE

280

MD

Tab

le #

1 Ad

dres

s C

ount

2GM

DADD

RCNT

128

2M

D T

able

#2

Addr

ess

Cou

nt2

GMDA

DDRC

NT2

284

MD

Tab

le #

1 R

ate

2GM

DTBL

RATE

1

Num

ber o

f 1/8

sec

wai

ts b

etw

een

dwel

l co

llect

ions

for T

able

#1.

Pol

ynom

ial c

oeff=

(0.0

, 0.

125)

.

286

MD

Tab

le #

2 R

ate

2GM

DTBL

RATE

2

Num

ber o

f 1/8

sec

wai

ts b

etw

een

dwel

l co

llect

ions

for T

able

#2.

Pol

ynom

ial c

oeff=

(0.0

, 0.

125)

.28

8M

D S

pare

s12

GMDS

PARE

2[12

]

Page 114:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-24 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

AD S

oftw

are

Erro

r Cou

nt2

GADS

WEC

Softw

are

erro

rs d

etec

ted

16AD

Har

dwar

e Er

ror C

ount

2GA

DHWE

CH

ardw

are

erro

rs d

etec

ted

18AD

Sho

t Cou

nt V

alue

1GA

DSHC

NT19

AD S

hot C

ount

Ski

p D

etec

ted

1GA

DSHC

NTSK

IP0=

no

skip

, 1=s

kip

20AD

Syn

chro

nize

d Fl

ag1

GADS

YNCF

LG0=

not i

n sy

nc, 1

=in

sync

21AD

Spa

re T

elem

ery

1GA

DSPA

RE2

22AD

DSP

Las

er F

ire C

ount

2GA

DDSP

LFCN

TIn

dica

tes

the

num

ber o

f las

er fi

re c

mds

det

ecte

d.24

AD D

SP A

live

Cou

nt2

GADD

SPAC

NTIn

crem

ents

onc

e ev

ery

75m

s w

hen

lase

r fire

cm

d fa

ils26

AD A

ncilla

ry P

acke

ts S

ent

2GA

DANC

PKTC

NT28

AD E

ngin

eerin

g Pa

cket

s Se

nt2

GADE

NGPK

TCNT

30AD

Sci

ence

Sm

all P

acke

ts S

ent

2GA

DSPK

TCNT

32AD

Sci

ence

Lar

ge P

acke

ts S

ent

2GA

DLPK

TCNT

34AD

DSP

Loa

d Pa

cket

s Pr

oces

sed

Cou

nt2

GADD

SPLP

PCNT

36AD

DSP

Mem

ory

Dum

p Pa

cket

s Se

nt2

GADD

SPMD

PCNT

38AD

Mem

ory

Load

Com

man

d Er

rors

2GA

DDSP

MLER

R40

AD M

emor

y D

ump

Com

man

d Er

rors

2GA

DDSP

MDER

R

42AD

DSP

Che

ckum

Rat

e2

GADD

SPCS

RATE

# of

48-

bit w

ords

che

cked

in e

ach

of 3

mem

ory

type

s of

DSP

m

emor

y ea

ch s

hot (

40 H

z)44

AD D

SP C

heck

sum

S/W

Ena

ble

Stat

us2

GADD

SPCS

SW0x

0001

0=D

isab

le, 1

=Ena

ble

46AD

DSP

# o

f tim

es a

ll of

mem

ory

has

been

che

cksu

med

2GA

DDSP

CSCN

T48

AD D

SP B

oots

trap

Che

cksu

m L

ower

16

bits

2GA

DDSP

BSLS

B50

AD D

SP E

PRO

M C

heck

sum

Low

er 1

6 bi

ts2

GADD

SPEP

LSB

52AD

DSP

RAM

Che

cksu

m L

ower

16

bits

2GA

DDSP

RAML

SB54

AD D

SP B

oots

trap

Che

cksu

m U

pper

32

bits

4GA

DDSP

BSMS

B58

AD D

SP E

PRO

M C

heck

sum

Upp

er 3

2 bi

ts4

GADD

SPEP

MSB

62AD

DSP

RAM

Che

cksu

m U

pper

32

bits

4GA

DDSP

RAMM

SB66

AD D

SP S

/W B

uild

Num

ber

1GA

DDSP

BNUM

67AD

DSP

S/W

Ver

sion

Num

ber

1GA

DDSP

VNUM

68AD

GPS

Ran

ge W

indo

w P

acke

ts re

ceiv

ed2

GADG

PSRW

RCV

70AS

DSP

Pat

ch C

heck

sum

bits

15.

.02

GADP

ACSL

Low

er 1

6 bi

ts o

f a 4

8-bi

t add

ress

72AS

DSP

Pat

ch C

heck

sum

bits

47.

.16

4GA

DPAC

SMU

pper

32

bits

of a

48-

bit a

ddre

ss76

AD A

uto

Res

et D

SP F

lag

1GA

DARS

TD0x

010=

Fals

e, 1

=Tru

e77

AD S

W E

rror E

vent

s Fl

agGA

DSWE

EV0x

800=

Dis

able

d, 1

=Ena

bled

77AD

HW

Erro

r Eve

nts

Flag

GADH

WEEV

0x40

0=D

isab

led,

1=E

nabl

ed77

AD A

uto

Gai

n En

able

Fla

gGA

DGAI

NEN

0x20

0=D

isab

led,

1=E

nabl

ed77

AD A

uto

Gai

n U

se R

aw W

avef

orm

Fla

gGA

DGAI

NFE

0x10

0=D

isab

led,

1=E

nabl

ed77

AD S

oftw

are

Enab

le F

lags

1UN

ION

GAD_

DSP_

FLAG

S78

Trou

ble

Indi

cato

r: In

valid

Sea

rch

GADT

FB0

0x00

010=

No

Prob

lem

1=I

nval

id S

earc

h78

Trou

ble

Indi

cato

r: La

ser F

ailu

reGA

DTFB

10x

0002

0=N

o Pr

oble

m 1

=Las

er F

ailu

re78

Trou

ble

Indi

cato

r: M

ultip

le In

terru

pts

GADT

FB2

0x00

040=

No

Prob

lem

1=M

ultip

le In

terru

pts

Page 115:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-25 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

78Tr

oubl

e In

dica

tor:

Buffe

r Ful

lGA

DTFB

30x

0008

0=N

o Pr

oble

m 1

=Buf

fer F

ull

78Tr

oubl

e In

dica

tor:

Inva

lid M

ode

GADT

FB4

0x00

100=

No

Prob

lem

1=I

nval

id M

ode

78Tr

oubl

e In

dica

tor:

Infin

ite L

oop

GADT

FB5

0x00

200=

No

Prob

lem

1=I

nfin

ite L

oop

78Tr

oubl

e In

dica

tor:

Inva

lid R

ange

Win

dow

GADT

FB6

0x00

400=

No

Prob

lem

1=I

nval

id R

ange

Win

dow

78Tr

oubl

e In

dica

tor:

Inva

lid T

ourn

amen

tGA

DTFB

70x

0080

0=N

o Pr

oble

m 1

=Inv

alid

Tou

rnam

ent

78Tr

oubl

e In

dica

tor:

Noi

se R

egio

n O

utsi

de A

cq M

emGA

DTFB

80x

0100

0=N

o Pr

oble

m 1

=Noi

se R

egio

n O

utsi

de A

cqui

sitio

n M

emor

y78

Trou

ble

Indi

cato

r: In

valid

Sam

ple

Size

for N

oise

Reg

ion

GADT

FB9

0x02

000=

No

Prob

lem

1=I

nval

id S

ampl

e Si

ze fo

r Noi

se R

egio

n78

AD D

SP T

roub

le In

dica

tor S

tatu

s W

ord

2GA

DDSP

TBLE

80AD

DSP

Mem

ory

Tabl

e Lo

ad E

rror C

ount

er2

GADM

LTEC

82AD

Fix

ed R

etur

n G

ain

Setti

ng1

GADF

RGAI

N83

AD S

pare

s5

GADS

PARE

1[5]

88C

D S

oftw

are

Erro

r Cou

nt2

GCDS

WERR

CNT

90C

D S

hot C

ount

2GC

DSHO

TCNT

92C

D S

cien

ce M

ode

Pack

ets

Sent

2GC

DSCI

PKT

94C

D E

ngin

eerin

g M

ode

Pack

ets

Sent

2GC

DENG

PKT

96C

D A

ncilla

ry P

acke

t Sen

t2

GCDA

NCPK

T98

CD

Ran

ge G

ate

Pkts

Rec

eive

d2

GCDR

GDPK

TRV

100

CD

40-

bit C

ount

er P

acke

ts S

ent

2GC

DGPS

40BP

KT10

2Sp

are

210

4C

D B

ackg

roun

d #1

Del

ay2

GCDB

GD1D

LYU

nit =

nan

osec

onds

Po

ly=(

0.0,

128)

106

CD

Bac

kgro

und

#2 D

elay

2GC

DBGD

2DLY

Uni

t = n

anos

econ

ds

Poly

=(0.

0,12

8)10

8C

D R

ange

Gat

e D

elay

2GC

DRGD

LYU

nit =

nan

osec

onds

Po

ly=(

0.0,

128)

110

CD

Raw

A/D

Out

put D

ata

GCDA

DRAW

DATA

0x00

FF11

0C

D R

aw A

/D O

verfl

ow F

lag

GCDA

DRAW

FLG

0x01

000=

No

Ove

rflow

1=

Ove

rflow

110

CD

Atte

nuat

ion

Setti

ngs

4GC

DATT

EN0x

3E00

1=0.

0, 2

=1/1

.77,

4=1

/3.1

6, 8

=1/5

.6, 1

6=1/

1011

4C

D G

PS 4

0 bi

t Lat

ch V

alue

32

lsb

4GC

DGPS

LSB

118

CD

Fire

Ack

now

ledg

e 40

bit

Latc

h Va

lue

32 ls

b4

GCDF

ACKL

SB12

2C

D F

ire C

md

40 b

it La

tch

Valu

e 32

lsb

4GC

DFCM

DLSB

126

Spar

e1

127

CD

Fire

Cm

d 40

bit

Latc

h Va

lue

8 m

sb1

GCDF

CMDM

SB12

8C

D F

ire A

ckno

wle

dge

40 b

it La

tch

Valu

e 8

msb

1GC

DFAC

KMSB

129

CD

GPS

40

bit L

atch

Val

ue 8

msb

1GC

DGPS

MSB

130

CD

FIR

E AC

KNO

WLE

DG

E C

OU

NTE

RGC

DFAC

KCTR

0x00

00FF

0013

0C

D D

ata

Rea

dy C

ount

er4

GCDD

RCTR

0x00

0000

FF13

4C

D D

ata

Rea

dy In

terru

ptGC

DDAT

RDY

0x00

0000

080=

Enab

led,

1=D

isab

led

134

CD

Inte

rrupt

Sou

rce

4GC

DIDL

ESRC

0x00

0030

001=

Fire

Com

man

d, 2

=Fire

Ack

now

ledg

e13

4C

D P

ulse

Wid

th L

imit

Viol

atio

n Ac

cum

ulat

ing

Cou

nter

4GC

DPWA

CCUM

142

CD

Lon

g Pu

lse

Viol

atio

n 4s

ec C

ount

er1

GCDP

WLON

G14

3C

D S

hort

Puls

e Vi

olat

ion

4sec

Cou

nter

1GC

DPWS

HORT

144

CD

Pul

se W

idth

Mos

t Sig

nific

ant B

yte

1GC

DPWM

SB14

5Sp

are

1GC

DSPA

RE[1

]

Page 116:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-26 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

3 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

146

DC

Sof

twar

e Fa

il C

ount

2GD

CSWF

C

Cou

nts

inte

rnal

erro

rs li

ke ti

meo

ut, s

hot c

ount

ski

p an

d PC

I re

ad/w

rite

erro

rs. S

omet

imes

occ

ur o

n po

wer

on

initi

aliz

atio

n.

Syst

em c

an w

ork

corre

ctly

eve

n if

they

occ

ur.

148

DC

Sho

t Cou

nt2

GDCS

HOTC

NT15

0D

C X

Pos

titio

n1

GDCX

POS

151

DC

Y P

ostit

ion

1GD

CYPO

S15

2D

C L

PA P

acke

ts S

ent

2GD

CLPA

PKTS

NT15

4D

C T

est M

ode

Rat

e2

GDCM

ODER

ATE

156

DC

Pac

kets

Sen

t2

GDCP

KTSN

T15

8D

C S

pare

12

CDCS

PARE

116

0D

C B

ytes

Sen

t4

GDCB

YTES

NT16

4D

C O

utpu

t bit

rate

in B

PS4

GDCO

UTRA

TE16

8D

C In

terru

pt re

gist

er4

GDCI

NTRG

S17

2D

C C

ontro

l lat

ch re

gist

er4

GDCC

NTLT

CH17

6D

C In

terru

pt 1

GDCI

NT1

0x00

0000

010=

Dis

able

d, 1

=Ena

bled

176

DC

LPA

Inte

rrupt

GDCL

PAIN

T0x

0000

0002

0=D

isab

led,

1=E

nabl

ed17

6D

C O

utpu

t FIF

O F

ull I

nter

rupt

GDCO

UTFF

INT

0x00

0000

040=

Dis

able

d, 1

=Ena

bled

176

DC

Out

put F

IFO

Em

pty

Inte

rrupt

GDCO

UTFE

INT

0x00

0000

080=

Dis

able

d, 1

=Ena

bled

176

DC

RAM

Bus

y In

terru

ptGD

CRAM

BINT

0x00

0000

100=

Dis

able

d, 1

=Ena

bled

176

DC

Inte

rrupt

6GD

CINT

60x

0000

0020

0=D

isab

led,

1=E

nabl

ed17

6D

C in

tr m

ask

regi

ster

4GD

CINT

MASK

0xFF

FFFF

FF18

0D

C F

IFO

Ful

lGD

CFF

0x00

0000

010=

True

, 1=F

alse

180

DC

FIF

O A

lmos

t Ful

lGD

CFAF

0x00

0000

040=

True

, 1=F

alse

180

DC

FIF

O A

lmos

t Em

pty

GDCF

AE0x

0000

0002

0=Tr

ue, 1

=Fal

se18

0D

C F

IFO

Em

pty

GDCF

E0x

0000

0008

0=Tr

ue, 1

=Fal

se18

0D

C fi

fo fl

ags

regi

ster

4GD

CFIF

OFLG

0xFF

FFFF

FF18

4D

C L

PA G

ain

GD

CGAI

N0x

0000

0007

0=4.

00,1

=2.8

0,2=

2.15

,3=1

.75,

4=1.

47,5

=1.2

7,6=

1.12

,7=1

.00

184

DC

LPA

Res

et

GDCR

ST0x

0000

0008

0=In

Res

et, N

ot in

Res

et18

4D

C L

PA g

ain

regi

ster

4GD

CLPA

GAIN

0xFF

FFFF

FF18

8D

C L

PA F

ram

e By

te C

ount

GDCL

PABY

CNT

0x00

003F

FF18

8D

C L

PA P

acke

t (Fr

ame)

Cou

ntGD

CLPA

PKTC

NT0x

00FF

0000

188

DC

LPA

pac

ket c

ount

regi

ster

4GD

CLPA

CNT

0xFF

FFFF

FF19

2D

C S

pare

s8

GDCS

PARE

2[8]

200

GP

GPS

10

seco

nd In

terru

pt C

ount

2

GGPI

SRIN

T20

2G

P N

umbe

r of P

ositi

on P

acke

ts re

ceiv

ed2

GGP1

553P

KTS

204

GP

Num

ber o

f Hou

seke

epin

g pa

cket

s se

nt2

GGPH

SPKT

S20

6G

P N

umbe

r of A

ncilla

ry P

acke

ts s

ent

2GG

PANP

KTS

208

GP

Num

ber o

f 40-

bit C

ount

er P

kts

Req

uest

ed2

GGP4

0BPK

TSS

210

GP

GPS

10

sec

Puls

e 40

-Bit

Cou

nter

Pac

kets

Rec

eive

d2

GGP4

0BPK

TSR

212

GP

Pack

ets

with

bad

X,Y

,Z P

ositi

on D

ata

2GG

PBAD

XYZC

NT

This

cou

nt in

crem

ents

any

tim

e th

e G

P ta

sk e

ncou

nter

s a

posi

tion

pack

et w

ith a

bad

ly fo

rmat

ted

or o

ut o

f ran

ge (3

2768

< x

,y,z

< -

3276

8) X

, Y, Z

in th

e s/

c po

sitio

n pa

cket

214

GP

Pack

ets

with

X,Y

,Z P

ositi

on D

ata

Belo

w T

oler

ance

2GG

PTOL

ERXY

Z

Page 117:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-27 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

4 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

216

GP

Num

ber o

f Ran

ge P

acke

ts S

ent

2GG

PRAN

GEPK

TS

218

GP

Spar

es22

GGPS

PARE

[22]

240

PC S

oftw

are

Erro

r Cou

nt4

2GP

CSWE

RRCN

T

Cou

nts

inte

rnal

erro

rs li

ke ti

meo

ut, s

hot c

ount

ski

p an

d PC

I re

ad/w

rite

erro

rs. S

omet

imes

occ

ur o

n po

wer

on

initi

aliz

atio

n.

Syst

em c

an w

ork

corre

ctly

eve

n if

they

occ

ur.

242

PC S

hot C

ount

er2

GPCS

HOTC

NT24

4PC

SC

IEN

CE

MO

DE

PAC

KETS

SEN

T2

GPCS

CIPK

T24

6PC

EN

GIN

EER

ING

MO

DE

PAC

KETS

SEN

T2

GPCE

NGPK

T24

8PC

AN

CIL

LAR

Y M

OD

E PA

CKE

TS S

ENT

2GP

CANC

PKT

250

PC R

ANG

E G

ATE

DEL

AY P

ACKE

TS R

ECEI

VED

2GP

CRGD

PKTR

V25

2PC

Spa

re1

2GP

CSPA

RE1

254

PC S

PCM

Gat

e D

elay

2GP

CSPC

MDLY

Uni

ts =

Nan

osec

onds

Po

ly=(

0.0,

128)

256

PC B

ackg

roun

d 1

Del

ay2

GPCB

GD1D

LYU

nits

= N

anos

econ

ds

Poly

=(0.

0,12

8)25

8PC

Bac

kgro

und

2 D

elay

2GP

CBGD

2DLY

Uni

ts =

Nan

osec

onds

Po

ly=(

0.0,

128)

260

PC R

ange

Gat

e D

elay

2GP

CRGD

LYU

nits

= N

anos

econ

ds

Poly

=(0.

0,12

8)26

2PC

Boa

rd H

ardw

are

Mod

eGP

CHWM

ODE

0x00

0000

071=

Idle

, 2=E

ngin

eerin

g, 4

=Sci

ence

262

PC In

terru

pt S

ourc

e GP

CINT

SRC

0x00

0030

001=

Fire

Com

man

d, 2

=Fire

Ack

now

ledg

e26

2PC

Mea

sure

men

t Sou

rce

GPCM

SMTS

RC0x

0000

4000

0=Fi

re A

ckno

wle

dge,

1=

Fire

Com

man

d26

2PC

Har

dwar

e M

ode

Stat

us W

ord

4GP

CMOD

ESTA

T0x

FFFF

FFFF

266

PC S

PCM

1 E

nabl

e/D

isab

leGP

CSPC

M10x

0000

0100

0=En

able

d, 1

=Dis

able

d26

6PC

SPC

M 2

Ena

ble/

Dis

able

GPCS

PCM2

0x00

0002

000=

Enab

led,

1=D

isab

led

266

PC S

PCM

3 E

nabl

e/D

isab

leGP

CSPC

M30x

0000

0400

0=En

able

d, 1

=Dis

able

d26

6PC

SPC

M 4

Ena

ble/

Dis

able

GPCS

PCM4

0x00

0008

000=

Enab

led,

1=D

isab

led

266

PC S

PCM

5 E

nabl

e/D

isab

leGP

CSPC

M50x

0000

1000

0=En

able

d, 1

=Dis

able

d26

6PC

SPC

M 6

Ena

ble/

Dis

able

GPCS

PCM6

0x00

0020

000=

Enab

led,

1=D

isab

led

266

PC S

PCM

7 E

nabl

e/D

isab

leGP

CSPC

M70x

0000

4000

0=En

able

d, 1

=Dis

able

d26

6PC

SPC

M 8

Ena

ble/

Dis

able

GPCS

PCM8

0x00

0080

000=

Enab

led,

1=D

isab

led

266

PC S

PCM

STA

TUS

4GP

CSPC

MSTA

T0x

FFFF

FFFF

270

PC F

IRE

ACKN

OW

LED

GE

CO

UN

TER

GPCF

ACKC

TR0x

0000

FF00

270

PC D

ata

Rea

dy C

ount

er4

GPCD

RCNT

0x00

0000

FF27

4PC

SPC

M 1

Raw

Cou

nts

GPCS

PCM1

RAW

0x00

0000

FF27

4PC

SPC

M 2

Raw

Cou

nts

GPCS

PCM2

RAW

0x00

00FF

0027

4PC

SPC

M 3

Raw

Cou

nts

GPCS

PCM3

RAW

0x00

FF00

0027

4PC

SPC

M 4

Raw

Cou

nts

GPCS

PCM4

RAW

0xFF

0000

0027

4PC

SPC

M 1

TH

RO

UG

H 4

RAW

CO

UN

TS4

GPCS

PCM1

TO4

0xFF

FFFF

FF27

8PC

SPC

M 5

Raw

Cou

nts

GPCS

PCM5

RAW

0x00

0000

FF27

8PC

SPC

M 6

Raw

Cou

nts

GPCS

PCM6

RAW

0x00

00FF

0027

8PC

SPC

M 7

Raw

Cou

nts

GPCS

PCM7

RAW

0x00

FF00

0027

8PC

SPC

M 8

Raw

Cou

nts

GPCS

PCM8

RAW

0xFF

0000

0027

8PC

SPC

M 5

TH

RO

UG

H 8

RAW

CO

UN

TS4

GPCS

PCM5

TO8

0xFF

FFFF

FF28

2PC

SPC

M D

uty

Cyc

le4

GPCD

UTYC

YCLE

286

PC C

oars

e Bo

resi

te C

alib

ratio

n X

Star

t Pos

2GP

CCST

ARTX

Page 118:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-28 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

5 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

288

PC C

oars

e Bo

resi

te C

alib

ratio

n Y

Star

t Pos

2GP

CCST

ARTY

290

PC F

ine

Bore

site

Cal

ibra

tion

X St

art P

os2

GPCF

STAR

TX29

2PC

Fin

e Bo

resi

te C

alib

ratio

n Y

Star

t Pos

2GP

CFST

ARTY

294

PC C

oars

e Bo

resi

te C

alib

ratio

n X

Incr

emen

t2

GPCC

INCX

296

PC C

oars

e Bo

resi

te C

alib

ratio

n Y

Incr

emen

t2

GPCC

INCY

298

PC F

ine

Bore

site

Cal

ibra

tion

X In

crem

ent

2GP

CFIN

CX30

0PC

Fin

e Bo

resi

te C

alib

ratio

n Y

Incr

emen

t2

GPCF

INCY

302

PC C

oars

e Bo

resi

te C

al In

tegr

atio

n Se

cond

s2

GPCC

INTS

EC30

4PC

Fin

e Bo

resi

te C

al In

tegr

atio

n Se

cond

s2

GPCF

INTS

EC30

6PC

Bor

esite

Cal

ibra

tion

Best

X P

ositi

on2

GPCB

POSX

308

PC B

ores

ite C

alib

ratio

n Be

st Y

Pos

ition

2GP

CBPO

SY31

0PC

Bor

esite

Cal

Sec

onds

Rem

aini

ng2

GPCS

ECRE

M31

2Sp

ares

10GP

CLRG

SPR2

[10]

322

CT

Stat

e M

achi

ne C

urre

nt S

tate

1GC

TSTA

TE0=

Unk

now

n, 1

=Res

et, 2

=Tim

eout

, 3=A

cqui

re S

ync,

4=W

ait f

or

Mux

es, 5

=Pro

cess

Tel

emet

ry, 6

=Unk

now

n32

3C

T C

OM

MAN

D E

CH

O E

RR

OR

S1

GCTC

MDEE

RR32

4C

T LM

BO

ARD

CM

DS

REC

EIVE

D1

GCTL

MCMD

RC32

5C

T TM

BO

ARD

CM

DS

REC

EIVE

D1

GCTT

MCMD

RC32

6C

T M

C B

OAR

D C

MD

S R

ECEI

VED

1GC

TMCC

MDRC

327

CT

HK

BOAR

D C

MD

S R

ECEI

VED

1GC

THKC

MDRC

328

CT

HVP

S C

mds

Rec

eive

d1

GCTH

VCMD

RC32

9C

T PD

U C

mds

Rec

eive

d1

GCTP

DCMD

RC33

0C

T H

W T

LM 1

PAC

KETS

SEN

T1

GCTH

W1PS

331

CT

HW

TLM

2 P

ACKE

TS S

ENT

1GC

THW2

PS33

2C

T H

W T

LM 3

PAC

KETS

SEN

T1

GCTH

W3PS

333

CT

HW

TLM

4 P

ACKE

TS S

ENT

1GC

THW4

PS33

4C

T H

W T

LM 5

PAC

KETS

SEN

T1

GCTH

W5PS

335

CT

DW

ELL

PAC

KETS

SEN

T1

GCTD

WLPS

336

CT

ANC

ILLA

RY

PAC

KETS

SEN

T1

GCTA

NPS

337

CT

TIM

EOU

T C

OU

NT

1GC

TTOC

NT33

8C

T IN

TER

RU

PT C

OU

NT

1GC

TINT

CNT

339

CT

Shot

Cou

nter

Erro

rs1

GCTS

CNTE

R34

0C

T D

wel

l Mod

e1

GCTD

WELL

0=N

one,

1=L

MB,

2=H

K, 4

=TC

M, 8

=MC

S, 1

6=PD

U, 3

2=H

VPS

341

CT

Dw

ell C

hann

el1

GCTD

WLCH

342

CT

Lase

r Mon

itor B

oard

Mux

Erro

r Cou

nter

1GC

TLMM

XER

343

CT

Hou

seke

epin

g Bo

ard

Mux

Erro

r Cou

nter

1GC

THKM

XER

344

CT

Hou

seke

epin

g Bo

ard

Subm

ux E

rror C

ount

er1

GCTH

KSMX

ER34

5C

T Te

mpe

ratu

re C

ontro

ller B

oard

Mux

Erro

r Cou

nter

1GC

TTMM

XER

346

CT

Mec

hani

sm C

ontro

ller B

oard

Mux

Erro

r Cou

nter

1GC

TMCM

XER

347

CT

Hig

h Vo

ltage

Pow

er S

uppl

y M

ux E

rror C

ount

er1

GCTH

VMXE

R34

8C

T Po

wer

Dis

tribu

tion

Uni

t Mux

Erro

r Cou

nter

1GC

TPDM

XER

349

CT

Com

man

d Ec

ho S

ucce

ss C

ount

1GC

TCES

CNT

Page 119:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-29 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

6 o

f 6W

orks

heet

: Lar

ge S

W #

2

Pkt N

ame

Larg

e So

ftwar

e Tl

m #

2Si

ze37

6O

ctet

sAp

p Id

55Fr

eque

ncy

0.25

00Hz

Inte

rval

4.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

in O

ctet

sO

ctet

sM

ask

350

CT

Even

t Mes

sage

s En

able

d/D

isab

led

Flag

GCTE

VTMF

LG0x

0001

0=Al

l Ena

bled

, 1=S

ome

Dis

able

d35

0C

T Sh

ot C

ount

Erro

r Fla

gGC

TSHC

TEF

0x00

020=

OK,

1=E

rror

350

CT

Lase

r Mon

itor B

oard

Mux

Erro

r Fla

gGC

TLMM

XEF

0x00

040=

OK,

1=E

rror

350

CT

Hou

seke

epin

g Bo

ard

Mux

Erro

r Fla

gGC

THKM

XEF

0x00

080=

OK,

1=E

rror

350

CT

Hou

seke

epin

g Bo

ard

Subm

ux E

rror F

lag

GCTH

KSMX

EF0x

0010

0=O

K, 1

=Erro

r35

0C

T Te

mpe

ratu

re C

ontro

ller B

oard

Mux

Erro

r Fla

gGC

TTMM

XEF

0x00

200=

OK,

1=E

rror

350

CT

Mec

hani

sm C

ontro

ller B

oard

Mux

Erro

r Fla

gGC

TMCM

XEF

0x00

400=

OK,

1=E

rror

350

CT

Pow

er D

istri

butio

n U

nit M

ux E

rror F

lag

GCTP

DMXE

F0x

0080

0=O

K, 1

=Erro

r35

0C

T H

igh

Volta

ge P

ower

Sup

ply

Mux

Erro

r Fla

gGC

THVM

XEF

0x01

000=

OK,

1=E

rror

350

CT

Anci

llary

Pac

ket A

lloca

tion

Erro

r Fla

gGC

TANP

KTEF

0x02

000=

OK,

1=E

rror

350

CT

Supp

ress

ed E

vent

Mes

sage

Erro

r Fla

gs2

UN_G

CTER

RFLG

352

CT

LHP1

Tem

pera

ture

Con

trol E

nabl

ed F

lag

GCTL

HP1E

NAB

0x01

0=O

ff, 1

=On

352

CT

LHP1

Tem

pera

ture

Con

trol A

ctiv

e Fl

agGC

TLHP

1ACT

0x02

0=Id

le, 1

=Act

ive

352

CT

LHP1

Tem

pera

ture

Con

trol S

tate

1UN

_GCT

LHP1

STAT

E35

3C

T LH

P2 T

empe

ratu

re C

ontro

l Ena

bled

Fla

gGC

TLHP

2ENA

B0x

010=

Off,

1=O

n35

3C

T LH

P2 T

empe

ratu

re C

ontro

l Act

ive

Flag

GCTL

HP2A

CT0x

020=

Idle

, 1=A

ctiv

e35

3C

T LH

P2 T

empe

ratu

re C

ontro

l Sta

te1

UN_G

CTLH

P2ST

ATE

354

CT

LHP1

Tem

pera

ture

Set

poin

t1

GCTL

HP1T

SET

355

CT

LHP2

Tem

pera

ture

Set

poin

t1

GCTL

HP2T

SET

356

CT

LHP1

Tem

pera

ture

Con

trol C

ount

er1

GCTL

HP1C

CT35

7C

T LH

P2 T

empe

ratu

re C

ontro

l Cou

nter

1GC

TLHP

2CCT

358

CT

LHP1

Min

imum

Tem

pera

ture

(Tm

in)

1GC

TLHP

1TMI

N35

9C

T LH

P2 M

inim

um T

empe

ratu

re (T

min

)1

GCTL

HP2T

MIN

360

CT

LHP1

Tem

pera

ture

Cha

nge

(Del

ta)

1GC

TLHP

1DEL

TA36

1C

T LH

P2 T

empe

ratu

re C

hang

e (D

elta

)1

GCTL

HP2D

ELTA

362

CT

LHP1

Tem

pera

ture

Con

trol C

ycle

Tim

e1

GCTL

HP1C

YCLE

363

CT

LHP2

Tem

pera

ture

Con

trol C

ycle

Tim

e1

GCTL

HP2C

YCLE

364

CT

Hou

seke

epin

g Bo

ard

Subm

ux T

elem

etry

Upd

ate

Flag

GCTH

KSUP

D0x

010=

Paus

ed, 1

=OK

364

CT

Mis

c St

atus

Fla

gs1

UN_G

CTTL

MFLG

365

CT

Spar

es11

GCTS

PARE

2[11

]

Page 120:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-30 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

1 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

DSP

Code

Mem

ory

Dum

pSi

ze82

8O

ctet

sAp

p Id

31

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Dum

p Pa

cket

CR

C E

rror

20=

No

Erro

rs 1

=CR

C E

rror D

etec

ted

16St

art a

ddre

ss4

DSP

pro

cess

or a

ddre

ss20

Num

ber o

f 48-

bit w

ords

in p

acke

t4

24Ty

pe4

0=da

ta m

emor

y, 1

=pro

gram

mem

ory

28D

ata

800

100

48 b

it-w

ords

. Eve

ry 2

con

secu

tive

32-b

it w

ords

con

tain

a 4

8-bi

t wor

d. T

he fi

rst 3

2-bi

t w

ord

cont

ains

the

mos

t sig

nific

ant 3

2 bi

ts a

nd

the

seco

nd c

onta

ins

the

leas

t sig

nific

ant 1

6-bi

ts w

ith th

e up

per 1

6 bi

ts z

ero

fille

d.

Page 121:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-31 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

2 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

DSP

Data

Mem

ory

Dum

pSi

ze82

8O

ctet

sAp

p Id

32

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Dum

p Pa

cket

CR

C E

rror

20=

No

Erro

rs 1

=CR

C E

rror D

etec

ted

16St

art a

ddre

ss4

DSP

pro

cess

or a

ddre

ss20

Num

ber o

f 32-

bit w

ords

in p

acke

t4

24Ty

pe4

0=da

ta m

emor

y, 1

=pro

gram

mem

ory

28D

ata

800

200

32-b

it w

ords

Page 122:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-32 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

3 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

C&T

Dwel

l Pac

ket

Size

336

Oct

ets

App

Id33

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t

14C

&T B

oard

whe

re te

lem

etry

poi

nt th

at is

bei

ng

dwel

led

on

10=

inva

lid, 1

= H

K, 2

=TC

M, 3

=MC

S, 4

=PD

U,

5=H

VPS,

6=L

MB

15Te

lem

etry

cha

nnel

(or p

oint

) to

dwel

l on

1M

ux v

alue

from

Reg

iste

r16

Dat

a fro

m 1

st s

econ

d(ol

der)

808

or 1

2 bi

t dat

a fro

m C

&T T

elem

etry

Reg

iste

r96

Dat

a fro

m 2

nd s

econ

d80

176

Dat

a fro

m 3

rd s

econ

d80

256

Dat

a fro

m 4

th s

econ

d80

Page 123:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-33 Version 1.7

File

nam

e: G

LAS

_HK

_PK

Ts.x

lsP

age

4 of

8W

orks

heet

: Oth

er P

kts

Pkt N

ame

Mem

ory

Dw

ell P

acke

ts 1

& 2

Size

212

Oct

ets

App

Id27

,28

Offs

etN

ame

idx

Size

inM

nem

onic

sId

ent.#

Des

crip

tion

in O

ctet

sO

ctet

s0

Prim

ary

Hea

der

66

Sec

onda

ry H

eade

r(tim

e st

amp)

8Ti

me

whe

n pa

cket

is s

ent

14Th

e nu

mbe

r of a

ddre

sses

cur

rent

ly d

wel

led

on b

y D

wel

l Tab

le 1

or 2

2G

MD

AD

DR

PK

T1G

MD

AD

DR

PK

T2

16Th

e dw

ell r

ate

for T

able

1 o

r 22

GM

DR

ATE

PK

T1G

MD

RAT

EP

KT2

[(rat

e)*(

1/8)

sec

], m

ust b

e 1/

2 se

cond

or

grea

ter,

Pol

ynom

ial c

oeff=

(0.0

, 0.1

25)

18Th

e va

lues

sam

pled

by

Mem

ory

Dw

ell T

able

1 o

r 219

2G

MD

DAT

A1[

48]

GM

DD

ATA

2[48

]D

ata

stor

ed a

s 48

'UIN

T32'

val

ues

210

Spa

re2

GM

DS

PAR

E3

GM

DS

PAR

E4

Spa

re to

mak

e pa

cket

div

isib

le b

y 4

Not

e:Th

ere

are

2 co

pies

of t

his

pack

et o

ne fo

r eac

h m

emor

y dw

ell t

able

.

Page 124:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-34 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

5 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

Even

t Mes

sage

Pac

ket

Size

80O

ctet

sAp

p Id

34

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t

14Ev

ent M

essa

ge C

hara

cter

s 66

66 b

ytes

that

con

tain

a A

SCII

text

mes

sage

to

be d

ispl

a yed

on

GLA

S op

erat

or c

onso

le.

Page 125:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-35 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

6 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

Mem

ory

Dum

p Pa

cket

Size

224

Oct

ets

App

Id35

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Proc

esso

r ID

2G

SMPR

CID

16C

urre

nt D

ump

Cop

y N

umbe

r2

GSM

CPN

UM

118

Mem

ory

Addr

ess

of F

irst W

ord

in th

is P

acke

t4

GSM

SRC

ADD

22N

um. o

f Wor

ds D

umpe

d in

this

Pac

ket

2G

SMN

UM

WD

S124

Dum

ped

Dat

a W

ords

200

GSM

DPD

ATA1

[100

]

Page 126:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-36 September 2011

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

7 o

f 8W

orks

heet

: Oth

er P

kts

Pkt N

ame

Tabl

e Du

mp

Pack

etSi

ze22

4O

ctet

sAp

p Id

36

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Tabl

e Id

Num

ber

2G

SMTB

LID

116

Cur

rent

Tab

le D

ump

Cop

y N

umbe

r2

GSM

CPN

UM

18Ta

ble

Offs

et2

GSM

TBLO

S20

Num

. of W

ords

Dum

ped

in th

is P

acke

t2

GSM

NU

MW

DS

22Ta

ble

Sour

ce T

ype

2G

SMTB

LSR

C1=

EEPR

OM

, 2=R

AM,3

=BU

FFER

24D

umpe

d Ta

ble

Dat

a W

ords

200

GSM

DPD

ATA[

100]

Pkt N

ame

GLA

S Da

ta T

ypes

Pac

ket

Size

72O

ctet

sAp

p Id

48

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Dat

a Ty

pes

Pack

et F

ixed

Pat

tern

58

Pkt N

ame

Etal

on C

alib

ratio

n Pa

cket

Size

2076

Oct

ets

App

Id37

Page 127:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-37 Version 1.7

File

nam

e: G

LAS_

HK_

PKTs

.xls

Page

8 o

f 8W

orks

heet

: Oth

er P

kts

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nin

Oct

ets

Oct

ets

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

pack

et is

sen

t 14

Spar

e b y

te in

GLA

S tim

e fie

ld1

15Et

alon

Cal

ibra

tion

Star

ting

Tim

e6

GC

TEC

STIM

E21

Spar

e by

te in

GLA

S tim

e fie

ld1

22Et

alon

Cal

ibra

tion

Star

t Tem

pera

ture

1G

CTE

CST

RTT

23Et

alon

Cal

ibra

tion

Stop

Tem

pera

ture

1G

CTE

CST

OPT

24Et

alon

Cal

ibra

tion

Tem

pera

ture

Ste

p1

GC

TEC

TSTE

P25

Etal

on C

alib

ratio

n Av

erag

ingT

ime

1G

CTE

CAV

GTI

M26

Etal

on C

alib

ratio

n Se

ttleT

ime

2G

CTE

CST

LTIM

28Et

alon

Cal

ibra

tion

Mea

sure

d O

n-Ax

is T

rans

.10

24G

CTE

CTR

ON

[256

]10

52Et

alon

Cal

ibra

tion

Mea

sure

d O

ff-Ax

is T

rans

.10

24G

CTE

CTR

OFF

[256

]

Page 128:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-38 September 2011

B.2 Science Packet Descriptions

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: Sum

mar

y

Pkt N

ame

App

idSi

zePk

t Fre

q.Pk

t Int

erva

lRa

teCo

nfid

ence

CCSD

S Pr

imar

y in

byt

esin

Her

tzin

sec

onds

bps

SSR

In c

onte

nts

Head

erde

cim

alHK

Diag

H, M

, Lhe

xAl

timet

er D

igiti

zer D

ata-

Larg

e12

6856

40.

2521

9392

.0Ye

sN

oN

oH

igh

080C C000 1AC1

Altim

eter

Dig

itize

r Dat

a-Sm

all

1334

164

0.25

1093

12.0

Yes

No

No

Hig

h080D C000 0D51

AD E

ng M

ode

- One

Sho

t14

700

11

Yes

No

No

Hig

h080E C000 02B5

Phot

on C

ount

er (P

C) S

cien

ce P

kt15

8112

11

6489

6.0

Yes

No

No

Hig

h080F C000 1FA9

PC E

ng P

kt16

8236

11

Yes

No

No

Hig

h0810 C000 2025

Clou

d Di

gitiz

er (C

D) S

cien

ce P

kt17

7576

11

6060

8.0

Yes

No

No

Hig

h0811 C000 1D91

CD E

ng P

kt18

5616

11

Yes

No

No

Hig

h0812 C000 15E9

Anci

lary

Sci

ence

Pkt

1913

681

110

944.

0Ye

sN

oN

oH

igh

0813 C000 0551

LPA

Data

Pkt

2640

564

0.25

1297

92.0

Yes

No

No

Hig

h081A C000 0FD1

Com

man

d Hi

stor

y Pa

cket

4929

6As

ync

Yes

No

No

0831 C000 0121

Spar

e40

LPA

80x8

0 Te

st D

ata

Pkt

126

6416

Asyn

cYe

sN

oN

oH

igh

087E C000 1909

Bore

site

Cal

ibra

tion

Resu

lts P

kt38

1816

Asyn

cYe

sN

oN

oH

igh

0826 C000 0711

Tota

l Rat

e*43

6096

.0bp

s*

This

tota

l ass

umes

a 5

5%-4

5% d

istri

butio

n be

twee

Alt.

Dig

itize

r Lar

ge a

nd S

mal

l Dat

a Pa

cket

san

d do

es N

OT

incl

ude

1553

, Asy

nchr

onou

s Da

ta P

acke

ts, G

yro

or L

RS D

ata

Note

s:1-

The

siz

e of

all

pack

ets

goin

g to

the

SSR

mus

t be

a m

ultip

le o

f 4, T

his

is b

ecau

se th

e FI

FO w

idth

is 3

2 bi

ts2-

Max

Pac

ket S

ize

to S

SR is

16

Kbyt

es. T

his

is th

e si

ze o

f the

FIF

O3-

LPA

80x

80Te

st P

acke

t is

not u

se d

urin

g Fl

ight

, but

onl

y fo

r int

egra

tion

1- M

nem

onic

s us

e on

ly 'G

' as

pref

ix to

indi

cate

GLA

S(in

stea

d of

the

GL)

2- M

nem

onic

s fo

r the

CCS

DS h

eade

r are

not

in s

prea

dshe

et.

Sugg

este

d M

nem

onci

c na

mes

are

:Bi

tsW

ord

Mas

kG

Pxxx

PVNO

0..2

1st

0xE0

00G

Pxxx

PCKT

31s

t0x

1000

GPx

xxSH

DF4

1st

0x08

00G

Pxxx

ID5.

.15

1st

0x07

FFG

Pxxx

SEG

F0.

.12n

d0x

C00

0G

Pxxx

SCNT

2..1

52n

d0x

3000

GPx

xxPL

EN0.

.15

3rd

0xFF

FFG

Pxxx

STIM

E4t

h..7

thw

here

xxx

is th

e ap

p id

in h

ex3-

The

sho

t cou

nter

is o

nly

a 8

bit c

ount

er. W

here

it is

dep

icte

d as

a tw

o or

four

oct

et e

ntity

it c

onta

ins

padd

ing

in th

e up

per b

ytes

.

Out

put t

o15

53 B

us

Page 129:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-39 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: Cha

nge

Hist

ory

Nam

eDa

teVe

rsio

nCh

ange

Des

crip

tion

M. M

aldo

nado

22-J

an-9

91.

0In

itial

Cre

atio

n

M.M

aldo

nado

25-J

an-9

91.

1Ad

ded

Butto

n fro

Prin

t all,

Cha

nged

hea

ding

and

foot

er o

n An

cilla

ry d

ata

pack

et, R

emov

ed n

ot a

pplic

able

not

esJ.

Fire

r25

-Jan

-99

1.1

Adde

d ca

lcul

ated

wei

ght f

ield

, fix

ed s

izes

M

.Mal

dona

do13

-May

-99

2.0

Adde

d C

D e

ngin

eerin

g, P

C E

ngin

eerin

g, m

oved

OTS

stu

ff to

anc

illary

, add

ed g

ain

setti

ngAd

ded

40 in

stan

ces

of 5

32 e

nerg

y in

anc

illary

M.M

aldo

nado

17-M

ay-9

92.

0C

hang

es p

er J

enny

Gei

gers

revi

ew. C

orre

cted

num

ber o

f sam

ples

in C

D S

cien

ce D

ata.

An

d re

orde

red

Fire

Com

man

d an

d Fi

re A

ckno

wle

dge

40 b

it co

unt i

n An

cilla

ry d

ata

pack

et.

21-M

ay-9

92.

0C

orre

cted

anc

illary

byt

e of

fset

358

det

ecto

r sta

tus

to b

e 2

byte

s pe

r Dav

e H

anco

ck s

ugge

stio

nsTh

is m

ake

it ev

en n

umbe

r of b

ytes

in th

at s

ectio

n.M

.Mal

dona

do17

-Sep

-99

2.0

Adde

d C

omm

and

His

tory

pac

ket

M.M

aldo

nado

19-N

ov-9

92.

0Ad

ded

spar

es fo

r CD

Sci

ence

to b

e al

igne

d at

4-b

yte

boun

darie

s pe

r Jen

ny G

eige

rs In

stru

ctio

nsM

.Mal

dona

do, D

. M

oloc

k08

-Dec

-99

2.0

Cor

rect

ed A

D la

rge

and

smal

l and

AD

anc

illary

dat

a pe

r mee

ting

with

Dav

id H

anco

ck a

nd o

ther

sM

.Mal

dona

do19

-Jan

-00

3.0

Rem

oved

532

ene

rgy

from

PC

Sci

ence

Pac

ket,

left

spar

e in

its

plac

eC

onve

rted

CD

and

PC

Anc

illary

dat

a no

t use

d in

to s

pare

sC

orre

cted

siz

e of

spa

cecr

aft p

ositi

on a

nd g

ps ti

me

pack

et to

not

incl

ude

CC

SDS

head

erSt

eve

Sleg

el21

-Jan

-00

3.0

Cor

rect

ed C

D E

ng p

acke

t to

be e

very

oth

er s

hot i

nste

ad o

f the

firs

t 20

shot

sC

orre

cted

spe

lling

of s

hot c

ount

er in

PC

Sci

ence

pac

ket d

efin

ition

Rep

lace

d LI

DAR

Del

ay w

ith R

ange

Gat

e D

elay

for P

C ta

sk a

ncilla

ry d

ata

Dw

aine

Mol

ock

24-J

an-0

03.

0M

odifi

ed th

e AD

larg

e, s

mal

l & a

ncilla

ry s

cien

ce p

acke

ts a

ccor

ding

to c

omm

ents

rece

ived

from

Dav

id H

anco

ck.

M. M

aldo

nado

23-F

eb-0

03.

0M

odifi

ed c

omm

ents

on

PC S

cien

ce a

nd A

ncilla

ry P

acke

t per

Ste

ve P

alm

s co

mm

ents

Cor

rect

ed s

ize

of C

D s

hot s

ampl

e to

mat

ch P

CAd

ition

al C

hang

es to

des

crip

tions

in A

D p

kts

Cha

nged

CD

Eng

pac

ket t

o be

eve

ry o

ther

sho

t of u

nave

rage

d da

taAd

ded

Tole

ranc

e fo

r Coi

ncid

ence

of F

ilter

to A

ncilla

ry tl

mM

.Mal

dona

do31

-Mar

-00

3.0

Mod

ified

Anc

illary

GPS

/DEM

Sec

tion

M.M

aldo

nado

4-Ap

r-00

3.0

Mod

ified

Anc

illary

C&T

Sec

tion

M.M

aldo

nado

11-A

pr-0

0R

ev A

Adde

d va

lid n

umbe

r of c

omm

ands

to c

md

hist

ory

pack

et a

nd c

orre

cted

prin

t are

as in

anc

illary

M.M

aldo

nado

14-A

pr-0

0R

ev A

Cor

rect

ed L

PA C

omm

ent t

hat s

aid

x, y

win

dow

sta

rting

pos

tion

rang

e w

as 1

to 8

0 to

say

0 to

79

and

mov

ed s

pare

in L

PA p

acke

t to

afte

r sec

onda

ry h

eade

r fro

m e

nd o

f pac

ket

Cha

nged

all

head

ers

to s

ay R

ev A

and

spe

lled

out T

elem

etry

M.M

aldo

nado

, Rob

ert

McG

raw

28-A

pr-0

0R

ev A

Adde

d to

anc

illary

tlm

pkt

che

ckin

flag

s an

d st

art o

f fra

me

shot

cou

nter

Adde

d sp

are

byte

s to

mak

e pa

cket

siz

es d

ivis

ible

by

4M

.Mal

dona

do,

Dw

aine

Mol

ock

8-M

ay-0

0R

ev A

Upd

ated

AD

larg

e an

d sm

all a

nd A

D a

ncilla

ry d

ata

per D

wai

ne M

oloc

k co

mm

ents

Dw

aine

Mol

ock

10-M

ay-0

0R

ev A

Rea

lignm

ent f

or D

WO

RD

sM

.Mal

dona

do10

-Jul

-00

Rev

AC

orre

cted

inco

rrect

offs

et c

alcu

latio

n in

app

ids

12 a

nd 1

4 af

ter t

he C

CSD

S he

ader

Chan

ge H

isto

ry

Page 130:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-40 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: Cha

nge

Hist

ory

Nam

eDa

teVe

rsio

nCh

ange

Des

crip

tion

Chan

ge H

isto

ry

M.M

aldo

nado

13-S

ep-0

0R

ev B

Cor

rect

ed P

C e

ng(a

pid1

6) p

acke

t siz

e to

inlc

ude

only

15t

h sh

ots

of d

ata

Cor

rect

ed s

mal

l alti

met

er d

igiti

zer s

cien

ce p

acke

t (ap

id 1

3) s

ize

calc

ulat

ion

Upd

ated

AD

Anc

illary

sec

tion

for B

uild

3.0

Rel

ease

Upd

ated

api

d 12

and

13

to in

crea

se T

rans

mit

Puls

e w

avef

orm

to 4

8 by

tes

and

decr

ease

the

back

grou

nd

nois

e m

ean

and

std

dev,

The

se a

re th

e ch

ange

s fo

r the

GLA

S FS

W B

uild

3.0

rele

ase

M.M

aldo

nado

17-S

ep-0

0R

ev B

Cor

rect

ed G

PS/D

EM A

ncilla

ry p

er J

oe P

olk's

inpu

tM

.Mal

dona

do19

-Sep

-00

Rev

BC

orre

cted

PC

and

CD

Ran

ge B

ias

defa

ult t

o -4

1 km

M.M

aldo

nado

28-S

ep-0

0R

ev B

Adde

d Bo

resi

te C

al a

nd L

PA 8

0x80

test

pac

kets

def

from

Ste

ve S

lege

lM

.Mal

dona

do3-

Oct

-00

Rev

BC

orre

cted

Offs

ets

in A

ncilla

ry tl

m, R

emov

ed re

petit

ivel

y de

fined

dat

a in

AD

pac

kets

12

and

13Ad

ded

vario

us c

larif

ying

com

men

ts to

AD

, PC

, CD

and

Anc

illary

pac

ket t

elem

etry

This

mak

es th

e pr

inte

d ve

rsio

n m

uch

smal

ler

Fina

l for

Rev

B a

nd G

LAS

FSW

Bui

ld 3

.0M

.Mal

dona

do13

-Dec

-00

Rev

CC

hang

ed h

eade

rs to

say

Rev

CM

.Mal

dona

do25

-Jan

-01

Rev

CC

onve

rted

Dat

a in

Anc

illary

pac

ket a

t offs

et 5

72 to

a s

pare

. Dat

a w

as a

lread

y de

fined

bel

ow.

Dw

aine

Mol

ock

27-F

eb-0

1R

ev D

Adde

d un

its, d

ata

ran g

es, f

orm

ulas

, and

DSP

add

ress

es fo

r the

AD

Sci

ence

, Eng

inee

ring,

and

Anc

illary

pac

kets

Stev

en S

lege

l28

-Feb

-01

Rev

DAd

ded

units

, dat

a ra

nges

, for

mul

as, a

nd H

W a

ddre

sses

for t

he P

C/C

D S

cien

ce, E

ngin

eerin

g, a

nd A

ncilla

ry p

acke

ts a

s w

ell a

s th

e LP

A an

d Bo

resi

te C

alib

ratio

n pa

cket

s.Jo

seph

Pol

k29

-Feb

-01

Rev

DAd

ded

units

, dat

a ra

nges

, for

mul

as, a

nd H

W a

ddre

sses

for t

he G

PS a

ncilla

ry p

acke

t sec

tion.

Dw

aine

Mol

ock

22-J

un-0

1R

ev D

Adde

d 8n

s Fi

lter P

eak

Valu

e to

the

AD L

arge

, Sm

all a

nd E

ngin

eerin

g Pa

cket

sSt

eve

Sleg

el28

-Jun

-01

Rev

DSp

lit th

e Sh

ot C

ount

in th

e PC

Sci

and

Eng

Pkt

s in

to 2

fiel

ds (S

hot C

ount

and

Dith

erin

g En

able

d)Jo

seph

Pol

k11

-Jul

-01

Rev

D1

Upd

ated

"Pos

ition

Dat

a St

atus

Fla

g" d

escr

iptio

n in

GPS

/DEM

Anc

illary

Sci

ence

M.M

aldo

nado

10-O

ct-0

1R

ev D

1U

pdat

ed s

prea

dshe

et p

er D

wai

ne M

oloc

ks C

omm

ent i

n R

DL

file

for M

ay 2

5, 2

001

whe

re 8

byt

es w

ere

dele

ted

from

api

d 19

AD

sec

tion

and

spar

es w

ere

incr

ease

d to

30.

Tha

t cha

nge

had

neve

r mad

e th

is s

prea

dshe

et.

Jose

ph P

olk

26-J

un-0

2R

ev E

Supp

lied

mne

mon

ics

in th

e M

nem

onic

s co

lum

n fo

r all

appr

opria

te s

cien

ce te

lem

etry

G

ener

ic c

hang

es; 1

)repl

aced

dup

licat

e ro

w d

escr

iptio

ns fo

r the

sam

e ite

ms

with

a s

ingl

e co

mm

ent i

ndic

atin

g su

ch, 2

) add

ed

the

bit m

ask

to th

e "M

ask"

col

umn

for a

ll m

nem

onic

s us

ing

bit m

asks

. Ad

ded

byte

ord

er c

omm

ent f

or P

C s

cien

ce p

kt (a

pid

15),

PC E

ng p

kt (a

pid

16) ,

CD

sci

ence

pkt

(api

d 17

), C

D E

ng p

kt (a

pid

18)

Adde

d co

mm

ent t

o in

dica

te o

rder

of s

ampl

es in

PC

and

CD

eng

inee

ring

pack

et

Adde

d co

mm

ent d

escr

ibin

g th

e tim

e fie

ld fo

r the

the

"com

man

d hi

stor

y" p

acke

t (ap

id 4

9)

Adde

d co

mm

ent t

o in

dica

te o

rder

of t

he p

ixel

s fo

r the

LPA

dat

a in

pac

kets

26

and

126

Cha

nged

"bac

kgro

und

nois

e se

arch

offs

et s

tartp

oint

" fro

m U

INT_

32 to

INT_

32 in

anc

illary

pkt

(api

d 19

)Ad

ded

reje

ct m

ask

for l

eadi

ng/tr

ailin

g ed

ge in

anc

illary

sci

ence

pac

ket

Rem

oved

"ran

ge g

ate

dela

y m

ask"

, "Ba

ckgr

ound

#2

dela

y m

ask"

, and

"40

hz s

igna

l ena

ble"

item

s fro

m th

e C

D a

ncilla

ry s

cien

ce p

acke

t.

Jose

ph P

olk

30-A

ug-0

2R

ev E

Cha

nged

the

Type

def

initi

on o

f the

follo

win

g m

nem

onic

s fro

m IN

T_32

to F

loat

ing

poin

t: G

ADLN

MU

4 an

d G

ADLN

SIG

4 (a

pid

12),

GAD

SNM

U4

and

GAD

SNSI

G4

(api

d 13

), G

ADEN

MU

4 an

d G

ADEN

SIG

4 (a

pid

14).

DR

523

.

27-S

ep-0

2R

ev E

Cha

nged

GAN

CTE

STAT

E te

lem

etry

mne

mon

ic d

efin

ition

to in

clud

e 2

new

sta

tes,

"ope

nloo

p" a

nd "m

odifi

ed" p

er B

uild

4.1

pa

tch

(Eta

lon

Clo

sed-

Loop

Pat

ch)

Upd

ates

for G

LAS

FSW

Bui

ld 3

.3

Adde

d et

alon

trac

king

mne

mon

ics

GAN

CTE

OLM

OD

E an

d G

ANC

TEO

LUPD

to th

e C

T an

cilla

ry s

cien

ce d

ata

(pac

ket 1

9).

Page 131:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-41 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: Alt

Dig

-Lar

ge

Pkt N

ame

Altim

eter

Dig

itize

r - L

arge

Sci

Pkt

Size

6856

Oct

ets

App

Id12

Freq

uenc

y4

HzIn

terv

al0.

250

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

sent

from

AD

task

14Sp

are

2Sp

are

byte

sU

INT_

1616

Shot

#1

Data

in P

acke

t16

AD L

and

Pack

et S

hot C

ount

14

GAD

LSH

CC

orre

spon

ds to

the

data

that

follo

ws.

Uni

t=sh

ots

UIN

T_32

1-20

0

20AD

Lan

d Pk

t Tra

nsm

it W

avef

orm

248

GAD

LXW

Peak

of T

rans

mit

Puls

e st

ored

with

in 4

8 sa

mpl

es.

Uni

t=co

unts

UIN

T_8

0-25

503

00h

to 0

30bh

68AD

Lan

d Pk

t Tra

nsm

it Pu

lse

Peak

Tim

e3

4G

ADLX

PTAd

dres

s in

nan

osec

onds

reso

lutio

n of

the

Tran

smit

Puls

e Pe

ak a

s m

easu

red

from

the

star

t of

Acqu

isiti

on M

emor

y, i.

e. s

tart

of d

igiti

zatio

n.

UIN

T_32

0 - 5

0000

003

0ch

72Tr

ansm

it Pe

ak In

tern

al S

/W F

ailu

re5

G

ADLX

SWF

0x00

010=

No

Prob

lem

; 1=i

nter

nal s

oftw

are

failu

reU

INT_

3272

Tran

smit

Peak

Sea

rch

Failu

re (b

elow

thre

shol

d)6

G

ADLX

F0x

0002

0=N

o Pr

oble

m; 1

=Pea

k Be

low

Thr

esho

ldU

INT_

3272

Tran

smit

Peak

Sea

rch

Failu

re L

atch

7

G

ADLX

FL0x

0004

0=N

o Pr

oble

m; 1

=Pea

k N

ever

Fou

nd (l

atch

)U

INT_

3272

AD L

and

Pkt T

rans

mit

Peak

Fai

lure

Bits

44

GAD

LXFA

IL

0=N

o Pr

oble

m;

Non

-zer

o=Pe

ak s

earc

h pr

oble

m (s

ee m

ask

desc

riptio

ns a

bove

)U

INT_

32

76St

artin

g Ad

dres

s of

Tra

nsm

it Pu

lse

Sam

ple

84

GAD

LXW

STSt

artin

g Ad

dres

s in

nan

osec

ond

reso

lutio

n of

the

Tran

smit

Puls

e sa

mpl

e re

lativ

e to

the

star

t of

digi

tizat

ion.

U

INT_

320

- 500

000

030e

h

80En

ding

Add

ress

of R

ange

Res

pons

e9

4G

ADLR

WET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he 2

000-

byte

sur

face

ech

o da

ta d

ump

(as

mea

sure

d fro

m

the

star

t of A

cqui

sitio

n M

emor

y, i.

e. S

tart

of d

igiti

zatio

n).

Last

in ti

me.

U

INT_

320

- 510

0000

030f

h

84La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Sel

ecte

d Fi

lter

104

GAD

LSFT

ET

Addr

ess,

in n

anos

econ

d re

solu

tion,

of t

he d

etec

ted

last

thre

shol

d cr

ossi

ng (a

s m

easu

red

from

the

star

t of A

cqui

sitio

n M

emor

y, i.

e. S

tart

of d

igiti

zatio

n, th

at is

, las

t in

time)

. Al

so c

alle

d th

e tra

iling

edge

. Se

t to

0 if

thre

shol

d cr

ossi

ng w

as N

OT

dete

cted

.U

INT_

320

- 510

0000

0310

h

88N

ext t

o La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Se

lect

ed F

ilter

114

GAD

LSFL

ET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

next

to la

st th

resh

old

cros

sing

(as

mea

sure

d fro

m th

e st

art o

f Acq

uisi

tion

Mem

ory,

i.e.

Sta

rt of

dig

itiza

tion.

Nex

t to

last

in ti

me)

. Al

so c

alle

d th

e le

adin

g ed

ge.

Set t

o 0

if a

thre

shol

d cr

ossi

ng w

as N

OT

dete

cted

.U

INT_

320

- 510

0000

0311

h92

4ns

Filte

r Pea

k H

eigh

t12

2G

ADLF

4PH

Peak

val

ue re

turn

ed b

y th

e FI

R fi

lter e

ngin

e fo

r the

4ns

Filt

er.

Uni

t=co

unts

UIN

T_16

0 - 2

5503

12h

948n

s Fi

lter P

eak

Hei

ght

132

GAD

LF8P

HPe

ak v

alue

retu

rned

by

the

FIR

filte

r eng

ine

for t

he 4

ns F

ilter

. U

nit=

coun

tsU

INT_

160

- 255

0312

h

96Pe

ak V

alue

for t

he s

elec

ted

filte

r14

4G

ADLS

FPH

Peak

val

ue fo

r the

sel

ecte

d fil

ter r

etur

ned

by th

e FI

R fi

lter e

ngin

e. S

et to

0 if

a th

resh

old

cros

sing

w

as n

ot d

etec

ted.

Uni

t=co

unts

UIN

T_32

0 - 2

5503

13h

100

Peak

Val

ue L

ocat

ion

for t

he s

elec

ted

filte

r15

4G

ADLS

FPT

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

peak

val

ue (a

s m

easu

red

from

the

star

t of

Acqu

isiti

on M

emor

y, i.

e. S

tart

of d

igiti

zatio

n).

Set t

o 0

if a

thre

shol

d cr

ossi

ng w

as N

OT

dete

cted

.U

INT_

320

- 510

0000

0314

h

104

Filte

r Sel

ecte

d 16

4G

ADLS

FNU

M

Filte

r with

the

high

est w

eigh

t (0

for 4

nse

c fil

ter;

1 fo

r 8 n

sec

filte

r; 2

for 1

6 ns

ec fi

lter;

3 fo

r 32

nsec

fil

ter;

4 fo

r 64

nsec

filte

r; 5

for 1

28 n

sec

filte

r). M

ay o

r may

not

be

sele

ctab

le!

If no

sel

ecta

ble

filte

r ca

n be

cho

sen,

then

the

last

suc

cess

ful f

ilter

, sel

ecta

ble

or N

OT

is c

hose

n.U

INT_

320

- 503

15h

108

Thre

shol

d Va

lue

174

GAD

LSFT

HR

Thre

shol

d cr

ossi

ng v

alue

s us

ed to

find

the

last

thrs

hold

cro

ssin

gs fo

r the

sel

ecte

d fil

ter.

U

nit=

coun

tsU

INT_

320

- 255

0316

h

112

Mea

n Va

lue

of th

e Ba

ckgr

ound

Noi

se M

ean

for 4

ns

filte

r18

4G

ADLN

MU

4C

alcu

late

d M

ean

valu

e fo

r the

4ns

filte

r.FL

OAT

(IEE

E754

)0.

0 - 1

0,00

0.0

0317

h

116

Stan

dard

Dev

iatio

n of

the

Back

grou

nd N

oise

for t

he 4

ns

filte

r19

4G

ADLN

SIG

4C

alcu

late

d St

anda

rd D

evia

tion

for t

he 4

ns fi

lter.

FL

OAT

(IEE

E754

)0.

0 - 1

0,00

0.0

0318

h12

0AD

Lan

d Pk

t Ret

urn

Peak

Fai

lure

Wor

d

GAD

LRFA

ILPe

ak fa

ilure

wor

d. B

it m

asks

are

def

ined

bel

owU

INT_

3212

0AD

Lan

d Pk

t Thr

esho

ld C

ross

ing

Failu

re M

ask

G

ADLT

CF

0x00

0000

3FTh

resh

old

Cro

ssin

g Fa

ilure

Mas

k. B

it m

asks

are

def

ined

bel

ow.

UIN

T_32

120

No

first

cro

ssin

g(ris

ing

edge

) on

4-ns

ec fi

lter f

lag

200x

0000

0001

0=N

o Pr

oble

m; 1

=No

first

cros

sing

foun

d on

4-n

sec

filte

r12

0N

o fir

st c

ross

ing(

risin

g ed

ge) o

n 8-

nsec

filte

r fla

g21

0x00

0000

020=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 8

-nse

c fil

ter

120

No

first

cro

ssin

g(ris

ing

edge

) on

16-n

sec

filte

r fla

g22

0x00

0000

040=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

6-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

32-n

sec

filte

r fla

g23

0x00

0000

080=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 3

2-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

64-n

sec

filte

r fla

g24

0x00

0000

100=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 6

4-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

128-

nsec

filte

r fla

g25

0x00

0000

200=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

28-n

sec

filte

r12

0N

o se

cond

cro

ssin

g(fa

lling

edge

) on

4-ns

ec fi

lter f

lag

260x

0000

0040

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

4-n

sec

filte

r12

0N

o se

cond

cro

ssin

g(fa

lling

edge

) on

8-ns

ec fi

lter f

lag

270x

0000

0080

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

8-n

sec

filte

r

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 16

-nse

c fil

ter f

lag

280x

0000

0100

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

16-

nsec

filte

r

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 32

-nse

c fil

ter f

lag

290x

0000

0200

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

32-

nsec

filte

r

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 64

-nse

c fil

ter f

lag

300x

0000

0400

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

64-

nsec

filte

r

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 12

8-ns

ec fi

lter

flag

310x

0000

0800

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

128

-nse

c fil

ter

120

AD L

and

Pkt L

eadi

ng E

dge

Failu

re M

ask

G

ADLL

EF0x

0000

0FC

0Le

adin

g Ed

ge F

ailu

re M

ask.

Bit

mas

ks a

re d

efin

ed b

elow

.U

INT_

32

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 4 n

s fil

ter

flag

320x

0000

1000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to th

resh

old

for 4

nse

c fil

ter

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 8 n

s fil

ter

flag

330x

0000

2000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to th

resh

old

for 8

nse

c fil

ter

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 16

ns fi

lter

flag

34

0x00

0040

000=

No

Prob

lem

; 1=F

irst s

ampl

e in

rang

e gr

eate

r tha

n or

equ

al to

thre

shol

d fo

r 16

nsec

filte

r

Page 132:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-42 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: Alt

Dig

-Lar

ge

Pkt N

ame

Altim

eter

Dig

itize

r - L

arge

Sci

Pkt

Size

6856

Oct

ets

App

Id12

Freq

uenc

y4

HzIn

terv

al0.

250

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 32

ns fi

lter

flag

35

0x00

0080

000=

No

Prob

lem

; 1=F

irst s

ampl

e in

rang

e gr

eate

r tha

n or

equ

al to

thre

shol

d fo

r 32

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 64

ns fi

lter

flag

360x

0001

0000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to th

resh

old

for 6

4 ns

ec fi

lter

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 128

ns

filte

r fla

g37

0x00

0200

000=

No

Prob

lem

; 1=F

irst s

ampl

e in

rang

e gr

eate

r tha

n or

equ

al to

thre

shol

d fo

r 128

nse

c fil

ter

120

AD L

and

Pkt T

railn

g Ed

ge F

ailu

re M

ask

G

ADLT

EF0x

0003

F000

Trai

ling

Edge

Fai

lure

Mas

k.

UIN

T_32

120

AD L

and

Pkt S

elec

tion

Failu

re38

G

ADLS

ELF

0x00

0400

000=

All

filte

rs w

ere

not r

ejec

ted;

1=A

ll fil

ters

wer

e re

ject

ed.

This

flag

will

be

set t

o tru

e (1

) if b

its 0

thro

ugh

5 in

Ran

ge_S

tatu

s are

set.

120

AD L

and

Pkt P

revi

ous

Sele

ctio

n Fa

ilure

39

GAD

LPSE

LF0x

0008

0000

0=Se

lect

1

=Fai

lU

INT_

3212

0AD

Lan

d Pk

t Filt

er F

ailu

re M

ask

G

ADLF

F0x

03F0

0000

Land

pac

ket f

ilter

failu

re m

ask.

Ind

ivid

ual f

ilter

bit

mas

ks a

re d

efin

ed b

elow

.U

INT_

3212

04

NS

Filte

r Fai

lure

G

ADLF

4F0x

0010

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

8 N

S Fi

lter F

ailu

re

GAD

LF8F

0x00

2000

000=

OK

1=F

ailu

reU

INT_

3212

016

NS

Filte

r Fai

lure

G

ADLF

16F

0x00

4000

000=

OK

1=F

ailu

reU

INT_

3212

032

NS

Filte

r Fai

lure

G

ADLF

32F

0x00

8000

000=

OK

1=F

ailu

reU

INT_

3212

064

NS

Filte

r Fai

lure

G

ADLF

64F

0x01

0000

000=

OK

1=F

ailu

reU

INT_

3212

012

8 N

S Fi

lter F

ailu

re

GAD

LF12

8F0x

0200

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

AD L

and

Pkt R

etur

n R

ange

Fai

lure

G

ADLR

ANF

0x40

0000

000=

Ran

ge O

K 1

=Fai

lure

UIN

T_32

120

AD L

and

Pkt S

cien

ce P

roce

ssin

g R

eady

Fla

g

GAD

LRD

YF0x

8000

0000

0=R

eady

1=

Failu

reU

INT_

32

120

Ran

ge W

indo

w S

tatu

s W

ord

414

Bits

0 th

roug

h 5

indi

cate

if th

ere

was

a fi

rst r

ising

(SCA

NN

ING

BA

CKW

ARD

S) a

bove

the

thre

shol

d fo

r ea

ch o

f the

var

ious

filte

rs.

Not

e th

at if

ther

e is

no fi

rst r

ising

, the

re C

AN

NO

T be

a fi

rst f

allin

g va

lue,

so th

e ap

prop

riate

“no

seco

nd c

ross

ing”

bit

(bits

6 th

roug

h 11

) is a

lso se

t. B

it 0

corre

spon

ds to

bit

6, b

it 1

corre

s pon

ds to

bit

7 an

d so

on.

Bit F

ield

(UIN

T_32

)N

/A03

19h

124

Cal

cula

ted

Wei

ghts

for a

ll Fi

lters

4224

GAD

LFW

GT

Res

ults

of w

eigh

t for

mul

as fo

r all

FIR

filte

rs.

INT_

3203

1ah

to 0

31fh

148

Altim

eter

Dig

itize

r Raw

Pea

k43

1G

ADLR

WPH

Land

pac

ket r

aw w

avef

orm

pea

k he

ight

UIN

T_8

0 - 2

55N

/A14

9Al

timet

er D

igiti

zer S

elec

ted

Filte

r Coi

ncid

ence

s43

1G

ADLS

FNC

Land

pac

ket s

elec

ted

filte

r num

ber o

f coi

ncid

ence

sU

INT_

80

- 255

N/A

150

Altim

eter

Dig

itize

r Sta

tus

Byte

431

GAD

LGST

ATLa

nd p

acke

t gai

n st

atus

byt

eU

INT_

80

- 255

N/A

150

Altim

eter

Dig

itize

r Byp

ass

Flag

431

GAD

LGLB

YP0x

0000

0001

0=O

K 1

=BYP

ASS

UIN

T_8

0 - 2

55N

/A15

0Al

timet

er D

igiti

zer B

ypas

s Ti

meo

ut F

lag

431

GAD

LGLT

MO

0x00

0000

020=

OK

1=T

IMEO

UT

UIN

T_8

0 - 2

55N

/A15

1Al

timet

er D

igiti

zer G

ain

Setti

ng43

1G

ADLG

AIN

Res

ult o

f Gai

n Al

gorit

hm th

at w

as w

ritte

n to

the

hard

war

e on

the

prev

ious

sho

tU

INT_

80

- 255

N/A

152

Surfa

ce E

cho

Sam

ple

Padd

ing

442

GAD

LNPA

DN

umbe

r of z

ero

byte

s us

ed to

pad

the

sufra

ce e

cho

data

sam

ples

afte

r ave

ragi

ngU

INT_

320

- 544

N/A

154

Surfa

ce E

cho

Com

pres

s Ty

pe45

2G

ADLC

OM

PIn

dica

tes

the

type

of C

ompr

essi

on p

erfo

rmed

0=N

, p &

q; 1

=rU

INT_

320

- 1N

/A

156

Surfa

ce E

cho

Dat

a Sa

mpl

es (m

ay h

ave

been

av

era g

ed)

4654

4G

ADLR

W

544

byte

s of

dig

itize

d da

ta a

vera

ged

acco

rdin

g to

p;q

;N;r

in in

vers

e tim

e or

der.(

From

last

est i

n tim

e to

ear

liest

in ti

me )

UIN

T_8

0 - 2

55N

/A70

0Sh

ot #

2 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et13

84Sh

ot #

3 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et20

68Sh

ot #

4 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et27

52Sh

ot #

5 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et34

36Sh

ot #

6 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et41

20Sh

ot #

7 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et48

04Sh

ot #

8 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et54

88Sh

ot #

9 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et61

72Sh

ot #

10 D

ata

in P

acke

t68

4Th

ese

684

byte

s of

dat

a ha

ve th

e sa

me

defin

ition

as

the

first

684

byt

es in

the

pack

et

Page 133:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-43 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: Alt

Dig

-Sm

all

Pkt N

ame

Altim

eter

Dig

itize

r - S

mal

l Sci

Pkt

Size

3416

Oct

ets

App

Id13

Freq

uenc

y4

HzIn

terv

al0.

250

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

sent

from

AD

task

14Sp

are

2G

ADSS

SPAR

ESp

are

byte

sU

INT_

16

Shot

#1

Data

in P

acke

t16

Shot

Cou

nter

14

GAD

SSH

CC

orre

spon

ds to

the

data

that

follo

ws

UIN

T_32

1-20

020

Tran

smit

Puls

e2

48G

ADSX

WPe

ak o

f Tra

nsm

it Pu

lse

stor

ed w

ithin

48

sam

ples

.U

INT_

80-

255

0300

h to

030

bh

68Tr

ansm

it Pu

lse

Peak

Loc

atio

n3

4G

ADSX

PT

Addr

ess

in n

anos

econ

ds re

solu

tion

of th

e Tr

ansm

it Pu

lse

Peak

as

mea

sure

d fro

m th

e st

art o

f Acq

uisi

tion

Mem

ory,

i.e.

st

art o

f dig

itiza

tion.

UIN

T_32

0 - 5

0000

003

0ch

72Tr

ansm

it Pe

ak In

tern

al S

W F

ailu

re4

G

ADSX

SWF

0x00

010=

No

Prob

lem

; 1=P

eak

Not

Fou

nd72

Tran

smit

Peak

Fai

lure

(bel

ow th

resh

old)

4

GAD

SXF

0x00

020=

No

Prob

lem

; 1=P

eak

Belo

w T

hres

hold

72Tr

ansm

it Pe

ak F

ailu

re (l

atch

)4

G

ADSF

XL0x

0004

0=N

o Pr

oble

m; 1

=Pea

k N

ever

Fou

nd72

AD S

ea P

kt T

rans

mit

Peak

Fai

lure

Wor

d4

4G

ADSX

FAIL

Indi

cate

s th

e st

atus

of t

he T

rans

mit

Puls

e.Bi

t Fie

ld (U

INT_

32)

N/A

030d

h

76St

artin

g Ad

dres

s of

Tra

nsm

it Pu

lse

Sam

ple

54

GAD

SXW

STSt

artin

g Ad

dres

s in

nan

osec

ond

reso

lutio

n of

the

Tran

smit

Puls

e sa

mpl

e re

lativ

e to

the

star

t of d

igiti

zatio

n.U

INT_

320

- 500

000

030e

h

80En

ding

Add

ress

of R

ange

Res

pons

e6

4G

ADSR

WET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he 2

000-

byte

sur

face

ec

ho d

ata

dum

p (a

s m

easu

red

from

the

star

t of A

cqui

sitio

n M

emor

y, i.

e. S

tart

of d

igiti

zatio

n).

Last

in ti

me.

UIN

T_32

0 - 5

1000

0003

0fh

84La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Sel

ecte

d Fi

lter

74

GAD

SSFT

ET

Addr

ess,

in n

anos

econ

d re

solu

tion,

of t

he d

etec

ted

last

th

resh

old

cros

sing

(as

mea

sure

d fro

m th

e st

art o

f Acq

uisi

tion

Mem

ory,

i.e.

Sta

rt of

dig

itiza

tion,

that

is, l

ast i

n tim

e).

Also

ca

lled

the

trailin

g ed

ge.

Set t

o 0

if th

resh

old

cros

sing

was

N

OT

dete

cted

.U

INT_

320

- 510

0000

0310

h

88N

ext t

o La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Sel

ecte

d Fi

lter

84

GAD

SSFL

ET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

next

to

last

thre

shol

d cr

ossi

ng (a

s m

easu

red

from

the

star

t of

Acqu

isiti

on M

emor

y, i.

e. S

tart

of d

igiti

zatio

n. N

ext t

o la

st in

tim

e).

Also

cal

led

the

lead

ing

edge

. Se

t to

0 if

a th

resh

old

cros

sing

was

NO

T de

tect

ed.

UIN

T_32

0 - 5

1000

0003

11h

924n

s Fi

lter P

eak

Hei

ght

92

GAD

SF4P

HPe

ak v

alue

retu

rned

by

the

FIR

filte

r eng

ine

for t

he 4

ns F

ilter

.U

INT_

160

- 255

0312

h

948n

s Fi

lter P

eak

Hei

ght

102

GAD

SF8P

HPe

ak v

alue

retu

rned

by

the

FIR

filte

r eng

ine

for t

he 8

ns F

ilter

.U

INT_

160

- 255

0312

h

96Pe

ak V

alue

for t

he s

elec

ted

filte

r11

4G

ADSS

FPH

Peak

val

ue fo

r the

sel

ecte

d fil

ter r

etur

ned

by th

e FI

R fi

lter

engi

ne.

Set t

o 0

if a

thre

shol

d cr

ossi

ng w

as n

ot d

etec

ted.

UIN

T_32

0 - 2

5503

13h

100

Peak

Val

ue L

ocat

ion

for t

he s

elec

ted

filte

r12

4G

ADSS

FPT

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

peak

va

lue

(as

mea

sure

d fro

m th

e st

art o

f Acq

uisi

tion

Mem

ory,

i.e.

St

art o

f dig

itiza

tion)

. Se

t to

0 if

a th

resh

old

cros

sing

was

NO

T de

tect

ed.

UIN

T_32

0 - 5

1000

0003

14h

104

Filte

r Sel

ecte

d 13

4G

ADSS

FNU

M

Filte

r with

the

high

est w

eigh

t (0

for 4

nse

c fil

ter;

1 fo

r 8 n

sec

filte

r; 2

for 1

6 ns

ec fi

lter;

3 fo

r 32

nsec

filte

r; 4

for 6

4 ns

ec

filte

r; 5

for 1

28 n

sec

filte

r). M

ay o

r may

not

be

sele

ctab

le!

If no

sel

ecta

ble

filte

r can

be

chos

en, t

hen

the

last

suc

cess

ful

filte

r, se

lect

able

or N

OT

is c

hose

n.U

INT_

320

- 503

15h

108

Thre

shol

d Va

lue

144

GAD

SSFT

HR

Thre

shol

d cr

ossi

ng v

alue

s us

ed to

find

the

last

thre

shol

d cr

ossi

ngs

for t

he s

elec

ted

filte

r.U

INT_

320

- 255

0316

h

112

Mea

n Va

lue

of th

e Ba

ckgr

ound

Noi

se M

ean

for 4

ns

filte

r15

4G

ADSN

MU

4C

alcu

late

d M

ean

valu

e fo

r the

4ns

filte

r.

FLO

AT (I

EEE7

54)

0.0

- 10,

000.

003

17h

116

Stan

dard

Dev

iatio

n of

the

Back

grou

nd N

oise

for t

he 4

ns

filte

r16

4G

ADSN

SIG

4C

alcu

late

d St

anda

rd D

evia

tion

for t

he 4

ns fi

lter.

FLO

AT (I

EEE7

54)

0.0

- 10

,000

.003

18h

120

AD S

ea P

kt R

etur

n Pe

ak F

ailu

re W

ord

G

ADSR

FAIL

Sea

pack

et re

turn

pea

k fa

ilure

wor

d. In

divu

dual

bit

mas

ks

are

defin

ed b

elow

.U

INT_

32

120

Thre

shol

d C

ross

ing

Failu

re M

ask

G

ADST

CF

0x00

0000

3FTh

resh

old

cros

sing

failu

re m

ask.

Ind

ivud

ual b

it m

asks

are

de

fined

bel

ow.

UIN

T_32

120

No

first

cro

ssin

g(ris

ing

edge

) on

4-ns

ec fi

lter f

lag

200x

0000

0001

0=N

o Pr

oble

m; 1

=No

first

cros

sing

foun

d on

4-n

sec

filte

r12

0N

o fir

st c

ross

ing(

risin

g ed

ge) o

n 8-

nsec

filte

r fla

g21

0x00

0000

020=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 8

-nse

c fil

ter

120

No

first

cro

ssin

g(ris

ing

edge

) on

16-n

sec

filte

r fla

g22

0x00

0000

040=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

6-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

32-n

sec

filte

r fla

g23

0x00

0000

080=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 3

2-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

64-n

sec

filte

r fla

g24

0x00

0000

100=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 6

4-ns

ec fi

lter

120

No

first

cro

ssin

g(ris

ing

edge

) on

128-

nsec

filte

r fla

g25

0x00

0000

200=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

28-n

sec

filte

r

120

Lead

ing

Edge

Fai

lure

Mas

k

GAD

SLEF

0x00

000F

C0

Lead

ing

edge

failu

re.

Indi

vudu

al b

it m

asks

are

def

ined

be

low.

UIN

T_32

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 4-

nsec

filte

r fla

g26

0x00

0000

400=

No

Prob

lem

; 1=N

o se

cond

cro

ssin

g fo

und

on 4

-nse

c fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 8-

nsec

filte

r fla

g27

0x00

0000

800=

No

Prob

lem

; 1=N

o se

cond

cro

ssin

g fo

und

on 8

-nse

c fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 16

-nse

c fil

ter f

lag

280x

0000

0100

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

16-

nsec

filte

r12

0N

o se

cond

cro

ssin

g(fa

lling

edge

) on

32-n

sec

filte

r fla

g29

0x00

0002

000=

No

Prob

lem

; 1=N

o se

cond

cro

ssin

g fo

und

on 3

2-ns

ec fi

lter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 64

-nse

c fil

ter f

lag

300x

0000

0400

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

64-

nsec

filte

r

Page 134:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-44 September 2011

Page 135:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-45 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: Alt

Dig

-Sm

all

Pkt N

ame

Altim

eter

Dig

itize

r - S

mal

l Sci

Pkt

Size

3416

Oct

ets

App

Id13

Freq

uenc

y4

HzIn

terv

al0.

250

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 12

8-ns

ec fi

lter

flag

310x

0000

0800

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

128

-nse

c fil

ter

120

Trai

ling

Edge

Fai

lure

Mas

k

GAD

STEF

0x00

03F0

00Tr

ailin

g ed

ge fa

ilure

. In

divu

dual

bit

mas

ks a

re d

efin

ed b

elow

.U

INT_

32

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 4 n

s fil

ter f

lag

320x

0000

1000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to

thre

shol

d fo

r 4 n

sec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 8 n

s fil

ter f

lag

330x

0000

2000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to

thre

shol

d fo

r 8 n

sec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 16

ns fi

lter

flag

340x

0000

4000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to

thre

shol

d fo

r 16

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 32

ns fi

lter

flag

350x

0000

8000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to

thre

shol

d fo

r 32

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 64

ns fi

lter

flag

360x

0001

0000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or e

qual

to

thre

shol

d fo

r 64

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 128

ns

filte

r fla

g37

0x00

0200

000=

No

Prob

lem

; 1=F

irst s

ampl

e in

rang

e gr

eate

r tha

n or

equ

al to

th

resh

old

for 1

28 n

sec

filte

r12

0Se

a Pa

cket

Sel

ectio

n Fa

ilure

G

ADSS

ELF

0x00

0400

00Se

a pa

cket

sel

ectio

n fa

ilure

. 0=

Sele

ct

1=Fa

ilU

INT_

3212

0Se

a Pa

cket

Pre

viou

s Se

lect

ion

Failu

re

GAD

SPSE

LF0x

0008

0000

Prev

ious

sel

ectio

n fa

ilure

. 0=

Sele

ct

1=Fa

ilU

INT_

32

120

Sea

Pack

et F

ilter

Fai

lure

Mas

k

GAD

SFF

0x03

F000

00Se

a pa

cket

filte

r fai

lure

mas

k. I

ndiv

idua

l filt

er b

it m

asks

are

de

fined

bel

ow.

UIN

T_32

120

4 N

S Fi

lter F

ailu

re

GAD

SF4F

0x00

1000

000=

OK

1=F

ailu

reU

INT_

3212

08

NS

Filte

r Fai

lure

G

ADSF

8F0x

0020

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

16 N

S Fi

lter F

ailu

re

GAD

SF16

F0x

0040

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

32 N

S Fi

lter F

ailu

re

GAD

SF32

F0x

0080

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

64 N

S Fi

lter F

ailu

re

GAD

SF64

F0x

0100

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

128

NS

Filte

r Fai

lure

G

ADSF

128F

0x02

0000

000=

OK

1=F

ailu

reU

INT_

3212

0AD

Sea

Pkt

Ret

urn

Ran

ge F

ailu

re

GAD

SRAN

F0x

4000

0000

0=R

ange

OK

1=F

ailu

reU

INT_

3212

0AD

Sea

Pkt

Sci

ence

Pro

cess

ing

Rea

dy F

lag

G

ADSR

DYF

0x80

0000

000=

Rea

dy

1=Fa

ilure

UIN

T_32

120

Ran

ge W

indo

w S

tatu

s W

ord

414

Bits

0 th

roug

h 5

indi

cate

if th

ere

was

a fi

rst r

ising

(SCA

NN

ING

BA

CKW

ARD

S) a

bove

the

thre

shol

d fo

r eac

h of

the

vario

us fi

lters

. N

ote

that

if th

ere

is no

firs

t risi

ng, t

here

CA

NN

OT

be a

firs

t fal

ling

valu

e, so

the

appr

opria

te “

no se

cond

cro

ssin

g” b

it (b

its 6

thro

ugh

11) i

s also

set.

Bit

0 co

rresp

onds

to b

it 6,

bit

1 co

rresp

onds

to b

it 7

and

so o

n.Bi

t Fie

ld (U

INT_

32)

N/A

0319

h12

4C

alcu

late

d W

eigh

ts fo

r all

Filte

rs42

24G

ADSF

WG

TR

esul

ts o

f wei

ght f

orm

ulas

for a

ll FI

R fi

lters

.(IN

T_32

) x

603

1ah

to 0

31fh

148

Altim

eter

Dig

itize

r Raw

Pea

k43

1G

ADSR

WPH

Sea

pack

et ra

w w

avef

orm

pea

k he

ight

UIN

T_8

0 - 2

55N

/A14

9Al

timet

er D

igiti

zer S

elec

ted

Filte

r Coi

ncid

ence

s43

1G

ADSS

FNC

Sea

pack

et s

elec

ted

filte

r num

ber o

f coi

ncid

ence

sU

INT_

80

- 255

N/A

150

Altim

eter

Dig

itize

r Sta

tus

Byte

431

GAD

SGST

ATSe

a pa

cket

gai

n st

atus

byt

eU

INT_

80

- 255

N/A

150

Altim

eter

Dig

itize

r Byp

ass

Flag

431

GAD

SGLB

YP0x

0000

0001

0=O

K 1

=BYP

ASS

UIN

T_8

0 - 2

55N

/A15

0Al

timet

er D

igiti

zer B

ypas

s Ti

meo

ut F

lag

431

GAD

SGLT

MO

0x00

0000

020=

OK

1=T

IMEO

UT

UIN

T_8

0 - 2

55N

/A

151

Altim

eter

Dig

itize

r Gai

n Se

tting

431

GAD

SGAI

NR

esul

t of G

ain

Algo

rithm

that

was

writ

ten

to th

e ha

rdw

are

on

the

prev

ious

sho

tU

INT_

80

- 255

N/A

1036

Shot

#4

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

1376

Shot

#5

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

1716

Shot

#6

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

2056

Shot

#7

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

2396

Shot

#8

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

2736

Shot

#9

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

3076

Shot

#10

Dat

a in

Pac

ket

340

The

21 it

ems

here

hav

e th

e sa

me

defin

ition

as

the

first

21

item

s in

this

pac

ket

Page 136:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-46 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 3W

orks

heet

: AD

Eng

Pkt N

ame

Altim

eter

Dig

itize

r Eng

Pkt

- O

ne S

hot

Size

700

Oct

ets

App

Id14

Freq

uenc

y1

Hz

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

Tim

e w

hen

sent

from

AD

task

14Sp

are

12

GAD

ESSP

ARE

Spar

e D

ata

Byte

s to

Alig

n Pa

cket

UIN

T_16

16Sh

ot C

ount

er1

4G

ADES

HC

Cor

resp

onds

to th

e da

ta th

at fo

llow

sU

INT_

321-

200

20Tr

ansm

it Pu

lse

248

GAD

EXW

Peak

of T

rans

mit

Puls

e st

ored

with

in 4

8 sa

mpl

es.

Uni

ts=

coun

tsU

INT_

80-

255

0300

h to

03

0bh

68Tr

ansm

it Pu

lse

Peak

Loc

atio

n3

4G

ADEX

PT

Addr

ess

in n

anos

econ

ds re

solu

tion

of th

e Tr

ansm

it Pu

lse

Peak

as

mea

sure

d fro

m th

e st

art o

f Ac

quis

ition

Mem

ory,

i.e.

sta

rt of

dig

itiza

tion.

UIN

T_32

0 - 5

0000

003

0ch

72Tr

ansm

it Pu

lse

Inte

rnal

SW

Fai

lure

4G

ADEX

SWF

0x00

010=

No

Prob

lem

; 1=P

eak

Not

Fou

ndU

INT_

3272

Tran

smit

Puls

e Se

arch

Fai

lure

(bel

ow th

resh

old)

4G

ADEX

F0x

0002

0=N

o Pr

oble

m; 1

=Pea

k Be

low

Thr

esho

ldU

INT_

3272

Tran

smit

Puls

e Se

arch

Fai

lure

(Lat

ch)

4G

ADEX

FL0x

0004

0=N

o Pr

oble

m; 1

=Pea

k N

ever

Fou

ndU

INT_

3272

AD E

ng P

kt T

rans

mit

Puls

e St

atus

Wor

d4

4G

ADEX

FAIL

Indi

cate

s th

e st

atus

of t

he T

rans

mit

Puls

e.Bi

t Fie

ld (U

INT_

32)

N/A

030d

h

76St

artin

g Ad

dres

s of

Tra

nsm

it Pu

lse

Sam

ple

54

GAD

EXW

ST

Star

ting

Addr

ess

in n

anos

econ

d re

solu

tion

of th

e Tr

ansm

it Pu

lse

sam

ple

rela

tive

to th

e st

art o

f di

gitiz

atio

n.U

INT_

320

- 500

000

030e

h

80En

ding

Add

ress

of R

ange

Res

pons

e6

4G

ADER

WET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he 2

000-

byte

sur

face

ech

o da

ta d

ump

(as

mea

sure

d fro

m

the

star

t of A

cqui

sitio

n M

emor

y, i.

e. S

tart

of

digi

tizat

ion)

. La

st in

tim

e.U

INT_

320

- 510

0000

030f

h

84La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Sel

ecte

d Fi

lter

74

GAD

ESFT

ET

Addr

ess,

in n

anos

econ

d re

solu

tion,

of t

he d

etec

ted

last

thre

shol

d cr

ossi

ng (a

s m

easu

red

from

the

star

t of

Acq

uisi

tion

Mem

ory,

i.e.

Sta

rt of

dig

itiza

tion,

that

is

, las

t in

time)

. Al

so c

alle

d th

e tra

iling

edge

. Se

t to

0 if

thre

shol

d cr

ossi

ng w

as N

OT

dete

cted

.U

INT_

320

- 510

0000

0310

h

88N

ext t

o La

st T

hres

hold

Cro

ssin

g Lo

catio

n fo

r Se

lect

ed F

ilter

84

GAD

ESFL

ET

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

next

to la

st th

resh

old

cros

sing

(as

mea

sure

d fro

m

the

star

t of A

cqui

sitio

n M

emor

y, i.

e. S

tart

of

digi

tizat

ion.

Nex

t to

last

in ti

me)

. Al

so c

alle

d th

e le

adin

g ed

ge.

Set t

o 0

if a

thre

shol

d cr

ossi

ng w

as

NO

T de

tect

ed.

UIN

T_32

0 - 5

1000

0003

11h

924n

s Fi

lter P

eak

Hei

ght

122

GAD

EF4P

HPe

ak v

alue

retu

rned

by

the

FIR

filte

r eng

ine

for t

he

4ns

Filte

r.U

INT_

160

- 255

0312

h

948n

s Fi

lter P

eak

Hei

ght

132

GAD

EF8P

HPe

ak v

alue

retu

rned

by

the

FIR

filte

r eng

ine

for t

he

4ns

Filte

r.U

INT_

160

- 255

0312

h

96Pe

ak V

alue

for t

he s

elec

ted

filte

r14

4G

ADES

FPH

Peak

val

ue fo

r the

sel

ecte

d fil

ter r

etur

ned

by th

e FI

R fi

lter e

ngin

e. S

et to

0 if

a th

resh

old

cros

sing

w

as n

ot d

etec

ted.

UIN

T_32

0 - 2

5503

13h

100

Peak

Val

ue L

ocat

ion

for t

he s

elec

ted

filte

r15

4G

ADES

FPT

Addr

ess

(in n

anos

econ

d re

solu

tion)

of t

he d

etec

ted

peak

val

ue (a

s m

easu

red

from

the

star

t of

Acqu

isiti

on M

emor

y, i.

e. S

tart

of d

igiti

zatio

n).

Set

to 0

if a

thre

shol

d cr

ossi

ng w

as N

OT

dete

cted

.U

INT_

320

- 510

0000

0314

h

104

Filte

r Sel

ecte

d 16

4G

ADES

FNU

M

Filte

r with

the

high

est w

eigh

t (0

for 4

nse

c fil

ter;

1 fo

r 8 n

sec

filte

r; 2

for 1

6 ns

ec fi

lter;

3 fo

r 32

nsec

fil

ter;

4 fo

r 64

nsec

filte

r; 5

for 1

28 n

sec

filte

r). M

ay

or m

ay n

ot b

e se

lect

able

! If

no s

elec

tabl

e fil

ter c

an

be c

hose

n, th

en th

e la

st s

ucce

ssfu

l filt

er,

sele

ctab

le o

r NO

T is

cho

sen.

UIN

T_32

0 - 5

0315

h10

8Th

resh

old

Valu

e17

4G

ADES

FTH

Rg

thrs

hold

cro

ssin

gs fo

r the

sel

ecte

d fil

ter.

UIN

T_32

0 - 2

5503

16h

112

Mea

n Va

lue

of th

e Ba

ckgr

ound

Noi

se M

ean

for 4

ns

filte

r18

4G

ADEN

MU

4C

alcu

late

d M

ean

valu

e fo

r the

4ns

filte

r.FL

OAT

(IEE

E754

) 0

.0 -

10,0

00.0

0317

h

116

Stan

dard

Dev

iatio

n of

the

Back

grou

nd N

oise

for t

he 4

ns

filte

r19

4G

ADEN

SIG

4C

alcu

late

d St

anda

rd D

evia

tion

for t

he 4

ns fi

lter.

FLO

AT (I

EEE7

54)

0.0

- 10

,000

.003

18h

Page 137:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-47 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 3W

orks

heet

: AD

Eng

Pkt N

ame

Altim

eter

Dig

itize

r Eng

Pkt

- O

ne S

hot

Size

700

Oct

ets

App

Id14

Freq

uenc

y1

Hz

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

120

AD E

ng P

kt R

etur

n Pe

ak F

ailu

re W

ord

G

ADER

FAIL

Eng

pack

et re

turn

pea

k fa

ilure

wor

d. In

divu

dual

bit

mas

ks a

re d

efin

ed b

elow

.U

INT_

32

120

Thre

shol

d C

ross

ing

Failu

re M

ask

G

ADET

CF

0x00

0000

3FTh

resh

old

cros

sing

failu

re m

ask.

Ind

ivud

ual b

it m

asks

are

def

ined

bel

ow.

UIN

T_32

120

No

first

cro

ssin

g(ris

ing

edge

) on

4-ns

ec fi

lter f

lag

200x

0000

0001

0=N

o Pr

oble

m; 1

=No

first

cros

sing

foun

d on

4-n

sec

filte

r

120

No

first

cro

ssin

g(ris

ing

edge

) on

8-ns

ec fi

lter f

lag

210x

0000

0002

0=N

o Pr

oble

m; 1

=No

first

cros

sing

foun

d on

8-n

sec

filte

r

120

No

first

cro

ssin

g(ris

ing

edge

) on

16-n

sec

filte

r fla

g22

0x00

0000

040=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

6-ns

ec

filte

r

120

No

first

cro

ssin

g(ris

ing

edge

) on

32-n

sec

filte

r fla

g23

0x00

0000

080=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 3

2-ns

ec

filte

r

120

No

first

cro

ssin

g(ris

ing

edge

) on

64-n

sec

filte

r fla

g24

0x00

0000

100=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 6

4-ns

ec

filte

r

120

No

first

cro

ssin

g(ris

ing

edge

) on

128-

nsec

filte

r fla

g25

0x00

0000

200=

No

Prob

lem

; 1=N

o fir

st cr

ossin

g fo

und

on 1

28-n

sec

filte

r

120

Lead

ing

Edge

Fai

lure

Mas

k

GAD

ELEF

0x00

000F

C0

Lead

ing

edge

failu

re.

Indi

vudu

al b

it m

asks

are

de

fined

bel

ow.

UIN

T_32

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 4-

nsec

filte

r fla

g26

0x00

0000

400=

No

Prob

lem

; 1=N

o se

cond

cro

ssin

g fo

und

on 4

-nse

c fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 8-

nsec

filte

r fla

g27

0x00

0000

800=

No

Prob

lem

; 1=N

o se

cond

cro

ssin

g fo

und

on 8

-nse

c fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 16

-nse

c fil

ter f

lag

280x

0000

0100

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

16-

nsec

fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 32

-nse

c fil

ter f

lag

290x

0000

0200

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

32-

nsec

fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 64

-nse

c fil

ter f

lag

300x

0000

0400

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

64-

nsec

fil

ter

120

No

seco

nd c

ross

ing(

fallin

g ed

ge) o

n 12

8-ns

ec fi

lter

flag

310x

0000

0800

0=N

o Pr

oble

m; 1

=No

seco

nd c

ross

ing

foun

d on

128

-ns

ec fi

lter

120

Trai

ling

Edge

Fai

lure

Mas

k

GAD

ETEF

0x00

03F0

00Tr

ailin

g ed

ge fa

ilure

. In

divu

dual

bit

mas

ks a

re

defin

ed b

elow

.U

INT_

32

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 4 n

s fil

ter

flag

320x

0000

1000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or

e qua

l to

thre

shol

d fo

r 4 n

sec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 8 n

s fil

ter

flag

330x

0000

2000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or

equa

l to

thre

shol

d fo

r 8 n

sec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 16

ns fi

lter

flag

340x

0000

4000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or

equa

l to

thre

shol

d fo

r 16

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 32

ns fi

lter

flag

350x

0000

8000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or

e qua

l to

thre

shol

d fo

r 32

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 64

ns fi

lter

flag

360x

0001

0000

0=N

o Pr

oble

m; 1

=Firs

t sam

ple

in ra

nge

grea

ter t

han

or

equa

l to

thre

shol

d fo

r 64

nsec

filte

r

120

Firs

t Sam

ple

in ra

nge

>= to

thre

shol

d fo

r 128

ns

filte

r fla

g37

0x00

0200

000=

No

Prob

lem

; 1=F

irst s

ampl

e in

rang

e gr

eate

r tha

n or

e q

ual t

o th

resh

old

for 1

28 n

sec

filte

r12

0En

g Pa

cket

Sel

ectio

n Fa

ilure

G

ADES

ELF

0x00

0400

00En

g pa

cket

sel

ectio

n fa

ilure

. 0=

Sele

ct

1=Fa

ilU

INT_

3212

0En

g Pa

cket

Pre

viou

s Se

lect

ion

Failu

re

GAD

EPSE

LF0x

0008

0000

Prev

ious

sel

ectio

n fa

ilure

. 0=

Sele

ct

1=Fa

ilU

INT_

32

120

Eng

Pack

et F

ilter

Fai

lure

Mas

k

GAD

EFF

0x03

F000

00En

g pa

cket

filte

r fai

lure

mas

k. I

ndiv

idua

l filt

er b

it m

asks

are

def

ined

bel

ow.

UIN

T_32

120

4 N

S Fi

lter F

ailu

re

GAD

EF4F

0x00

1000

000=

OK

1=F

ailu

reU

INT_

3212

08

NS

Filte

r Fai

lure

G

ADEF

8F0x

0020

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

16 N

S Fi

lter F

ailu

re

GAD

EF16

F0x

0040

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

32 N

S Fi

lter F

ailu

re

GAD

EF32

F0x

0080

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

64 N

S Fi

lter F

ailu

re

GAD

EF64

F0x

0100

0000

0=O

K 1

=Fai

lure

UIN

T_32

120

128

NS

Filte

r Fai

lure

G

ADEF

128F

0x02

0000

000=

OK

1=F

ailu

reU

INT_

32

Page 138:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-48 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

3 o

f 3W

orks

heet

: AD

Eng

Pkt N

ame

Altim

eter

Dig

itize

r Eng

Pkt

- O

ne S

hot

Size

700

Oct

ets

App

Id14

Freq

uenc

y1

Hz

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

aDS

P Ad

dres

sO

ctet

sM

ask

120

AD E

ng P

kt R

etur

n R

ange

Fai

lure

G

ADER

ANF

0x40

0000

000=

Ran

ge O

K 1

=Fai

lure

UIN

T_32

120

AD E

ng P

kt S

cien

ce P

roce

ssin

g R

eady

Fla

g

GAD

ERD

YF0x

8000

0000

0=R

eady

1=

Failu

reU

INT_

32

120

Ran

ge W

indo

w S

tatu

s W

ord

414

Bits

0 th

roug

h 5

indi

cate

if th

ere

was

a fi

rst r

ising

(S

CAN

NIN

G B

ACK

WA

RDS)

abo

ve th

e th

resh

old

for

each

of t

he v

ario

us fi

lters

. N

ote

that

if th

ere

is no

firs

t ris

ing,

ther

e CA

NN

OT

be a

firs

t fal

ling

valu

e, so

the

appr

opria

te “

no se

cond

cro

ssin

g” b

it (b

its 6

thro

ugh

11)

is al

so se

t. B

it 0

corre

spon

ds to

bit

6, b

it 1

corre

spon

ds

to b

it 7

and

so o

n.Bi

t Fie

ld (U

INT_

32)

N/A

0319

h

124

Cal

cula

ted

Wei

ghts

for a

ll Fi

lters

4224

GAD

EFW

GT

Res

ults

of w

eigh

t for

mul

as fo

r all

FIR

filte

rs.

INT_

3203

1ah

to

031f

h14

8Al

timet

er D

igiti

zer R

aw P

eak

431

GAD

ERW

PHEn

gine

erin

g pa

cket

raw

wav

efor

m p

eak

heig

htU

INT_

80

- 255

N/A

149

Altim

eter

Dig

itize

r Sel

ecte

d Fi

lter C

oinc

iden

ces

431

GAD

ESFN

CEn

gine

erin

g pa

cket

sel

ecte

d fil

ter n

umbe

r of

coin

cide

nces

UIN

T_8

0 - 2

55N

/A15

0Al

timet

er D

igiti

zer S

tatu

s By

te43

1G

ADEG

STAT

Engi

neer

ing

pack

et g

ain

stat

us b

yte

UIN

T_8

0 - 2

55N

/A15

0Al

timet

er D

igiti

zer B

ypas

s Fl

ag43

1G

ADEG

LBYP

0x00

0000

010=

OK

1=B

YPAS

SU

INT_

80

- 255

N/A

Page 139:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-49 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: PC

Sci

Pkt N

ame

Phot

on C

ount

er S

ci P

ktSi

ze81

12O

ctet

sAp

p Id

15Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

8Ti

me

whe

n se

nt fr

om P

C ta

sk14

Shot

Cou

nter

1G

PCSS

HO

TCC

orre

spon

ds to

the

first

dat

a sa

mpl

eU

INT_

81-

200

15D

ither

ing

Enab

led

1G

PCD

ITH

ER0=

DIS

ABLE

D, 1

=EN

ABLE

DU

INT_

80-

1

16(-1

km

to 1

0 km

Dat

a, p

lus

Back

grou

nd)

1

148

8-bi

t Dig

itize

r Sam

ples

from

the

enab

led

SPC

Ms

plus

2 1

6-bi

t Bac

kgro

und

Mea

sure

men

ts

plus

4 s

pare

byt

es.

168-

bit D

igiti

zer S

ampl

es fo

r Sho

t 1.

1

GPC

SCIB

INS

U

INT_

8 [1

48]

0-25

5

16El

evat

ion

Bin

(Hig

hest

-3)

11

1st 3

2-bi

t ha

rdw

ard

read

17El

evat

ion

Bin

(Hig

hest

-2)

11

18El

evat

ion

Bin

(Hig

hest

-1)

11

19El

evat

ion

Bin

(Hig

hest

)1

1

20El

evat

ion

Bin

(Hig

hest

-7)

11

2nd

32-b

it ha

rdw

ard

read

21El

evat

ion

Bin

(Hig

hest

-6)

11

22El

evat

ion

Bin

(Hig

hest

-5)

11

23El

evat

ion

Bin

(Hig

hest

-4)

11

24. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1

136

160

Elev

atio

n Bi

n (H

ighe

st -1

47)

11

37th

(las

t)

32

-bi

t h/w

read

161

Elev

atio

n Bi

n (H

ighe

st -1

46)

11

162

Elev

atio

n Bi

n (H

ighe

st -1

45)

11

163

Elev

atio

n Bi

n (H

ighe

st -1

44)

11

164

Back

grou

nd M

easu

rem

ent 1

12

GPC

SCIB

KGN

D1

R

ead

from

HW

add

ress

0xB

1800

010.

U

INT_

160-

6553

516

6Ba

ckgr

ound

Mea

sure

men

t 21

2G

PCSC

IBKG

ND

2

Rea

d fro

m H

W a

ddre

ss 0

xB18

0001

0.

UIN

T_16

0-65

535

168

spar

e by

tes

14

GPC

SCIE

RR

SP

UIN

T_32

NA

172

The

prev

ious

156

byt

es a

re re

peat

ed 3

9 m

ore

times

to

corre

spon

d to

Sho

ts 2

-40

for t

he -1

km to

10k

m d

ata.

2..4

060

84

0-25

5

Sam

ples

are

read

as

32-b

it w

ords

sta

rting

from

HW

ad

dres

s 0x

B102

0990

. The

byt

e or

der o

f the

32-

bit

wor

d is

: |h-

3|h-

2|h-

1|h|

, whe

re h

repr

esen

ts th

e hi

ghes

t ele

vatio

n sa

mpl

e.

UIN

T_32

[37]

Page 140:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-50 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: PC

Sci

Pkt N

ame

Phot

on C

ount

er S

ci P

ktSi

ze81

12O

ctet

sAp

p Id

15Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k

6256

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 1

-81

G

PCSC

I8SE

C13

2 (1

6-bi

t) su

ms

of 1

st e

ight

sam

ples

in th

e fra

me

(1 s

ec) f

or th

e en

able

d SP

CM

s.U

INT_

16 [1

32]

0-65

535

6256

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 1)

12

1s

t 32

-bit

h/w

re

ad

6258

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin)

12

6260

16-b

it su

m fo

r (H

ighe

st E

leva

tion

bin

- 3)

12

2nd

32-b

it h/

w

read

6262

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 2)

12

6264

!!!!!!!!!!!!!!!

.1

252

6516

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 131

)1

2

66th

(las

t) 3

2-bi

t h/

w re

ad65

1816

-bit

sum

for

(Hig

hest

Ele

vatio

n bi

n - 1

30)

12

6520

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 9

-16

226

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

6784

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 1

7-24

326

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

7048

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 2

5-32

426

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

7312

10 k

m to

20

km d

ata.

Sum

for s

hots

33-

405

264

Sam

e fo

rmat

as

sum

s fo

r sho

ts 1

thro

ugh

8U

INT_

32[6

6]

7576

20 k

m to

40

km d

ata.

1

0G

PCSC

I40_

2026

8 (1

6-bi

t) su

ms

of fo

rty s

ampl

es in

the

fram

e (1

se

c ) fo

r the

ena

bled

SPC

Ms.

U

INT_

16 [2

68]

0-65

535

7576

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 1)

12

1s

t 32

-bit

h/w

re

ad

7578

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin)

12

7580

16-b

it su

m fo

r (H

ighe

st E

leva

tion

bin

- 3)

12

2nd

32-b

it h/

w

read

7582

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 2)

12

7584

!!!!!!!!!!!!!!!

.1

524

8108

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 267

)1

2

134t

h (la

st)

32-

bit h

/w re

ad81

1016

-bit

sum

for

(Hig

hest

Ele

vatio

n bi

n - 2

66)

12

The

16-b

it su

ms

are

read

as

32-b

it w

ords

sta

rting

fro

m H

W a

ddre

ss 0

xB10

2067

0. T

he b

yte

orde

r is:

|h

-2|h

-3|h

|h-1

|, w

here

h is

the

high

ord

er b

yte.

U

INT_

32[1

34]

0-65

535

0-65

535

The

16-b

it su

ms

are

read

as

32-b

it w

ords

sta

rting

fro

m H

W a

ddre

ss 0

xB10

2088

8. T

he b

yte

orde

r of

the

32-b

it w

ord

is: |

h-2|

h-3|

h|h-

1|, w

here

h

repr

esen

ts th

e hi

ghes

t ele

vatio

n sa

mpl

e.

UIN

T_32

[66]

Page 141:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-51 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1of

2W

orks

heet

: PC

Eng

Pkt N

ame

Phot

on C

ount

er E

ngin

eerin

g Pk

tSi

ze82

36O

ctet

sAp

p Id

16Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

814

Shot

Cou

nter

1G

PCES

HO

TCC

orre

spon

ds to

the

first

dat

a sa

mpl

eU

INT_

81-

200

15D

ither

ing

Enab

led

1G

PCED

ITH

ER0=

DIS

ABLE

D, 1

=EN

ABLE

DU

INT_

80-

1

1640

km

to 2

0 km

dat

a1

268

GPC

E20_

40

268

8 bi

t val

ues,

1st

sho

t in

fram

e. R

ead

from

H

W a

ddre

ss 0

xB10

2080

0. D

ata

is re

ad a

s 32

-bi

t wor

ds a

nd th

e or

der o

f sam

ples

is h

igh

altit

ude

to lo

w a

ltitu

de.

UIN

T_8

[268

]0-

255

284

20 k

m to

10

km d

ata

113

2G

PCE1

0_20

132

8 bi

t val

ues,

1st

sho

t in

fram

e. R

ead

from

H

W a

ddre

ss 0

xB10

2090

C. D

ata

is re

ad a

s 32

-bi

t wor

ds a

nd th

e or

der o

f sam

ples

is h

igh

altit

ude

to lo

w a

ltitu

de.

UIN

T_8

[132

]0-

255

416

10 k

m to

-1km

dat

a1

148

GPC

E1_1

0

148

8 bi

t val

ues,

1st

sho

t in

fram

e. R

ead

from

H

W a

ddre

ss 0

xB10

2099

0. D

ata

is re

ad a

s 32

-bi

t wor

ds a

nd th

e or

der o

f sam

ples

is h

igh

altit

ude

to lo

w a

ltitu

de.

UIN

T_8[

148]

0-25

5

Not

e: T

he d

ata

is w

ritte

n as

32-

bit w

ords

with

the

byte

ord

er a

s fo

llow

s; |h

-3|h

-2|h

-1|h

| whe

re h

is th

e hi

ghes

t ele

vatio

n sa

mpl

e.56

440

km

to 2

0 km

dat

a2

268

3rd

shot

in fr

ame

832

20 k

m to

10

km d

ata

213

23r

d sh

ot in

fram

e96

410

km

to -1

km d

ata

214

83r

d sh

ot in

fram

e11

1240

km

to 2

0 km

dat

a3

268

5th

shot

in fr

ame

1380

20 k

m to

10

km d

ata

313

25t

h sh

ot in

fram

e15

1210

km

to -1

km d

ata

314

85t

h sh

ot in

fram

e16

6040

km

to 2

0 km

dat

a4

268

7th

shot

in fr

ame

1928

20 k

m to

10

km d

ata

413

2N

ote:

All

this

dat

a is

from

the

enab

led

SPC

M20

6010

km

to -1

km d

ata

414

822

0840

km

to 2

0 km

dat

a5

268

9th

shot

in fr

ame

2476

20 k

m to

10

km d

ata

513

226

0810

km

to -1

km d

ata

514

827

5640

km

to 2

0 km

dat

a6

268

11th

sho

t in

fram

e30

2420

km

to 1

0 km

dat

a6

132

3156

10 k

m to

-1km

dat

a6

148

3304

40 k

m to

20

km d

ata

726

813

th s

hot i

n fra

me

3572

20 k

m to

10

km d

ata

713

237

0410

km

to -1

km d

ata

714

838

5240

km

to 2

0 km

dat

a8

268

15th

sho

t in

fram

e41

2020

km

to 1

0 km

dat

a8

132

4252

10 k

m to

-1km

dat

a8

148

4400

40 k

m to

20

km d

ata

926

817

th s

hot i

n fra

me

4668

20 k

m to

10

km d

ata

913

248

0010

km

to -1

km d

ata

914

849

4840

km

to 2

0 km

dat

a10

268

19th

sho

t in

fram

e52

1620

km

to 1

0 km

dat

a10

132

The

prev

ious

3 fi

elds

are

repe

ated

for e

very

odd

num

bere

d sh

ot in

the

fram

e st

artin

g fro

m th

e sh

ot c

ount

spe

cifie

d at

offs

et 1

4, w

ith 2

9 be

ing

the

max

imum

sho

t cou

nt. F

or e

xam

ple,

if th

e sh

ot s

peci

fied

at o

ffset

14

is 5

, the

n sh

ots

5,7,

9,.!

,29,

3,1

(15

tota

l) w

ould

be

sam

pled

.

Page 142:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-52 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: PC

Eng

Pkt N

ame

Phot

on C

ount

er E

ngin

eerin

g Pk

tSi

ze82

36O

ctet

sAp

p Id

16Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k53

4810

km

to -1

km d

ata

1014

854

9640

km

to 2

0 km

dat

a11

268

21st

sho

t in

fram

e57

6420

km

to 1

0 km

dat

a11

132

5896

10 k

m to

-1km

dat

a11

148

6044

40 k

m to

20

km d

ata

1226

823

rd s

hot i

n fra

me

6312

20 k

m to

10

km d

ata

1213

264

4410

km

to -1

km d

ata

1214

865

9240

km

to 2

0 km

dat

a13

268

25th

sho

t in

fram

e68

6020

km

to 1

0 km

dat

a13

132

6992

10 k

m to

-1km

dat

a13

148

7140

40 k

m to

20

km d

ata

1426

827

th s

hot i

n fra

me

7408

20 k

m to

10

km d

ata

1413

275

4010

km

to -1

km d

ata

1414

876

8840

km

to 2

0 km

dat

a15

268

29th

sho

t in

fram

e79

5620

km

to 1

0 km

dat

a15

132

29th

sho

t in

fram

e80

8810

km

to -1

km d

ata

1514

829

th s

hot i

n fra

me

Page 143:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-53 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: CD

Sci

Pkt N

ame

Clou

d Di

gitiz

er S

cien

ce P

ktSi

ze75

76O

ctet

sAp

p Id

17Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

8Ti

me

whe

n se

nt fr

om C

D ta

sk14

Shot

Cou

nter

2

Cor

resp

onds

to fi

rst d

ata

sam

ple

UIN

T_16

1-20

0

1614

8 8-

bit D

igiti

zer S

ampl

es fr

om th

e en

able

d SP

CM

s pl

us b

ack g

roun

d fo

r -1

km to

10

km d

ata.

The

148

8-bi

t Dig

itize

r Sam

ples

are

read

as

32-

bit w

ords

from

the

enab

led

SPC

Ms

star

ting

from

H

W a

ddre

ss 0

xB20

2099

0. T

he o

rder

of s

ampl

es

is fr

om h

igh

altit

ude

to lo

w a

ltitu

de.T

he b

yte

orde

r is:

|h-3

|h-2

|h-1

|h|,

whe

re h

is th

e hi

ghes

t el

evat

ion

sam

ple.

UIN

T_8

[148

]0-

255

168-

bit D

igiti

zer S

ampl

es fo

r Sho

t 1.

1

UIN

T_8

[148

]0-

255

16El

evat

ion

Bin

(Hig

hest

-3)

11

1st 3

2-bi

t har

dwar

d re

ad17

Elev

atio

n Bi

n (H

ighe

st -2

)1

118

Elev

atio

n Bi

n (H

ighe

st -1

)1

119

Elev

atio

n Bi

n (H

ighe

st)

11

20El

evat

ion

Bin

(Hig

hest

-7)

11

2nd

32-b

it ha

rdw

ard

read

21El

evat

ion

Bin

(Hig

hest

-6)

11

22El

evat

ion

Bin

(Hig

hest

-5)

11

23El

evat

ion

Bin

(Hig

hest

-4)

11

24. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1

136

160

Elev

atio

n Bi

n (H

ighe

st -1

47)

11

37th

(las

t)

32

-bi

t h/w

read

161

Elev

atio

n Bi

n (H

ighe

st -1

46)

11

162

Elev

atio

n Bi

n (H

ighe

st -1

45)

11

163

Elev

atio

n Bi

n (H

ighe

st -1

44)

11

164

Back

grou

nd M

easu

rem

ent 1

12

Rea

d fro

m H

W a

ddre

ss 0

xB28

0001

0.

UIN

T_16

0-65

535

166

Back

grou

nd M

easu

rem

ent 2

12

Rea

d fro

m H

W a

ddre

ss 0

xB28

0001

0.

UIN

T_16

0-65

535

168

spar

e by

tes

14

Sp

are

UIN

T_32

NA

172

The

prev

ious

156

byt

es a

re re

peat

ed 3

9 m

ore

times

to

corre

spon

d to

Sho

ts 2

-40

for t

he -1

km to

10k

m d

ata.

2..4

060

84 Sa

mpl

es a

re re

ad a

s 32

-bit

wor

ds s

tarti

ng fr

om

HW

add

ress

0xB

2020

990.

The

byt

e or

der o

f the

32

-bit

wor

d is

: |h-

3|h-

2|h-

1|h|

, whe

re h

repr

esen

ts

the

high

est e

leva

tion

sam

ple.

UIN

T_32

[37]

0-25

5

Page 144:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-54 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: CD

Sci

Pkt N

ame

Clou

d Di

gitiz

er S

cien

ce P

ktSi

ze75

76O

ctet

sAp

p Id

17Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k

6256

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 1

-81

132

(16-

bit)

sum

s of

1st

eig

ht s

ampl

es in

the

fram

e (1

sec

) for

the

enab

led

SPC

Ms.

UIN

T_16

[132

]0-

6553

5

6256

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 1)

12

1s

t 32

-bit

h/w

read

6258

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin)

12

6260

16-b

it su

m fo

r (H

ighe

st E

leva

tion

bin

- 3)

12

2nd

32-b

it h/

w re

ad62

6216

-bit

sum

for

(Hig

hest

Ele

vatio

n bi

n - 2

)1

2

62

64!!!!!!!!!!!!!!!

.1

252

6516

16-b

it su

m f

or (H

ighe

st E

leva

tion

bin

- 131

)1

2

66th

(las

t) 3

2-bi

t h/

w re

ad65

1816

-bit

sum

for

(Hig

hest

Ele

vatio

n bi

n - 1

30)

12

6520

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 9

-16

226

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

6784

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 1

7-24

326

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

7048

10 k

m to

20

km d

ata.

Sum

s fo

r sho

ts 2

5-32

426

4Sa

me

form

at a

s su

ms

for s

hots

1 th

roug

h 8

UIN

T_32

[66]

7312

10 k

m to

20

km d

ata.

Sum

for s

hots

33-

405

264

Sam

e fo

rmat

as

sum

s fo

r sho

ts 1

thro

ugh

8U

INT_

32[6

6]

The

16-b

it su

ms

are

read

as

32-b

it w

ords

sta

rting

fro

m H

W a

ddre

ss 0

xB20

2088

8. T

he b

yte

orde

r of

the

32-b

it w

ord

is: |

h-2|

h-3|

h|h-

1|, w

here

h

repr

esen

ts th

e hi

ghes

t ele

vatio

n sa

mpl

e.

UIN

T_32

[66]

0-65

535

Page 145:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-55 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 2W

orks

heet

: CD

Eng

Pkt N

ame

Clou

d Di

gitiz

er E

ngin

eerin

g Pk

tSi

ze56

16O

ctet

sAp

p Id

18Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

814

Shot

Cou

nter

2

Cor

resp

onds

to th

e fir

st d

ata

sam

ple

UIN

T_16

1-20

0

1620

km

to 1

0 km

dat

a1

132

132

8 bi

t val

ues,

1st

sho

t in

fram

e. R

ead

from

H

W a

ddre

ss 0

xB20

2090

C. O

rder

of s

ampl

es is

hi

gh a

ltitu

de to

low

alti

tude

.U

INT_

8 [1

32]

0-25

5

148

10 k

m to

-1 k

m d

ata

114

8

148

8 bi

t val

ues,

1st

sho

t in

fram

e. R

ead

from

H

W a

ddre

ss 0

xB20

2099

0. O

rder

of s

ampl

es is

hi

gh a

ltitu

de to

low

alti

tude

.U

INT_

8 [1

48]

0-25

5Th

e pr

evio

us 2

fiel

ds a

re re

peat

ed fo

r eve

ry o

dd n

umbe

red

shot

in th

e fra

me

star

ting

from

the

shot

cou

nter

spe

cifie

d at

offs

et 1

4.Fo

r exa

mpl

e, if

sho

t spe

cifie

d at

offs

et 1

4 is

5, t

hen

shot

s 5,

7,9,

etc.

(up

to 2

0 sh

ots)

wou

ld b

e sa

mpl

ed.

Not

e: T

he d

ata

is w

ritte

n as

32-

bit w

ords

with

the

byte

ord

er a

s fo

llow

s; |h

-3|h

-2|h

-1|h

| whe

re h

is th

e hi

gh e

leva

tion

sam

ple.

296

20 k

m to

10

km d

ata

213

23r

d sh

ot in

fram

e42

810

km

to -1

km

dat

a2

148

3rd

shot

in fr

ame

576

20 k

m to

10

km d

ata

313

25t

h sh

ot in

fram

e70

810

km

to -1

km

dat

a3

148

5th

shot

in fr

ame

856

20 k

m to

10

km d

ata

413

27t

h sh

ot in

fram

e98

810

km

to -1

km

dat

a4

148

7th

shot

in fr

ame

1136

20 k

m to

10

km d

ata

513

29t

h sh

ot in

fram

e12

6810

km

to -1

km

dat

a5

148

9th

shot

in fr

ame

1416

20 k

m to

10

km d

ata

613

211

th s

hot i

n fra

me

1548

10 k

m to

-1 k

m d

ata

614

811

th s

hot i

n fra

me

1696

20 k

m to

10

km d

ata

713

213

th s

hot i

n fra

me

1828

10 k

m to

-1 k

m d

ata

714

813

th s

hot i

n fra

me

1976

20 k

m to

10

km d

ata

813

215

th s

hot i

n fra

me

2108

10 k

m to

-1 k

m d

ata

814

815

th s

hot i

n fra

me

2256

20 k

m to

10

km d

ata

913

217

th s

hot i

n fra

me

2388

10 k

m to

-1 k

m d

ata

914

817

th s

hot i

n fra

me

2536

20 k

m to

10

km d

ata

1013

219

th s

hot i

n fra

me

2668

10 k

m to

-1 k

m d

ata

1014

819

th s

hot i

n fra

me

2816

20 k

m to

10

km d

ata

1113

221

st s

hot i

n fra

me

2948

10 k

m to

-1 k

m d

ata

1114

821

st s

hot i

n fra

me

3096

20 k

m to

10

km d

ata

1213

223

rd s

hot i

n fra

me

3228

10 k

m to

-1 k

m d

ata

1214

823

rd s

hot i

n fra

me

3376

20 k

m to

10

km d

ata

1313

225

th s

hot i

n fra

me

3508

10 k

m to

-1 k

m d

ata

1314

825

th s

hot i

n fra

me

3656

20 k

m to

10

km d

ata

1413

227

th s

hot i

n fra

me

3788

10 k

m to

-1 k

m d

ata

1414

827

th s

hot i

n fra

me

3936

20 k

m to

10

km d

ata

1513

229

th s

hot i

n fra

me

4068

10 k

m to

-1 k

m d

ata

1514

829

th s

hot i

n fra

me

4216

20 k

m to

10

km d

ata

1613

231

st s

hot i

n fra

me

4348

10 k

m to

-1 k

m d

ata

1614

831

st s

hot i

n fra

me

4496

20 k

m to

10

km d

ata

1713

233

rd s

hot i

n fra

me

4628

10 k

m to

-1 k

m d

ata

1714

833

rd s

hot i

n fra

me

4776

20 k

m to

10

km d

ata

1813

235

th s

hot i

n fra

me

4908

10 k

m to

-1 k

m d

ata

1814

835

th s

hot i

n fra

me

5056

20 k

m to

10

km d

ata

1913

237

th s

hot i

n fra

me

5188

10 k

m to

-1 k

m d

ata

1914

837

th s

hot i

n fra

me

Page 146:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-56 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 2W

orks

heet

: CD

Eng

Pkt N

ame

Clou

d Di

gitiz

er E

ngin

eerin

g Pk

tSi

ze56

16O

ctet

sAp

p Id

18Fr

eque

ncy

1Hz

Inte

rval

1.00

0se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k53

3620

km

to 1

0 km

dat

a20

132

39th

sho

t in

fram

e54

6810

km

to -1

km

dat

a20

148

39th

sho

t in

fram

e

Page 147:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-57 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 5W

orks

heet

: Anc

illary

Sci

Pkt N

ame

Anci

llary

Sci

ence

Pkt

Size

1368

Oct

ets

App

Id19

Freq

uenc

y1

HzIn

terv

al1

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nTy

peDa

ta R

ange

/For

mul

a

Shar

ed

Mem

ory

Addr

ess

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

8Ti

me

whe

n se

nt fr

om ta

sk14

Shot

cou

nter

1G

ANSH

OTC

Firs

t sho

t of f

ram

eU

INT_

815

AD C

heck

in F

lag,

Mas

k=0x

01G

ANAD

PRES

F0x

011=

AD tl

m in

anc

illary

pkt

, 0=t

lm N

OT

in a

ncilla

ry p

kt15

PC C

heck

in F

lag,

Mas

k 0x

02G

ANPC

PRES

F0x

021=

PC tl

m in

anc

illary

pkt

, 0=t

lm N

OT

in a

ncilla

ry p

kt15

CD

Che

ckin

Fla

g, M

ask

0x04

G

ANC

DPR

ESF

0x04

1=C

D tl

m in

anc

illary

pkt

, 0=t

lm N

OT

in a

ncilla

ry p

kt15

GP

Che

ckin

Fla

g, M

ask

0x08

GAN

GPP

RES

F0x

081=

GP

tlm in

anc

illary

pkt

, 0=t

lm N

OT

in a

ncilla

ry p

kt15

CT

Che

ckin

Fla

g, M

ask

0x10

GAN

CTP

RES

F0x

101=

CT

tlm in

anc

illary

pkt

, 0=t

lm N

OT

in a

ncilla

ry p

kt15

Task

Dat

a Pr

esen

t in

Anci

llary

Fla

gs1

GAN

PKTP

RES

0x1F

Flag

s de

scrib

ed a

bove

UIN

T_8

16Al

timet

er D

i giti

zer T

ask

Sect

ion

16Sh

ot C

ount

er

12

GAN

ADSH

CAs

reco

rded

for t

he d

ata

that

follo

ws

UIN

T_16

1- 2

00N

/A

18Al

timet

er D

ig. R

ange

Win

dow

Rm

in2

4G

ANAD

RM

INAd

dres

s in

nan

osec

ond

resl

utio

n m

easu

red

from

the

loca

tion

of th

e Tr

asnm

it Pu

lse

Peak

UIN

T_32

0 - 5

1000

0000

15h

22Al

timet

er D

ig.

Ran

ge W

indo

w R

max

34

GAN

ADR

MAX

Addr

ess

in n

anos

econ

d re

slut

ion

mea

sure

d fro

m th

e lo

catio

n of

the

Tras

nmit

Puls

e Pe

akU

INT_

320

- 510

0000

0016

h

26Ba

ckgr

ound

Noi

se S

earc

h O

ffset

Sta

rtpoi

nt4

4G

ANAD

NTO

Addr

ess

in n

anos

econ

ds re

solu

tion

of th

e st

art o

f the

1-k

m

Back

grou

nd N

oise

sea

rch

area

mea

sure

d fro

m th

e en

d of

se

arch

win

dow.

INT_

320

- 500

0000

0002

h30

4 ns

Filt

er E

nabl

e M

ask

6

GAN

ADF4

EN0x

0001

0=D

isab

le, 1

=Ena

ble

308

ns F

ilter

Ena

ble

7G

ANAD

F8EN

0x00

020=

Dis

able

, 1=E

nabl

e30

16 n

s Fi

lter E

nabl

e M

ask

8G

ANAD

F16E

N0x

0004

0=D

isab

le, 1

=Ena

ble

3032

ns

Filte

r Ena

ble

Mas

k9

GAN

ADF3

2EN

0x00

080=

Dis

able

, 1=E

nabl

e30

64 n

s Fi

lter E

nabl

e M

ask

10G

ANAD

F64E

N0x

0010

0=D

isab

le, 1

=Ena

ble

3012

8 ns

Filt

er E

nabl

e M

ask

11G

ANAD

F128

EN0x

0020

0=D

isab

le, 1

=Ena

ble

30Fi

lter E

nabl

e M

ask

54

GAN

ADFM

ASK

0x00

3FIn

dica

tes

filte

rs s

elec

ted

used

for t

his

fram

e. T

his

para

met

er is

com

man

dabl

eBi

t Fie

ld (U

INT_

32)

0x0

- 0x3

F00

3ch

34Sh

ot C

ount

er fo

r PD

L w

avef

orm

124

GAN

ADPD

LSH

CAs

reco

rded

for t

he d

ata

that

follo

ws

UIN

T_32

1 - 2

00N

/A

38Po

st D

elay

Las

er P

ulse

Res

pons

e St

art A

ddre

ss13

4G

ANAD

PDLW

STSt

art A

ddre

ss o

f Pos

t Las

er P

ulse

in n

anos

econ

d re

solu

tion

rela

tive

to fi

rst s

ampl

e of

the

wav

efor

m.

UIN

T_32

0 - 5

0000

003

20h

42Sa

mpl

ed P

ost D

elay

Pul

se W

avef

orm

1432

GAN

ADPD

LW32

8-b

it da

ta s

ampl

es. N

ote:

the

offs

et fo

r thi

s da

ta is

from

Tr

ansm

it Pu

lse

Peak

UIN

T_8

0 - 2

5503

21h

to

0328

h

74O

TS L

aser

Pul

se R

espo

nse

Star

t Add

ress

154

GAN

ADO

TSW

ST

Star

t Add

ress

of t

he fo

llow

ing

four

OTS

Las

er P

ulse

w

avef

orm

s in

nan

osec

ond

reso

lutio

n re

lativ

e to

firs

t sa

mpl

e of

the

wav

efor

m.

UIN

T_32

0 - 5

0000

003

30h

78Sh

ot C

ount

er fo

r OTS

#1

164

GAN

ADO

TS1S

HC

Cor

resp

onds

to th

e da

ta th

at fo

llow

sU

INT_

321

- 200

N/A

82Sa

mpl

ed O

TS P

ulse

Wav

efor

m #

117

32G

ANAD

OTS

1W32

8-b

it da

ta s

ampl

es. N

ote:

the

offs

et fo

r thi

s da

ta is

from

la

ser f

ire (l

ocat

ion

0).

UIN

T_8

0 - 2

5503

31h

to

0338

h11

4Sh

ot C

ount

er fo

r OTS

#2

184

GAN

ADO

TS2S

HC

Cor

resp

onds

to th

e da

ta th

at fo

llow

sU

INT_

321

- 200

N/A

118

Sam

pled

OTS

Pul

se W

avef

orm

#2

1932

GAN

ADO

TS2W

32 8

-bit

data

sam

ples

. Not

e: th

e of

fset

for t

his

data

is fr

om

lase

r fire

(loc

atio

n 0)

.U

INT_

80

- 255

0331

h to

03

38h

150

Shot

Cou

nter

#3

204

GAN

ADO

TS3S

HC

Cor

resp

onds

to th

e da

ta th

at fo

llow

sU

INT_

321

- 200

N/A

154

Sam

pled

OTS

Pul

se W

avef

orm

#3

2132

GAN

ADO

TS3W

32 8

-bit

data

sam

ples

. Not

e: th

e of

fset

for t

his

data

is fr

om

lase

r fire

(loc

atio

n 0)

.U

INT_

80

- 255

0331

h to

03

38h

186

Shot

Cou

nter

for O

TS #

422

4G

ANAD

OTS

4SH

CC

orre

spon

ds to

the

data

that

follo

ws

UIN

T_32

1 - 2

00N

/A

190

Sam

pled

OTS

Pul

se W

avef

orm

#4

2332

GAN

ADO

TS4W

32 8

-bit

data

sam

ples

. Not

e: th

e of

fset

for t

his

data

is fr

om

lase

r fire

(loc

atio

n 0)

.U

INT_

80

- 255

0331

h to

03

38h

222

Loca

tion

of tr

ansm

it pu

lse

seac

h w

indo

w (s

tart)

244

GAN

ADXS

STR

efle

cts

com

man

ded

valu

eU

INT_

320

- 300

000

0000

h

226

Num

ber o

f No

Thre

shol

d C

ross

ing

Shot

s fo

r Erro

r C

ondi

tion

for S

urfa

ce E

cho

Com

pres

sion

254

GAN

ADFF

LIM

Ref

lect

s co

mm

ande

d va

lue

UIN

T_32

0 - 2

55N

/A23

0Sp

are

Tele

met

ry B

yte

261

GAN

ADSP

ARE1

UN

IT_8

N/A

N/A

231

Surfa

ce E

cho

Land

Typ

e fo

r Com

pres

sion

271

GAN

ADSU

RFT

YPE

0=se

a, 1

=lan

d, 2

=sea

/ice,

3=l

and/

ice

UIN

T_8

0 - 3

N/A

232

Valu

e of

'p' u

sed

for f

ram

e29

2G

ANAD

CO

MPP

AD c

ompr

esss

ion

fact

or P

UIN

T_16

1, 2

, 4, 8

N/A

234

Valu

e of

'q' u

sed

for f

ram

e31

2G

ANAD

CO

MPQ

AD c

ompr

esss

ion

fact

or Q

UIN

T_16

1, 2

, 4, 8

N/A

236

Valu

e of

'N' u

sed

for f

ram

e33

2G

ANAD

CO

MPN

# of

sam

ples

to c

ompr

ess

by P

UIN

T_16

Land

: 0-5

44; S

ea: 0

-200

N/A

238

Valu

e of

'r' u

sed

for f

ram

e35

2G

ANAD

CO

MPR

AD c

ompr

esss

ion

fact

or R

UIN

T_16

1, 2

, 4, 8

N/A

240

Tran

smit

Puls

e Th

resh

old

Valu

e36

2G

ANAD

XTH

RR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_16

0 - 2

5500

01h

242

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 4

ns

filte

r37

4G

ANAD

WP[

1]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

1dh

246

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 4

ns

filte

r38

4G

ANAD

WP[

2]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

.000

to 0

.000

001e

h

250

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 4

ns

filte

r39

4G

ANAD

WP[

3]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

0.00

0 to

0.0

0000

1fh

Page 148:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-58 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

2 o

f 5W

orks

heet

: Anc

illary

Sci

254

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 4

ns

filte

r40

4G

ANAD

WP[

4]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

20h

258

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 8

ns

filte

r41

4G

ANAD

WP[

5]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

21h

262

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 8

ns

filte

r42

4G

ANAD

WP[

6]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

.000

to 0

.000

0022

h

266

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 8

ns

filte

r43

4G

ANAD

WP[

7]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

0.00

0 to

0.0

0000

23h

270

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 8

ns

filte

r44

4G

ANAD

WP[

8]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

24h

274

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 1

6 ns

filte

r45

4G

ANAD

WP[

9]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

25h

278

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 1

6 ns

filte

r46

4G

ANAD

WP[

10]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

00.0

00 to

0.0

0000

26h

282

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 1

6 ns

filte

r47

4G

ANAD

WP[

11]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

000.

000

to 0

.000

0027

h

286

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 1

6 ns

filte

r48

4G

ANAD

WP[

12]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to +

100.

000

0028

h

290

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 3

2 ns

filte

r49

4G

ANAD

WP[

13]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to +

100.

000

0029

h

294

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 3

2 ns

filte

r50

4G

ANAD

WP[

14]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

00.0

00 to

0.0

0000

2ah

298

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 3

2 ns

filte

r51

4G

ANAD

WP[

15]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

000.

000

to 0

.000

002b

h

302

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 3

2 ns

filte

r52

4G

ANAD

WP[

16]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to +

100.

000

002c

h

306

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 6

4 ns

filte

r53

4G

ANAD

WP[

17]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to +

100.

000

002d

h

310

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 6

4 ns

filte

r54

4G

ANAD

WP[

18]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

00.0

00 to

0.0

0000

2eh

314

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 6

4 ns

filte

r55

4G

ANAD

WP[

19]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

000.

000

to 0

.000

002f

h

318

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 6

4 ns

filte

r56

4G

ANAD

WP[

20]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to +

100.

000

0030

h

322

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A1

Coe

ffici

ent

for 1

28 n

s fil

ter

574

GAN

ADW

P[21

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

31h

326

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A2

Coe

ffici

ent

for 1

28 n

s fil

ter

584

GAN

ADW

P[22

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

.000

to 0

.000

0032

h

330

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A3

Coe

ffici

ent

for 1

28 n

s fil

ter

594

GAN

ADW

P[23

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-100

0.00

0 to

0.0

0000

33h

334

Ran

ge W

indo

w W

eigh

ting

Scal

e Fa

ctor

A4

Coe

ffici

ent

for 1

28 n

s fil

ter

604

GAN

ADW

P[24

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

+10

0.00

000

34h

338

Back

grou

nd N

oise

A1

Coe

ffici

ent f

or 4

ns F

ilter

614

GAN

ADN

P[1]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to 1

0.00

000

03h

342

Back

grou

nd N

oise

A2

Coe

ffici

ent f

or 4

ns F

ilter

624

GAN

ADN

P[2]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

0004

h34

6Ba

ckgr

ound

Noi

se A

3 C

oeffi

cien

t for

4ns

Filt

er63

4G

ANAD

NP[

3]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-10.

000

to +

10.0

0000

05h

350

Back

grou

nd N

oise

A1

Coe

ffici

ent f

or 8

ns F

ilter

644

GAN

ADN

P[4]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

000

to 1

0.00

000

06h

354

Back

grou

nd N

oise

A2

Coe

ffici

ent f

or 8

ns F

ilter

654

GAN

ADN

P[5]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

0007

h35

8Ba

ckgr

ound

Noi

se A

3 C

oeffi

cien

t for

8ns

Filt

er66

4G

ANAD

NP[

6]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-10.

000

to +

10.0

0000

08h

362

Back

grou

nd N

oise

A1

Coe

ffici

ent f

or 1

6ns

Filte

r67

4G

ANAD

NP[

7]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

10.

000

0009

h36

6Ba

ckgr

ound

Noi

se A

2 C

oeffi

cien

t for

16n

s Fi

lter

684

GAN

ADN

P[8]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

000a

h37

0Ba

ckgr

ound

Noi

se A

3 C

oeffi

cien

t for

16n

s Fi

lter

694

GAN

ADN

P[9]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

000b

h37

4Ba

ckgr

ound

Noi

se A

1 C

oeffi

cien

t for

32n

s Fi

lter

704

GAN

ADN

P[10

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

10.

000

000c

h37

8Ba

ckgr

ound

Noi

se A

2 C

oeffi

cien

t for

32n

s Fi

lter

714

GAN

ADN

P[11

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-10.

000

to +

10.0

0000

0dh

382

Back

grou

nd N

oise

A3

Coe

ffici

ent f

or 3

2ns

Filte

r72

4G

ANAD

NP[

12]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

000e

h38

6Ba

ckgr

ound

Noi

se A

1 C

oeffi

cien

t for

64n

s Fi

lter

734

GAN

ADN

P[13

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

10.

000

000f

h39

0Ba

ckgr

ound

Noi

se A

2 C

oeffi

cien

t for

64n

s Fi

lter

744

GAN

ADN

P[14

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-10.

000

to +

10.0

0000

10h

394

Back

grou

nd N

oise

A3

Coe

ffici

ent f

or 6

4ns

Filte

r75

4G

ANAD

NP[

15]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0to

+10.

000

0011

h39

8Ba

ckgr

ound

Noi

se A

1 C

oeffi

cien

t for

128

ns F

ilter

764

GAN

ADN

P[16

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0.00

0 to

10.

000

0012

h40

2Ba

ckgr

ound

Noi

se A

2 C

oeffi

cien

t for

128

ns F

ilter

774

GAN

ADN

P[17

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

-10.

000

to +

10.0

0000

13h

406

Back

grou

nd N

oise

A3

Coe

ffici

ent f

or 1

28ns

Filt

er78

4G

ANAD

NP[

18]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)-1

0.00

0 to

+10

.000

0014

h41

0Sp

are

Tele

met

ry B

yte

791

U

INT_

8N

/AN

/A41

1En

able

/Dis

able

Aut

o G

ain

Cal

cula

tion

801

GAN

ADAG

ENAB

0=Fi

xed,

1=A

uto;

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltU

INT_

8N

/AN

/A

412

Enab

le/D

isab

le U

se o

f 4ns

Filt

er fo

r Aut

o G

ain

Cal

cula

tion

811

GAN

ADAG

FILT

0=Se

lect

, 1=R

aw; R

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

N/A

N/A

413

Ret

urn

Gai

n Va

lue

821

GAN

ADFI

XGAI

NR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

0 - 2

00N

/A41

4Au

to G

ain

Cal

cula

tion

A1 P

aram

eter

834

GAN

ADAG

AP[1

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

418

Auto

Gai

n C

alcu

latio

n A2

Par

amet

er84

4G

ANAD

AGAP

[2]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A42

2Au

to G

ain

Cal

cula

tion

A3 P

aram

eter

854

GAN

ADAG

AP[3

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

426

Auto

Gai

n C

alcu

latio

n A4

Par

amet

er86

4G

ANAD

AGAP

[4]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A

Page 149:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-59 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

3 o

f 5W

orks

heet

: Anc

illary

Sci

430

Auto

Gai

n C

alcu

latio

n B1

Par

amet

er87

4G

ANAD

AGBP

[1]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A43

4Au

to G

ain

Cal

cula

tion

B2 P

aram

eter

884

GAN

ADAG

BP[2

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

438

Auto

Gai

n C

alcu

latio

n B3

Par

amet

er89

4G

ANAD

AGBP

[3]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A44

2Au

to G

ain

Cal

cula

tion

B4 P

aram

eter

904

GAN

ADAG

BP[4

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

446

Auto

Gai

n C

alcu

latio

n C

0 pa

ram

eter

914

GAN

ADAG

CP[

1]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

450

Auto

Gai

n C

alcu

latio

n C

1 pa

ram

eter

924

GAN

ADAG

CP[

2]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

454

Auto

Gai

n C

alcu

latio

n Vr

ef P

aram

eter

934

GAN

ADAG

VREF

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A45

8Au

to G

ain

Cal

cula

tion

Zmin

Par

amet

er94

4G

ANAD

AGZM

INR

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

N/A

462

Auto

Gai

n C

alcu

latio

n Zm

ax P

aram

eter

954

GAN

ADAG

ZMAX

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)N

/A46

6Au

to G

ain

Cal

cula

tion

Vmin

Par

amet

er96

1G

ANAD

AGVM

INR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

0 - 2

55N

/A46

7Au

to G

ain

Cal

cula

tion

Gin

it Pa

ram

eter

971

GAN

ADAG

GIN

ITR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

0 - 2

55N

/A46

8Au

to G

ain

Cal

cula

tion

Gm

in P

aram

eter

981

GAN

ADAG

GM

AXR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

0 - 2

55N

/A46

9Au

to G

ain

Cal

cula

tion

Gm

ax P

aram

eter

991

GAN

ADAG

GM

INR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_8

0 - 2

55N

/A47

0To

lera

nce

for C

oinc

iden

ce o

f Filt

ers

100

4G

ANAD

FCTO

LR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_32

0 - 2

000

0037

h

474

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for 4

ns

filte

r10

14

GAN

ADR

WTO

[1]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltIN

T_32

0-50

000

17h

478

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for 8

ns

filte

r10

24

GAN

ADR

WTO

[2]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltIN

T_32

0-50

000

18h

482

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for 1

6 ns

filte

r10

34

GAN

ADR

WTO

[3]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltIN

T_32

0-50

000

19h

486

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for 3

2 ns

filte

r10

44

GAN

ADR

WTO

[4]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltIN

T_32

0-50

000

1ah

490

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for 6

4 ns

filte

r10

54

GAN

ADR

WTO

[5]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltIN

T_32

0-50

000

1bh

494

Ran

ge W

indo

w D

ump

(wav

efor

m ti

me)

Offs

ets

for

128

ns fi

lter

106

4G

ANAD

RW

TO[6

]R

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_32

0-50

000

1ch

498

Spar

e by

tes

108

2U

INT_

8

500

Surfa

ce (P

ulse

) Ret

urn

Thre

shol

d Va

lues

for A

ll Fi

lters

(4 n

s th

roug

h 12

8 ns

filte

rs)

107

6G

ANAD

RTH

R[1

..6]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

lt. 6

byt

es to

tal;

byte

1

repr

esen

ts 4

ns fi

lter,

b yte

2 =

8ns

, etc

.U

INT_

8

0035

hto

0036

h

506

FIR

Filt

er C

oeffi

cien

ts10

98

GAN

ADFF

IR[1

..8]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

lt. T

otal

of 8

byt

esU

INT_

8

003a

hto

003b

h51

4Fi

lter W

eigh

t Min

Std

Dev

iatio

n11

04

GAN

ADW

MIN

STD

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0.

0001

- 1.

000

3dh

518

Filte

r Noi

se M

inim

um th

resh

olds

for 4

ns

filte

r11

14

GAN

ADN

MIN

[1]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0-

255

003e

h52

2Fi

lter N

oise

Min

imum

thre

shol

ds fo

r 8 n

s fil

ter

112

4G

ANAD

NM

IN[2

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0-25

500

3fh

526

Filte

r Noi

se M

inim

um th

resh

olds

for 1

6 ns

filte

r11

34

GAN

ADN

MIN

[3]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0-

255

0040

h53

0Fi

lter N

oise

Min

imum

thre

shol

ds fo

r 32

ns fi

lter

114

4G

ANAD

NM

IN[4

]R

efle

cts

com

man

ded

valu

e or

def

ault

FLO

AT (I

EEE7

54)

0-25

500

41h

534

Filte

r Noi

se M

inim

um th

resh

olds

for 6

4 ns

filte

r11

54

GAN

ADN

MIN

[5]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0-

255

0042

h53

8Fi

lter N

oise

Min

imum

thre

shol

ds fo

r 128

ns

filte

r11

64

GAN

ADN

MIN

[6]

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltFL

OAT

(IEE

E754

)0-

255

0043

h54

2Fi

lter r

ejec

t mas

k fo

r lea

ding

edg

e11

74

GAN

ADFR

LEF

Ref

lect

s co

mm

ande

d va

lue

or d

efau

ltU

INT_

3254

6Fi

lter r

ejec

t mas

k fo

r tra

iling

edge

118

4G

ANAD

FRTE

FR

efle

cts

com

man

ded

valu

e or

def

ault

UIN

T_32

550

Spar

e Te

lem

etry

Byt

es11

922

Spar

e Te

lem

etry

UIN

T_8

N/A

N/A

572

Phot

on C

ount

er T

ask

Sect

ion

572

Spar

e1

2Sp

are

UIN

T_16

NA

NA

574

SPC

M 1

RAW

Cou

nts

Mas

k3

G

ANSP

CM

RC

[1]

0x00

0000

FF

0-25

557

4SP

CM

2 R

AW C

ount

s M

ask

4

GAN

SPC

MR

C[2

]0x

0000

FF00

0-

255

574

SPC

M 3

RAW

Cou

nts

Mas

k5

G

ANSP

CM

RC

[3]

0x00

FF00

00

0-25

557

4SP

CM

4 R

AW C

ount

s M

ask

6

GAN

SPC

MR

C[4

]0x

FF00

0000

0-

255

574

SPC

M 1

-4 R

aw C

ount

s2

4G

ANSP

CM

RC

Phot

on C

ount

er B

d ad

dres

s 0x

B180

0018

UIN

T_32

0-42

9496

7295

NA

578

SPC

M 5

RAW

Cou

nts

Mas

k8

G

ANSP

CM

RC

1[1]

0x00

0000

FF

0-25

557

8SP

CM

6 R

AW C

ount

s M

ask

9

GAN

SPC

MR

C1[

2]0x

0000

FF00

0-

255

578

SPC

M 7

RAW

Cou

nts

Mas

k10

G

ANSP

CM

RC

1[3]

0x00

FF00

00

0-25

557

8SP

CM

8 R

AW C

ount

s M

ask

11

GAN

SPC

MR

C1[

4]0x

FF00

0000

0-

255

578

SPC

M 5

-8 R

aw C

ount

s7

4G

ANSP

CM

RC

1Ph

oton

Cou

nter

Bd

addr

ess

0xB1

8000

1CU

INT_

320-

4294

9672

95N

A58

2SP

CM

Gat

e D

elay

122

GAN

PCSP

CM

GPh

oton

Cou

nter

Bd

addr

ess

0xB1

0000

04U

INT_

160-

6553

5N

A58

4PC

Bac

kgro

und

#1 D

elay

132

GAN

PCBK

GN

1

UIN

T_16

0-65

535

NA

586

PC B

ackg

roun

d #2

Del

ay14

2G

ANPC

BKG

N2

Phot

on C

ount

er B

d ad

dres

s 0x

B100

0008

UIN

T_16

0-65

535

NA

588

PC R

ange

Gat

e (L

idar

) Del

ay15

2G

ANPC

MBL

ID

UIN

T_16

0-65

535

NA

590

SPC

M 1

Mas

k0x

0100

SP

CM

2 M

ask

0x02

00

SPC

M 3

Mas

k0x

0400

SP

CM

4 M

ask

0x08

00

SPC

M 5

Mas

k0x

1000

SP

CM

6 M

ask

0x20

00

SPC

M 7

Mas

k0x

4000

SP

CM

8 M

ask

0x80

0059

0SP

CM

sta

tus

162

GAN

SPC

MST

AT0x

FF00

Phot

on C

ount

er B

d ad

dres

s 0x

B180

0004

UIN

T_16

0-65

535

NA

592

592

Spar

e2

Spar

eU

INT_

160-

6553

5N

A59

4At

tenu

atio

n =

0.

0x00

02

Clou

d Di

gitiz

er T

ask

Sect

ion

(Fre

q &

Tim

e Bd

Dat

a)

Page 150:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-60 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

4 o

f 5W

orks

heet

: Anc

illary

Sci

594

Atte

nuat

ion

= 1/

1.77

.0x

0004

594

Atte

nuat

ion

= 1/

3.16

. 0x

0008

594

Atte

nuat

ion

= 1/

5.6.

0x00

1059

4At

tenu

atio

n =

1/10

.0x

0020

594

A/D

out

put

and

CD

Am

plifi

er A

ttenu

atio

n(ga

in)

setti

n g2

GAN

CD

ADO

AC

loud

Dig

itize

r Bd

addr

ess

0xB2

8000

04U

INT_

160-

6553

5N

A59

6Ba

ckgr

ound

#1

Del

ay2

GAN

CD

BKD

Clo

ud D

igiti

zer B

d ad

dres

s 0x

B200

0004

UIN

T_16

0-65

535

NA

598

Back

grou

nd #

2 an

d R

ange

Gat

e D

elay

4G

ANC

DBK

LID

[4]

Clo

ud D

igiti

zer B

d ad

dres

s 0x

B200

0008

UIN

T_8

0-42

9496

7295

NA

602

Det

ecto

r sta

tus

2G

ANC

DD

STAT

Clo

ud D

igiti

zer B

d ad

dres

s 0x

B240

0004

UIN

T_16

0-65

535

NA

604

Spar

e2

Spar

eU

INT_

16N

AN

A60

6Sh

ot C

ount

er fo

r sta

rt of

Fra

me

2G

ANC

DSH

TCST

Cor

resp

onds

to fi

rst 4

0 bi

t cou

nter

sam

ple

UIN

T_16

1-20

0N

A60

8Sh

ot C

ount

er1

2G

ANC

DSH

TCAs

reco

rded

whe

n th

e ne

xt tw

o va

lues

wer

e re

adU

INT_

161-

200

NA

610

Fire

Ack

now

ledg

e Ti

me(

from

Fre

q an

d Ti

me

Bd)

15

GAN

CD

FAT

Freq

& T

ime

Boar

d Tl

m, 4

0 bi

t cou

nter

UIN

T_40

0-0x

FFFF

FFFF

FFN

A61

5Fi

re C

omm

and

Tim

e(fro

m F

req

and

Tim

e Bd

)1

5G

ANC

DFC

TFr

eq &

Tim

e Bo

ard

Tlm

, 40

bit c

ount

erU

INT_

400-

0xFF

FFFF

FFFF

NA

620

The

abov

e 3

valu

es a

re a

dded

for s

hots

2 th

roug

h 39

.

468

10

88G

PS/D

EM S

ectio

n10

88La

titud

e1

2G

ANG

PLAT

S/C

latit

ude

calc

ulat

ed fr

om s

/c p

ositi

on d

ata

in d

egre

esIN

T_16

-90

to +

90

1090

Long

itude

22

GAN

GPL

ON

GS/

C lo

ngitu

de c

alcu

late

d fro

m s

/c p

ositi

on d

ata

in d

egre

esIN

T_16

0 to

180

1092

Hei

ght (

Hsa

t)3

4G

ANG

PHSA

TS/

C g

eode

tic a

ltitu

de o

f s/c

abo

ve e

arth

's su

rface

in

kilo

met

ers.

FL

OAT

(IEE

E754

)0.

0 to

100

0.0

1096

Rsa

t4

4G

ANG

PRSA

TD

ista

nce

from

s/c

to c

ente

r of e

arth

in k

ilom

eter

s.

FLO

AT (I

EEE7

54)

0.0

to 1

0,00

0.0

1100

Rm

in5

4G

ANG

PRM

INR

ange

win

dow

sta

rt in

kilo

met

ers.

FL

OAT

(IEE

E754

)0.

0 to

100

0.0

1104

Rm

ax6

4G

ANG

PRM

AXR

ange

win

dow

sto

p in

kilo

met

ers.

FLO

AT (I

EEE7

54)

0.00

01 to

100

0.0

1108

Wm

in7

4G

ANG

PWM

INM

inim

um w

indo

w s

ize.

Def

ault

is 2

kmFL

OAT

(IEE

E754

)0.

0001

to 1

000.

011

12W

max

84

GAN

GPW

MAX

Max

imum

win

dow

siz

e. D

efau

lt is

11k

mFL

OAT

(IEE

E754

)0.

0 to

100

0.0

1116

Hof

fmin

(DEM

unc

erta

inty

+ b

ias)

94

GAN

GPH

OFF

MIN

Offs

et a

ssoc

iate

d w

ith th

e m

inim

um h

eigh

t. D

efau

lt is

1.

125k

mFL

OAT

(IEE

E754

)-1

000.

0 to

100

0.0

1120

Hof

fmax

(DEM

unc

erta

inty

- bi

as)

104

GAN

GPH

OFF

MAX

Offs

et a

ssoc

iate

d w

ith th

e m

axim

um h

eigh

t. D

efau

lt is

ne

gativ

e 0.

875k

mFL

OAT

(IEE

E754

)-1

000.

0 to

100

0.0

1124

Rbm

in11

4G

ANG

PRBM

INBi

as a

dded

to th

e m

imim

um ra

nge

for A

ltim

eter

Dig

itize

r (in

ki

lom

eter

s ). D

efau

lt is

0.

FLO

AT (I

EEE7

54)

-100

0.0

to 1

000.

0

1128

Rbm

ax12

4G

ANG

PRBM

AXBi

as a

dded

to th

e m

axim

um ra

nge

for A

ltim

eter

Dig

itize

r (in

ki

lom

eter

s ). D

efau

lt is

0.

FLO

AT (I

EEE7

54)

-100

0.0

to 1

000.

011

32PC

Ran

ge B

ias

134

GAN

GPP

CBI

ASPC

Ran

ge B

ias.

Def

ault

is -4

1km

FLO

AT (I

EEE7

54)

-100

0.0

to 1

000.

011

36C

D R

ange

Bia

s14

4G

ANG

PCD

BIAS

CD

Ran

ge B

ias.

Def

ault

is -4

1km

FLO

AT (I

EEE7

54)

-100

0.0

to 1

000.

0

1140

Surfa

ce T

ype

151

GAN

GPS

UR

FTYP

Surfa

ce ty

pe.

0=se

a 1

=lan

d 2

=sea

_ice

3=

land

_ ic

e.

The

defa

ult i

s se

a (0

).

U

INT_

80-

3

1141

Posi

tion

data

sta

tus

flag

161

GAN

GPP

OSV

LD

Set t

o 0

if re

ceiv

ing

posi

tion

data

and

no

erro

rs, 1

if n

ot

rece

ivin

g po

sitio

n da

ta, a

nd 2

if p

roce

ssin

g er

rors

en

coun

tere

d on

pos

ition

dat

a re

ceiv

ed.

UIN

T_8

0-2

1142

Spac

ecra

ft tim

e &

posi

tion

pack

et d

ata

1740

Spac

ecra

ft po

sitio

n an

d G

PS T

ime

com

man

d pa

cket

re

ceiv

ed o

ver 1

553

bus

min

us 8

byt

e C

CSD

S co

mm

and

head

er. F

orm

at is

def

ined

in s

pace

craf

t IC

D.

See

BALL

Spa

cecr

aft t

o G

LAS

ICD

for d

etai

ls

1182

Shot

Cou

nt fo

r 155

3 Sp

acec

raft

Tim

e an

d Po

sitio

n pa

cket

.18

2G

ANG

PSH

OTC

NT

Shot

cou

nt c

aptu

red

by R

T ta

sk w

hen

it re

ceiv

es

spac

ecra

ft tim

e an

d po

sitio

n pa

cket

. Onl

y lo

wer

8 b

ytes

va

lid.

UIN

T_16

1-20

011

84Sp

are

byte

in G

LAS

MET

bel

ow19

1G

ANG

PMET

SP1

Spar

e G

LAS

MET

byt

e th

at is

not

use

d.U

INT_

8N

/A

1185

GLA

S M

ET fo

r 155

3 Sp

acec

raft

Posi

tion

and

com

man

d pa

cket

.20

6G

ANG

PMET

POS

GLA

S M

ET c

aptu

red

by R

T ta

sk w

hen

it re

ceiv

es

spac

ecra

ft tim

e an

d po

sitio

n pa

cket

. Ti

me

is in

m

icro

seco

nds.

8 b

ytes

allo

tted

for G

LAS

MET

but

onl

y th

e m

iddl

e 6

b yte

s ac

tual

ly u

sed.

UIN

T_48

0 to

0xF

FFFF

FFFF

FFF

1191

Spar

e by

te in

GLA

S M

ET a

bove

211

GAN

GPM

ETSP

2G

LAS

MET

exp

edite

flag

. Thi

s fla

g no

t use

d.U

INT_

8N

/A11

92D

EM m

inim

um b

yte

221

GAN

GPM

INBY

TED

EM m

imin

um e

leva

tion

byte

use

d to

cal

cula

te h

min

UIN

T_8

0x00

to 0

xFFF

FFF

1193

DEM

max

imum

byt

e23

1G

ANG

PMAX

BYTE

DEM

max

imum

ele

vatio

n by

te u

sed

to c

alcu

late

hm

axU

INT_

80x

00 to

0xF

FFFF

F

1194

Ran

ge d

ata

sour

ce24

1G

ANG

PRN

GSR

CSo

urce

of r

ange

dat

a: 0

=s/c

tim

e &

pos

pkt

1=u

plin

ked

DEM

byt

es

2=

uplin

ked

Rm

in/R

max

U

INT_

80-

2

1195

Hig

h or

der b

yte

of G

PS 1

0 Se

c Pu

lse

40 b

it co

unt

valu

e25

1G

ANG

P40B

IT1

Last

40-

bit c

ount

val

ue fr

om fr

eque

ncy

& tim

e bo

ard.

C

orre

spon

ds to

the

last

GPS

10

seco

nd p

ulse

.U

INT_

80x

FF

1196

Low

ord

er 4

byt

es o

f GPS

10

Sec

Puls

e 40

bit

coun

t va

lue

264

GAN

GP4

0BIT

4La

st 4

0-bi

t cou

nt v

alue

from

freq

uenc

y &

time

boar

d.

Cor

resp

onds

to th

e la

st G

PS 1

0 se

cond

pul

se.

UIN

T_32

0xFF

FFFF

FF12

00Sp

are

byte

in G

LAS

MET

bel

ow27

1G

ANG

PMET

SPR

1Sp

are

GLA

S M

ET b

yte

that

is n

ot u

sed.

UIN

T_8

N/A

1201

GLA

S M

ET fo

r GPS

0.1

Hz

Puls

e28

6G

ANG

PMET

GLA

S M

ET a

t tim

e of

last

GPS

10

sec

puls

e. T

ime

is in

m

icro

seco

nds.

8 b

ytes

allo

tted

for G

LAS

MET

but

onl

y th

e m

iddl

e 6

b yte

s ac

tual

ly u

sed.

UIN

T_48

0 to

0xF

FFFF

FFFF

FFF

1207

Spar

e by

te in

GLA

S M

ET a

bove

291

GAN

GPE

XPED

FLG

LAS

MET

exp

edite

flag

. Thi

s fla

g is

not

use

d.U

INT_

8N

/A12

08G

P an

cilla

ry d

ata

spar

e by

tes

308

GAN

GPF

ILL

GP

anci

llary

dat

a sp

are

byte

s fo

r fut

ure

grow

thU

INT_

8 * 8

N/A

1216

C&T

Task

Sec

tion

1216

Etal

on C

alib

ratio

n -

Cur

rent

mod

e1

GAN

CTE

MO

DE

OFF

=0, A

cqui

re=1

, Tra

ckin

g=2

UN

IT_8

Page 151:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-61 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

5 o

f 5W

orks

heet

: Anc

illary

Sci

1217

Etal

on S

tate

1G

ANC

TEST

ATE

Idle

=0, I

nit=

1, S

et T

emp=

2, S

ettle

=3, A

vera

ge=4

, 5=

Ope

nloo

p, 6

=Mod

ified

UIN

T_8

1218

Etal

on T

empe

ratu

re S

ettle

Tim

e1

GAN

CTE

TMPS

ETin

sec

onds

UIN

T_8

1219

Etal

on tr

acki

ng lo

w tr

ansm

issi

on fl

ag

GAN

CTE

LOW

TR0x

010

= G

ood

1 =

Low

12

19Et

alon

trac

king

act

ive

flag

G

ANC

TETR

ACK

0x02

0 =

Paus

ed

1 =

Activ

e

1219

Etal

on tr

acki

ng te

st m

ode

flag

G

ANC

TETE

ST0x

040

= N

orm

al 1

= T

est

12

19Et

alon

trac

king

ope

nloo

p m

ode

flag

G

ANC

TEO

LMO

DE

0x08

0 =

Nor

mal

1 =

Ope

nLoo

p

1219

Etal

on tr

acki

ng o

penl

oop

upda

te to

ggle

G

ANC

TEO

LUPD

0x10

1219

Etal

on F

lags

1G

ANC

TEFL

AGS

Etal

on s

tatu

s fla

gsU

INT_

812

20Et

alon

Ave

rage

d on

-axi

s tra

nsm

issi

on4

GAN

CTE

TRO

NFL

OAT

(IEE

E754

)12

24Et

alon

Ave

rage

d of

f-axi

s tra

nsm

issi

on4

GAN

CTE

TRO

FFFL

OAT

(IEE

E754

)12

28Et

alon

tem

pera

ture

erro

r4

GAN

CTE

DTE

MP

In d

egre

esFL

OAT

(IEE

E754

)12

32Et

alon

trac

king

loop

filte

r out

put

4G

ANC

TETO

UT

FL

OAT

(IEE

E754

)12

36Et

alon

trac

king

failu

re a

vera

ge4

GAN

CTE

TFAV

GFL

OAT

(IEE

E754

)12

40Et

alon

sta

rt te

mpe

ratu

re fo

r acq

uire

com

man

d1

GAN

CTE

STR

TTU

INT_

812

41Et

alon

sto

p te

mpe

ratu

re fo

r acq

uire

com

man

d1

GAN

CTE

STO

PTU

INT_

812

42Et

alon

tem

pera

ture

ste

p fo

r acq

uire

com

man

d1

GAN

CTE

TSTE

PU

INT_

812

43Et

alon

ave

ragi

ng ti

me

for a

cqui

re c

omm

and

1G

ANC

TEAV

GTI

Min

sec

onds

UIN

T_8

1244

Etal

on te

mpe

ratu

re s

etle

tim

e fo

r acq

uire

cm

d2

GAN

CTE

STLT

IMin

sec

onds

UIN

T_16

1246

Etal

on a

vera

ging

upd

ate

coun

ter

1G

ANC

TEAV

GU

PU

INT_

812

47Sp

are

byte

1G

ANC

TASP

ARE

UIN

T_8

1248

Etal

on F

Back

Mon

val

(Pin

Dio

de A

)40

GAN

CTD

PAFr

om L

MB.

Eac

h co

rresp

onds

to o

ne o

f the

40

shot

s in

the

fram

eU

INT_

8

1288

Etal

on F

Back

Mon

val

(Pin

Dio

de B

)40

GAN

CTD

PBFr

om L

MB.

Eac

h co

rresp

onds

to o

ne o

f the

40

shot

s in

the

fram

eU

INT_

8

1328

Etal

on 5

32 E

ner g

y40

GAN

CTE

532

From

LM

B. E

ach

corre

spon

ds to

one

of t

he 4

0 sh

ots

in th

e fra

me

UIN

T_8

Page 152:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-62 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: LPA

Pkt N

ame

LPA

Data

Pkt

Size

4056

Oct

ets

App

Id26

Freq

uenc

y4

HzIn

terv

al0.

25se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

814

Spar

e2

Spar

eU

INT_

16N

A16

Shot

Cou

nter

12

Cor

repo

ndin

g to

LPA

Dat

aU

INT_

161-

200

18X

Posi

tion

of B

ox1

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

tsU

INT_

80-

7919

Y Po

sitio

n of

Box

11

Y C

oord

inat

e w

here

LPA

Dat

a st

arts

UIN

T_8

0-79

20LP

A D

ata

140

0

20x2

0 bo

x of

LPA

pix

el in

tens

ity d

ata.

Pix

el =

8

bits

. The

pix

el o

rder

is ro

w m

ajor

: [ro

w,co

l];

[1,1

],[1,

2],!

.,[2,

1,[2

,2],!

!.

UIN

T_8

[400

]0-

255,

20

byte

s X

20 ro

ws

420

Shot

Cou

nter

22

Cor

repo

ndin

g to

LPA

Dat

a42

2X

Posi

tion

of B

ox2

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

ts42

3Y

Posi

tion

of B

ox2

1Y

Coo

rdin

ate

whe

re L

PA D

ata

star

ts42

4LP

A D

ata

240

020

x20

box

of L

PA p

ixel

inte

nsity

dat

a82

4Sh

ot C

ount

er3

2C

orre

pond

ing

to L

PA D

ata

826

X Po

sitio

n of

Box

31

X C

oord

inat

e w

here

LPA

Dat

a st

arts

827

Y Po

sitio

n of

Box

31

Y C

oord

inat

e w

here

LPA

Dat

a st

arts

828

LPA

Dat

a3

400

20x2

0 bo

x of

LPA

pix

el in

tens

ity d

ata

1228

Shot

Cou

nter

42

Cor

repo

ndin

g to

LPA

Dat

a12

30X

Posi

tion

of B

ox4

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

ts12

31Y

Posi

tion

of B

ox4

1Y

Coo

rdin

ate

whe

re L

PA D

ata

star

ts12

32LP

A D

ata

440

020

x20

box

of L

PA p

ixel

inte

nsity

dat

a16

32Sh

ot C

ount

er5

2C

orre

pond

ing

to L

PA D

ata

1634

X Po

sitio

n of

Box

51

X C

oord

inat

e w

here

LPA

Dat

a st

arts

1635

Y Po

sitio

n of

Box

51

Y C

oord

inat

e w

here

LPA

Dat

a st

arts

1636

LPA

Dat

a5

400

20x2

0 bo

x of

LPA

pix

el in

tens

ity d

ata

2036

Shot

Cou

nter

62

Cor

repo

ndin

g to

LPA

Dat

a20

38X

Posi

tion

of B

ox6

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

ts20

39Y

Posi

tion

of B

ox6

1Y

Coo

rdin

ate

whe

re L

PA D

ata

star

ts20

40LP

A D

ata

640

020

x20

box

of L

PA p

ixel

inte

nsity

dat

a24

40Sh

ot C

ount

er7

2C

orre

pond

ing

to L

PA D

ata

2442

X Po

sitio

n of

Box

71

X C

oord

inat

e w

here

LPA

Dat

a st

arts

2443

Y Po

sitio

n of

Box

71

Y C

oord

inat

e w

here

LPA

Dat

a st

arts

2444

LPA

Dat

a7

400

20x2

0 bo

x of

LPA

pix

el in

tens

ity d

ata

2844

Shot

Cou

nter

82

Cor

repo

ndin

g to

LPA

Dat

a28

46X

Posi

tion

of B

ox8

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

ts28

47Y

Posi

tion

of B

ox8

1Y

Coo

rdin

ate

whe

re L

PA D

ata

star

ts28

48LP

A D

ata

840

020

x20

box

of L

PA p

ixel

inte

nsity

dat

a32

48Sh

ot C

ount

er9

2C

orre

pond

ing

to L

PA D

ata

3250

X Po

sitio

n of

Box

91

X C

oord

inat

e w

here

LPA

Dat

a st

arts

3251

Y Po

sitio

n of

Box

91

Y C

oord

inat

e w

here

LPA

Dat

a st

arts

3252

LPA

Dat

a9

400

20x2

0 bo

x of

LPA

pix

el in

tens

ity d

ata

3652

Shot

Cou

nter

102

Cor

repo

ndin

g to

LPA

Dat

a36

54X

Posi

tion

of B

ox10

1X

Coo

rdin

ate

whe

re L

PA D

ata

star

ts36

55Y

Posi

tion

of B

ox10

1Y

Coo

rdin

ate

whe

re L

PA D

ata

star

ts36

56LP

A D

ata

1040

020

x20

box

of L

PA p

ixel

inte

nsity

dat

aLP

A da

ta fo

r all

40 s

hots

is s

ent d

own

each

sec

ond.

The

re a

re 1

0 sh

ots

per p

acke

t and

4 p

acke

ts p

er s

econ

d.

Page 153:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-63 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: Cm

d H

isto

ry

Pkt N

ame

Com

man

d Hi

stor

ySi

ze29

6O

ctet

sAp

p Id

49Fr

eque

ncy

Asyn

cHz

Inte

rval

seco

nds

Offs

etNa

me

idx

Size

inM

nem

onic

sId

ent.#

Desc

riptio

nO

ctet

sM

ask

0Pr

imar

y H

eade

r6

6Se

cond

ary

Hea

der(t

ime

stam

p)8

14Va

lid C

omm

ands

in P

acke

t2

Num

ber o

f val

id c

omm

ands

in th

is c

omm

and

hist

ory

pack

et

16G

LAS

Tim

e of

Com

man

d #1

18

Onl

y th

e m

iddl

e 6

byte

s ar

e us

ed fo

r the

tim

e.

The

first

and

last

byt

e (b

ytes

0 &

7) a

re s

pare

s.24

Com

man

d #1

(firs

t 20

byte

s)1

20Fi

rst 2

0 by

tes

of C

CSD

S pa

cket

44G

LAS

Tim

e of

Com

man

d #2

28

52C

omm

and

#2 (f

irst 2

0 by

tes)

220

72G

LAS

Tim

e of

Com

man

d #3

38

80C

omm

and

#3 (f

irst 2

0 by

tes)

320

100

GLA

S Ti

me

of C

omm

and

#44

810

8C

omm

and

#4 (f

irst 2

0 by

tes)

420

128

GLA

S Ti

me

of C

omm

and

#55

813

6C

omm

and

#5 (f

irst 2

0 by

tes)

520

156

GLA

S Ti

me

of C

omm

and

#66

816

4C

omm

and

#6 (f

irst 2

0 by

tes)

620

184

GLA

S Ti

me

of C

omm

and

#77

819

2C

omm

and

#7 (f

irst 2

0 by

tes)

720

212

GLA

S Ti

me

of C

omm

and

#88

822

0C

omm

and

#8 (f

irst 2

0 by

tes)

820

240

GLA

S Ti

me

of C

omm

and

#99

824

8C

omm

and

#9 (f

irst 2

0 by

tes)

920

268

GLA

S Ti

me

of C

omm

and

#10

108

276

Com

man

d #1

0 (fi

rst 2

0 by

tes)

1020

Page 154:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-64 September 2011

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: LPA

Tes

t

Pkt N

ame

LPA

80x8

0 Te

st D

ata

Pkt

Size

6416

Oct

ets

App

Id12

6Fr

eque

ncy

1Hz

Inte

rval

1se

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

814

Shot

Cou

nter

2C

orre

pond

ing

to L

PA D

ata

UIN

T_16

1-20

0

16LP

A D

ata

6400

80x8

0 bo

x of

LPA

pix

el in

tens

ity d

ata.

Pix

el =

8 b

its.

The

pixe

l ord

er is

row

maj

or: [

row,

col];

[1

,1],[

1,2]

,!.,[

2,1]

,[2,2

],!!

.U

INT_

8 [6

400]

0-25

5, 8

0 by

tes

X 80

col

umns

Page 155:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Telemetry Description The Algorithm Theoretical Basis Document for Level

September 2011 Page B-65 Version 1.7

File

nam

e: G

LAS_

SCI_

PKTs

.xls

Page

1 o

f 1W

orks

heet

: Bor

esite

Cal

Pkt N

ame

Bore

site

Cal

ibra

tion

Resu

lts P

ktSi

ze18

16O

ctet

sAp

p Id

38Fr

eque

ncy

Asyn

cHz

Inte

rval

Asyn

cse

cond

sO

ffset

Nam

eid

xSi

ze in

Mne

mon

ics

Iden

t.#De

scrip

tion

Type

Data

Ran

ge/F

orm

ula

Oct

ets

Mas

k0

Prim

ary

Hea

der

66

Seco

ndar

y H

eade

r(tim

e st

amp)

814

Cal

ibra

tion

Type

20

= C

oars

e, 1

= F

ine

UIN

T_16

0-1

16X

Posi

tion

Of T

he M

irror

12

Posi

tion

XU

INT_

160-

4095

18Y

Posi

tion

Of T

he M

irror

12

Posi

tion

YU

INT_

160-

4095

20In

tegr

atio

n R

esul

t1

4In

tegr

atio

n R

esul

t For

The

Cur

rent

Pos

ition

UIN

T_32

0-42

9496

7295

24R

est o

f Pac

ket c

onsi

stin

g of

224

X a

nd Y

mirr

or

posi

tions

and

the

inte

grat

ion

resu

lt2-

224

1792

Ther

e ar

e 22

4(fo

r a to

tal o

f 225

) X a

nd Y

Pos

ition

and

In

tegr

atio

n re

sults

, Eac

h is

8 b

ytes

long

. 179

2=22

4x8

Page 156:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Telemetry Description

Version 1.7 Page B-66 September 2011

Page 157:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page C-1 Version 1.7

Appendix C

Background Information for Time Tagging Algorithm

C.1 Information1) There are 2 data types or streams downlinked from the GLAS instrument: science

and engineering. The science data contain the science measurements recorded by GLAS and the parameters calculated by the flight software algorithm. Also, included in the science data are commanded flight software parameters. The GPS packet and the spacecraft Position, Rate, and Attitude Packet (PRAP) are science data collected and downlinked directly by the spacecraft. The engineering data con-tain the instrument health and status data including temperatures, currents, and soft-ware status indicators. There are several types of packets within each data type. These packets are defined by their APID (Application ID). The raw ICESat teleme-try dumps are processed by EDOS to remove redundant packets and create data files on even 6 hour boundaries for each APID. Table C-1 "APIDs used by Normal I-SIPS Processing" lists the science and engineering data that is normally ingested by the I-SIPS to perform the GLAS data processing. As shown in the table, the Altimeter Digitizer has two different APIDs (12 and 13) but during any one second only one APID will exist.

Table C-1 APIDs used by Normal I-SIPS Processing

APID Packet Name Data Type Frequency (/ = per)

Secondary Header Time

19 Ancillary Science Science 1 per second MET

12 Altimeter Digitizer (AD)-Large Science 4 per second MET

13 Altimeter Digitizer-Small Science 4 per second MET

14 AD Engineering Science 1 per second* MET

15 Photon Counter (PC) Science Science 1 per second MET

16 PC Engineering Science 1 per second* MET

17 Cloud Digitizer (CD) Science Science 1 per second MET

18 CD Engineering Science 1 per second* MET

26 LPA Data Science 4 per second MET

1088 GPS Science 1 per 10 seconds BVTCW

1984 PRAP Science 1 per second BVTCW

20 CT HW 1 Engineering 1 per 4 seconds MET

21 CT HW 2 Engineering 1 per 4 seconds MET

22 CT HW 3 Engineering 1 per16 seconds MET

Page 158:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Background Information for Time Tagging

Version 1.7 Page C-2 September 2011

2) The Ancillary Science packet is always output from GLAS, but for AD, CD, and PC either science or engineering exists but not both. However at any time any packet may be lost from the telemetry stream during data transmission.

3) A number of diagnostic packets from the engineering data stream will need to be accommodated. The diagnostic packets are sent upon request and will not appear regularly in the stream.

4) GLAS packets contain the GLAS Mission Elapsed Time (MET) in their secondary header. GLAS science packets are synchronized.

5) As part of the initial telemetry data processing (GL0P - GLAS Level 0 Processing) by the I-SIPS, an index number is assigned for each received ancillary science packet. All other GLAS APIDs that correspond time-wise (using the secondary header) to that ancillary science packet will be assigned the same index number. Subsequent processing can align the data by the index number.

6) GLAS science packets also contain the shot counter in order to exactly align the data, however this counter rolls over every 5 seconds (200 shots) so the secondary header time must be used for initial alignment.

7) GLAS engineering packets occur at various rates as shown in Table C-1. These are considered asynchronous to the science packets but are output on fixed shot counts. The initial telemetry processing assigns to the GLAS engineering data the index number of the GLAS APID 19 record that has a MET that is greater than the MET of the engineering data (less than 1, 4, 16, or 32 seconds before).

8) GPS and PRAP packets are asynchronous.

9) The latched BVTCW at GPS time and the GPS time are provided in the PRAP (Position, Rate, and Attitude Packet) and in the spacecraft time and position packet which is contained in the GLAS APID 19 (Ancillary science).

10) In addition to secondary header time, GLAS APID 19 contains: shot counter, Fire command time and fire acknowledge time (40 bit counters), GPS time, GLAS fre-quency and time board time latched to GPS time (40 bit counter), BVTCW at GPS

23 CT HW 4 Engineering 1 per16 seconds MET

24 Small Software Engineering 1 per 4 seconds MET

25 Large Software 1 Engineering 1 per 4 seconds MET

50 CT HW 5 Engineering 1per 32 seconds MET

55 Large Software 2 Engineering 1 per 4 seconds MET

* When particular board is commanded to engineering mode

Table C-1 APIDs used by Normal I-SIPS Processing (Continued)

APID Packet Name Data Type Frequency (/ = per)

Secondary Header Time

Page 159:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Background Information for Time Tagging Algorithm The Algorithm Theoretical Basis Document for Level

September 2011 Page C-3 Version 1.7

time, BVTCW of spacecraft position and time packet, GLAS MET near spacecraft position and time packet, and shot near spacecraft position and time packet.

11) In the spacecraft position and time packet (contained in GLAS APID 19) the GPS time and Bvtcw at GPS time pair are repeated for about 10 packets (~10 seconds). The other position packet parameters (Bvtcw for the position packet, GLAS MET and shot number near the position packet) update each second. The Bvtcw of the position packet has a small delay offset. The GLAS MET and shot number near the position packet are not absolute; these values are the latest available when the packet is received.

12) The GLAS frequency and time board time latched to GPS time appears in the GLAS APID 19 after the GPS pulse. It will be repeated for about 10 times (~10 seconds). This time must be matched to the correct GPS time of the pulse in order to convert the 40 bit counter to UTC.

13) The correct GPS time (and its latched Bvtcw) will appear in the position and time packet, contained in GLAS APID 19, approximately 10 seconds after the pulse (the Bvtcw of the position and time packet is about 10 seconds past Bvtcw latched to the GPS time).

14) The GPS/DEM information contained in GLAS APID19 is used for data collection in the next frame. Therefore, the time of this data is one second later than the time of the altimeter digitizer task data contained in GLAS APID19. See Appendix D for packet timing details.

15) The LRS and IST receive a 10 hz signal from the GLAS that requires alignment to the exact laser shot. The LRS And IST are contained in the spacecraft�’s PRAP. The time of the PRAP is not synchronized to the 1/second GLAS data. The index num-ber assigned to the PRAP during initial telemetry processing provides alignment to GLAS APID 19 within two (three?) records (seconds).

16) The ISF will maintain the GLAS MET close to the spacecraft time (Bvtcw).

17) The Bvtcw will be maintained by the ICESat Mission Operations Center (MOC) to be close to continuous during the mission. MOC will reset Bvtcw after power off and for drift to maintain spacecraft time to about 3 milliseconds.

C.2 Problems to Consider:1) For a second, some packet types may be missing when others are available.

2) At the start of a PDS or EDS any packet type may be the earliest UTC and the 4hz AD science packet set may be separated (1,2, or 3 packets at the beginning or end).

3) After time gap of all packets, any packet type may be present first.

4) ISF provides the correction table for GLAS MET. MET is a software counter there-fore it increments the exact number of counts for each laser shot for a perfect 40 hz timing. It therefore will not be true time that accounts for any oscillator drift. The correction table will account for MET losses during:

Page 160:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Background Information for Time Tagging

Version 1.7 Page C-4 September 2011

�• GLAS processor resets - The MET will lose some �“ticks�” during a reset.

�• GLAS warm reboots - the MET counter attempts to keep the time (counter) but will lose a few pulse interrupts (ticks) so will �“miss�” time (for example if two pulses are missed the time will increment by 25 msec but really 75 ms will have really elapsed).

5) Since GLAS engineering packets occur asynchronously to the science packets are their any issues with assigning the index number to the engineering packets? (Need to determine if any smoothing needed on engineering).

C.3 Telemetry DefinitionsFor the GLAS Science Telemetry Definition and GLAS Engineering Telemetry Definition, see Appendix B. A high level description of the spacecraft�’s Position, Rate, and Attitude Packet is contained in Table C-2 "Format of PRAP". The detailed description of the PRAP is contained in the Details of the PRAP contents are defined in the Data Interface Control Docu-ment between the ICESat Spacecraft and the EOS Ground System (EGS), listed in Section 5. The format of the spacecraft�’s position and time packet is shown in Table C-3 "Time and Posi-tion Message Packet Description" on page C-5.

Table C-2 Format of PRAP

Item Size (Bytes)

Samples/Sec # Bytes Cumulative

Bytes

VTCW 6 1 6 6

VTCW IRU Time Tag 6 10 60 66

IRU Data 14 10 140 206

VTCW BST1 Time Tag 6 10 60 266

BST1 Data 60 10 600 866

VTCW BST2 Time Tag 6 10 60 926

BST2 Data 60 10 600 1526

IST VTCW Echo 6 10 60 1586

IST Data 64 10 640 2226

IST Health 10 10 100 2326

LRS VTCW Echo 6 10 60 2386

LRS Data 64 10 640 3026

LRS Health 4 1 4 3030

LRS Star Image 512 5 2560 5590

LRS Laser Image 512 4 2048 7638

LRS CRS Image 512 1 512 8150

Page 161:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Background Information for Time Tagging Algorithm The Algorithm Theoretical Basis Document for Level

September 2011 Page C-5 Version 1.7

Estimated Quaternion 8 1 8 8158

Estimated Position (x,y,z) - 4xf32 6 1 6 8164

Estimated Rate (x,y,z) - 3xf32 6 1 6 8170

Solar Array Position - 2xf32 4 1 4 8174

GPS Receiver Time 4 1 4 8178

VTCW latched to GPS 6 1 6 8184

Table C-3 Time and Position Message Packet Description

Description Word

CCSDS Header (hex value = 180F) 0

CCSDS Header (hex value = C000) 1

CCSDS Header (hex value = 002B) 2

CCSDS Header (hex value = 0A00) 3

BVTCW - Most Significant Word (us) 4

BVTCW - Mid Significant Word (us) 5

BVTCW - Least Significant Word (us) 6

ECEF Position (Km) �– Vector 1 �–X - double 7

ECEF Position (Km) �– Vector 1�–X �– double 8

ECEF Position (Km) �– Vector 1�–X �– double 9

ECEF Position (Km) �– Vector 1�–X �– double 10

ECEF Position (Km) �– Vector 2�–Y - double 11

ECEF Position (Km) �– Vector 2�–Y �– double 12

ECEF Position (Km) �– Vector 2�–Y �– double 13

ECEF Position (Km) �– Vector 2�–Y �– double 14

ECEF Position (Km) �– Vector 3�–Z - double 15

ECEF Position (Km) �– Vector 3�–Z �– double 16

ECEF Position (Km) �– Vector 3�–Z �– double 17

ECEF Position (Km) �– Vector 3�–Z - double 18

GPS Rcvr Time (Seconds) - unsigned long int 19

Table C-2 Format of PRAP (Continued)

Item Size (Bytes)

Samples/Sec # Bytes Cumulative

Bytes

Page 162:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Background Information for Time Tagging

Version 1.7 Page C-6 September 2011

GPS Rcvr Time (Seconds) �– unsigned long int 20

BVTCW@ 0.1 Hz pulse - Most Significant Word (us) 21

BVTCW@ 0.1 Hz pulse - Mid Significant Word (us) 22

BVTCW@ 0.1 Hz pulse - Least Significant Word (us) 23

Note1: This message is time-tagged when sent, which is within 300 msec of when the position data is valid.Note2: The position message in GLAS APID 19 does not include the CCSDS header.

Table C-3 Time and Position Message Packet Description (Continued)

Description Word

Page 163:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page D-1 Version 1.7

Appendix D

GLAS Science PacketsSynchronization and Alignment Information

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

ICESAT GLAS Flight Software

GLAS Science Packets Synchronization and Alignment

Prepared by

Steven Slegel

December 5, 2001

Page 164:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Science Packets Synchronization

Version 1.7 Page D-2 September 2011

Author: _______________________________________________ Steven Slegel/ GLAS Flight Software Engineer Date Approvals: _______________________________________________________________ Kris Naylor/Build/Acceptance Test Lead Date _______________________________________________________________ Eleanor Ketchum/GLAS Systems Engineer Date _______________________________________________________________ Peggy Jester/ICESAT Science Processing Engineer Date _______________________________________________________________ David Hancock/ICESAT Science Ground System Manager Date _______________________________________________________________ Manuel Maldonado/GLAS Software Lead Engineer Date _______________________________________________________________ Joseph Polk/ GLAS Flight Software Engineer Date _______________________________________________________________ Dwaine Molock/GLAS Flight Software Engineer Date _______________________________________________________________ Peter Kutt/ GLAS Flight Software Engineer Date

Page 165:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Science Packets Synchronization and Alignment InformationThe Algorithm Theoretical Basis Document

September 2011 Page D-3 Version 1.7

Overview This document describes when and how often Science and Ancillary data is collected and how this data correlates with each other. For more information regarding the contents of each packet see the GLAS SCIENCE TELEMETRY PACKETS DEFINITION DOCUMENT (GLAS-582-SPEC-002).

GLAS Science Packets The following Science packets are generated by the GLAS flight software.

Photon Counter Science Packet The Photon Counter task generates 1 Photon Counter Science Packet per second while the task is in Science Mode. This packet contains 40 shots of data. The Science packet is time stamped when the packet is sent; on the 40th shot. The shot counter is recorded on the first shot of the frame.

Photon Counter Engineering Packet The Photon Counter task generates 1 Photon Counter Engineering Packet per second while the task is in Engineering Mode. This packet contains 15 shots of data. The Engineering packet is time stamped when the packet is sent; on the 40th shot. The shot counter is recorded on the first shot of the frame.

Cloud Digitizer Science Packet The Cloud Digitizer task generates 1 Cloud Digitizer Science Packet per second while the task is in Science Mode. This packet contains 40 shots of data. The Science packet is time stamped when the packet is sent; on the 40th shot. The shot counter is recorded on the first shot of the frame.

Cloud Digitizer Engineering Packet The Cloud Digitizer task generates 1 Cloud Digitizer Engineering Packet per second while the task is in Engineering Mode. This packet contains 20 shots of data. The Engineering packet is time stamped when the packet is sent; on the 40th shot. The shot counter is recorded on the first shot of the frame.

Altimeter Digitizer Science Packet The Altimeter Digitizer task generates four Altimeter Digitizer Science packets per second while the task is in Science mode. Each science packet contains 10 shots of science data. Each shot of science data contains the shot counter value indicating the shot in which the data was sampled. The Altimeter Digitizer science packets are time stamped when the packet is sent; on the 10th, 20th, 30th, and 40th shots.

LPA Data Packet The DC&H task generates four LPA Data packets per second while the task is in SSR_LPA mode. The LPA packet is time stamped when the packet is sent; on the 10th, 20th, 30th, and 40th shots. There are ten shots of LPA data per packet and the shot count is recorded separately for each shot in the packet.

Page 166:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Science Packets Synchronization

Version 1.7 Page D-4 September 2011

Ancillary Data Packet The Ancillary packet is generated once per second by the CT Task while the task is in NORMAL mode. The Ancillary packet is time stamped when it is sent; on the 40th shot. The Ancillary packet is a combination of data collected by various tasks. Each task that contributes to the ancillary packet will send it!s portion of the ancillary data to the CT task every second. The CT task will then collect the various pieces of ancillary data and combine them together into one packet. Not all tasks will provide ancillary data all the time. That will depend on the current mode of the task. A flag in the ancillary packet indicates which tasks have contributed data to the current combined ancillary packet. The following table describes in what mode each task generates ancillary telemetry.

Task Mode Generates Ancillary Data Photon Counter Idle No Science Yes Engineering Yes Boresite Cal No Memory Test No Altimeter Digitizer Idle No Science Yes 1-Shot Yes (Only 1 packet) Load No Dump No Cloud Digitizer Idle Yes Science Yes Engineering Yes Memory Test No DC&H SSR No SSR_LPA No Test No CT Manual No Normal Yes GP N/A Always sends when

requested by CT

Page 167:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Science Packets Synchronization and Alignment InformationThe Algorithm Theoretical Basis Document

September 2011 Page D-5 Version 1.7

Timing Relationship Between Different Science Packets The diagram below shows graphically the relationship between when each science packet is generated.

110

2030

4050

6070

8090

100

110

120

130

140

150

160

170

180

190

2030

10

Fram

e n

Fram

e n+

1Fr

ame

n+2

Fram

e n+

3Fr

ame

n+4

140

Shot

Cou

nter

Tim

ein

Sec

1.25

1.00

1.50

1.75

2.00

Apid=

12SC

=1SS

C=1

PTim

e=1.2

5

Apid=

12SC

=11

SSC=

2PT

ime=

1.50

8090

Apid=

12SC

=21

SSC=

3PT

ime=

1.75

Apid=

12SC

=31

SSC=

4PT

ime=

2.00

Apid=

19SC

=1SS

C=1

PTim

e=2.0

0

Apid=

15SC

=1SS

C=1

PTim

e=2.0

0

Apid=

18SC

=1SS

C=1

PTim

e=2.0

0

Apid=

126

SC=3

1SS

C=4

PTim

e=2.0

0

Alt D

igSc

ienc

ePk

ts

Anci

llary

Scie

nce

Pkts

Clou

d D

igSc

ienc

ePk

ts

LPA

Pkt

s

Phot

on C

ntSc

ienc

ePk

ts

Apid=

12SC

=41

SSC=

5PT

ime=

2.25

Apid=

12SC

=51

SSC=

6PT

ime=

2.50

Apid=

12SC

=61

SSC=

7PT

ime=

2.75

Apid=

12SC

=71

SSC=

8PT

ime=

3.00

Apid=

19SC

=41

SSC=

2PT

ime=

3.00

Apid=

15SC

=41

SSC=

2PT

ime=

3.00

Apid=

18SC

=41

SSC=

2PT

ime=

3.00

Apid=

12SC

=81

SSC=

9PT

ime=

3.25

Apid=

12SC

=91

SSC=

10PT

ime=

3.50

Apid=

12SC

=101

SSC=

11PT

ime=

3.75

Apid=

12SC

=111

SSC=

12PT

ime=

4.00

Apid=

19SC

=81

SSC=

3PT

ime=

4.00

Apid=

15SC

=81

SSC=

3PT

ime=

4.00

Apid=

18SC

=81

SSC=

3PT

ime=

4.00

Apid=

126

SC=2

1SS

C=3

PTim

e=1.7

5

Apid=

126

SC=1

1SS

C=2

PTim

e=1.5

0

Apid=

126

SC=1

SSC=

1PT

ime=

1.25

Apid=

126

SC=7

1SS

C=8

PTim

e=3.0

0

Apid=

126

SC=6

1SS

C=7

PTim

e=2.7

5

Apid=

126

SC=5

1SS

C=6

PTim

e=2.5

0

Apid=

126

SC=4

1SS

C=5

PTim

e=2.2

5

Apid=

126

SC=1

11SS

C=12

PTim

e=4.0

0

Apid=

126

SC=1

01SS

C=11

PTim

e=3.7

5

Apid=

126

SC=9

1SS

C=10

PTim

e=3.5

0

Apid=

126

SC=8

1SS

C=9

PTim

e=3.2

5

Apid=

12SC

=121

SSC=

13PT

ime=

4.25

Apid=

12SC

=131

SSC=

14PT

ime=

4.50

Apid=

12SC

=141

SSC=

15PT

ime=

4.75

Apid=

12SC

=151

SSC=

16PT

ime=

5.00

Apid=

19SC

=121

SSC=

4PT

ime=

5.00

Apid=

15SC

=121

SSC=

4PT

ime=

5.00

Apid=

18SC

=121

SSC=

4PT

ime=

5.00

Apid=

126

SC=1

51SS

C=16

PTim

e=5.0

0

Apid=

12SC

=161

SSC=

17PT

ime=

5.25

Apid=

12SC

=171

SSC=

18PT

ime=

5.50

Apid=

12SC

=181

SSC=

19PT

ime=

5.75

Apid=

12SC

=191

SSC=

20PT

ime=

6.00

Apid=

19SC

=161

SSC=

5PT

ime=

6.00

Apid=

15SC

=161

SSC=

5PT

ime=

6.00

Apid=

18SC

=161

SSC=

5PT

ime=

6.00

Apid=

12SC

=1SS

C=21

PTim

e=6.2

5

Apid=

12SC

=11

SSC=

22PT

ime=

6.50

Apid=

12SC

=21

SSC=

23PT

ime=

6.75

Apid=

12SC

=31

SSC=

24PT

ime=

7.00

Apid=

19SC

=1SS

C=6

PTim

e=7.0

0

Apid=

15SC

=1SS

C=6

PTim

e=7.0

0

Apid=

18SC

=1SS

C=6

PTim

e=7.0

0

Apid=

126

SC=1

41SS

C=15

PTim

e=4.7

5

Apid=

126

SC=1

31SS

C=14

PTim

e=4.5

0

Apid=

126

SC=1

21SS

C=13

PTim

e=4.2

5

Apid=

126

SC=1

91SS

C=20

PTim

e=6.0

0

Apid=

126

SC=1

81SS

C=19

PTim

e=5.7

5

Apid=

126

SC=1

71SS

C=18

PTim

e=5.5

0

Apid=

126

SC=1

61SS

C=17

PTim

e=5.2

5

Apid=

126

SC=3

1SS

C=24

PTim

e=7.0

0

Apid=

126

SC=2

1SS

C=23

PTim

e=6.7

5

Apid=

126

SC=1

1SS

C=22

PTim

e=6.5

0

Apid=

126

SC=1

SSC=

21PT

ime=

6.25

2.25

2.50

2.75

3.00

3.25

3.50

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

Apid=

126

SC=1

SSC=

1PT

ime=

1.25

SC =

Sho

t Cou

nter

SSC

= P

acke

t Sou

rce

Sequ

ence

Cou

nter

PTim

e =

Pack

et T

ime

Stam

p

= Pa

cket

Page 168:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Science Packets Synchronization

Version 1.7 Page D-6 September 2011

Synchronizing the Ancillary packet with it!s corresponding Science packets can be confusing because Science Data is collected at different rates and the Ancillary Packet is output at a different time than it!s corresponding Science Packets. The diagram below shows graphically when each task collects it!s portion of the ancillary in relation to when the ancillary packet is output by the CT task.

Combine Data From Tasksand Output Ancillary Pkt

Collected

Alt DigAncillary

Photon CntAncillary

Cloud DigAncillary

AncillaryScience

Pkts

Command &Tlm

Ancillary

Forwarded to CT

Collected Forwarded to CT

Collected Forwarded to CT

GP Ancillary

Collected Added to Anc Pkt

CT Data Request

1 10 20 30 40 50 60 70 80 90 100 110

Frame n Frame n+1 Frame n+2

Shot Counter80 90

Timein Sec

1.251.00 1.50 1.75 2.00 2.75 3.00 3.25 3.50 4.75 5.00

Data Collection isAsynchronous tothe shot counter

Page 169:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

GLAS Science Packets Synchronization and Alignment InformationThe Algorithm Theoretical Basis Document

September 2011 Page D-7 Version 1.7

Notes: Altimeter Digitizer Ancillary:

• Ancillary telemetry is collected during the first 4 shots of the frame. • Ancillary telemetry is stamped with the shot count value for the first shot in the

frame where the data is collected. • Ancillary telemetry is collected during the first shot of the frame in 1-Shot mode. • Only one ancillary telemetry packet is generated in 1-Shot mode. • Ancillary data is forwarded to CT on the 40th shot.

Photon Counter Ancillary: • Collected on shot 1 in Science and Engineering modes. • Ancillary telemetry is stamped with the shot count value for the first shot in the

frame where the data is collected. • Ancillary data is forwarded to CT on the 40th shot.

Cloud Digitizer Ancillary: • Fire Cmd, Fire Ack, and GPS 10 Second Pulse forty bit counters are collected on

every shot in all modes. • The rest of the CD ancillary data is collected on shot 1 in Science and

Engineering modes. • Ancillary telemetry is stamped with the shot count value for the first shot in the

frame where the data is collected. • Ancillary data is forwarded to CT on the 40th shot.

GP Ancillary: • GPS collects the GPS 40 bit counter from the CD task every 10 seconds upon the

receipt of the GPS 10 second pulse. This 40 bit counter corresponds to the last 10 second GPS pulse and is included as part of GP's ancillary telemetry.

• Position/Range data is also part of GP!s ancillary telemetry and is updated every second.

• GP will only send ancillary data to the CT task when it receives a ancillary telemetry request packet from CT.

CT Ancillary: • Etalon status information is collected on shot 1. • Dual pin A, B and 532 energy data is collected on every shot. • CT requests ancillary data from the GP task on the 40th shot. All other tasks

automatically forward the data to CT on the 40th shot. • CT adds the new ancillary data from the other tasks to the combined ancillary

packet on the 20th shot. • CT adds it!s own piece of the ancillary data to the combined ancillary packet on

the 40th shot. • Since CT is the sender of the ancillary packet it's own ancillary data is collected

on the current frame where the other tasks data is collected on the previous frame. DC&H does not contribute to the ancillary telemetry

Page 170:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing GLAS Science Packets Synchronization

Version 1.7 Page D-8 September 2011

Page 171:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page E-1 Version 1.7

Appendix E

Laser Energy Calibration

The Laser Energy GLAS Instruments Measurements Summary and the GLAS Laser Gain Correction are discussed in the assigned sub-Appendices.

E.1 Laser Energy GLAS Instruments Measurements Summary - Discussion of Laser Energy Calibration

E.2 GLAS Laser Gain Correction - Discussion of Gain Correction to be applied within the Laser Energy Calculation.

Page 172:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-2 September 2011

Page 173:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-3 Version 1.7

Appendix E.1

"#$%&'()%&*+',"-.'/)$0&12%)0$'3%#$1&%2%)0$'.122#&+

,"-.'45(',&61789:;&;$<'=9";;>#<'?98;&$<'?9.@A#B%&<'?9C;$$D%+

EFGHGIFFJ

Page 174:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-4 September 2011

3%#$1&%2%)0$'.122#&+K ->%&#*%'76L%&'#)M'D#$%&'%)%&*+'2%#$1&%2%)0$'M1&;)*',"-.';)$0&12%)0'0%$0;)*'#0',.N5'O 5627#&;$6)'L;0A'."P5'#>%&#*%'76L%&'2%#$1&%2%)0$'Q%B6&%'M%D;>%&+'06',"-.'

K "#$%&'%)%&*+'2%#$1&%2%)0$'#0'6Q$%&>#06&+K -D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'@#D;Q&#0;6)'K !"#$%&'" "#$%&'%)%&*+'2%#$1&%2%)0$'M1&;)*';)$0&12%)0'PS-5 ( 5627#&;$6)'L;0A'-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'

K !"#$%&'" "#$%&'%)%&*+'M1&;)*'6Q$%&>#06&+'PS-5'O5627#&;$6)'L;0A'-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'

K 56&&%D#0;6)'6B'"#$%&'%)%&*+'2%#$1&%2%)0$'L;0A'"=-'K 56&&%D#0;6)'6B'"#$%&'%)%&*+'2%#$1&%2%)0$'L;0A'":.

Page 175:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-5 Version 1.7

->%&#*%'76L%&'#)M'%)%&*+'2%#$1&%2%)0$'M1&;)*',"-.';)$0&12%)0'0%$0;)*'#0',.N55627#&;$6)'L;0A'."P5'#>%&#*%'76L%&'2%#$1&%2%)0$'Q%B6&%'M%D;>%&+'06',"-.

Page 176:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-6 September 2011

->%&#*%'D#$%&'76L%&'2%#$1&%2%)0'#0',.N5T$;2;D#&'06'."P5'2%0A6MU

"#$%&'610710

EFVW'X:'YJI'4D6@Z;)*'N;D0%&$

.@;%)0%@A'->%&#*%'=6L%&'3%0%&

!"#$%&#'()*#$'+%,%'-)..#-,#+')/'0110'2%3'45'%/+'616 ,"-.

Page 177:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-7 Version 1.7

!

->%&#*%'=6L%&'3%#$1&%2%)0$5627#&;$6)'L;0A'."P5

!"#$ !"#$ %&'() %&'() $"*+,-&)./0&1&2(.3 %&'(),!"#$4$"*+ %&'(),!"#$4$"*+-&)./0&5,678&0,9:; #<(/)',678&0,9:; #=$ > 678&0,9:; #=$ #=$ #=$ > > >

").&0 %)(& ?@A BCDE *7()', ?@A BCDE *7()' ").&0 ?@A BCDE *7()' ?@A BCDE *7()' ?@A BCDE *7()'"#$%&'( )*((*+,,+ (-(( +-.( )-/ (-)( +-.. )-+0 ,-,( ,-/1 23+ (-/4 +-., )-(4 ,-,! ,-,. ,-(/ /-!1 +-.1 /-,1"#$%&'+ )*((*+,,+ (-,( /-(+ )-)! (-+. /-+, )-). 5,-,/ 5,-61 23/ (-+0 /-(, )-/0 5,-,( ,-(, ,-,0 5,-61 /-(1 +-,1"#$%&'/ )*)*+,,+ ,-6. /-+ )-+6 ,-00 /-+. )-+6 ,-,, ,-,1 23( (-(. /-+4 )-)/ 5,-(0 ,-,+ 5,-(4 5(0-+1 ,-.1 5/-01

)*+,-./012.3"#&'"+4.5$67$8".9:;<:=;

!"#$,F2&0GH $"*+,F2&0GH%&0IJ&5,F2&0GH,91K; %&0IJ&5,F2&0GH,91K;

?@A BCDE ?@A BCDE/!-+ 6+-, /)-, 6,-,/+-, 60-0 /+-/ 66-!+)-6 .+-, +0-! .(-)

7%&89%:';<%&=>'?@AB'! C9%&#=%'DEF%&?GB*),'HI

;JKL#<#M8E<'EN'O%&@$-&)./0&5,678&0,9:; !"#$?@A DEF%&'P%#$Q&%:'F8MR'(,4)'SLETU8<='N8LM%&$'8<'KL#T%BCDE DEF%&'P%#$Q&%:'F8MR'!/+'SLETU8<='N8LM%&$'8<'KL#T%*7()' DEF%&'P%#$Q&%:'F8MR'<E'SLETU8<='N8LM%&$'8<'KL#T%

#<(/)',678&0,9:; !"#$?@A DEF%&'#:VQ$M%:'NE&'(,4)'SLETU8<='N8LM%&$'LE$$BCDE DEF%&'#:VQ$M%:'NE&'!/+'SLETU8<='N8LM%&$'LE$$*7()' 2Q@'EN'CTMQ#L'DEF%&'!/+'W'(,4)X'$REQL:'%YQ#L'P%#$Q&%:'DEF%&'OEM#L%&'(),#=$ CS$ELQM%'78NN%&%<T%'S%MF%%<'P%#$Q&%:'DEF%&'5'CTMQ#L'DEF%&'?$REQL:'S%'I%&E'8N'N8LM%&'#MM%<Q#M8E<'8$'TE&&%TMB%&'(),> D%&T%<M#=%'78NN%&%<T%'S%MF%%<'P%#$Q&%:'DEF%&'5'CTMQ#L'DEF%&'?$REQL:'S%'I%&E'8N'N8LM%&'#MM%<Q#M8E<'8$'TE&&%TMB

%&'(),!"#$4$"*+ 78NN%&%<T%'S%MF%%<'Z"C2'CTMQ#L'DEF%&'#<:'2"O['DEF%&'?CS$ELQM%'E&'K%&T%<M#=%B

Page 178:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-8 September 2011

"#$%&'()%&*+'2%#$1&%2%)0'1$;)*'A;*A'%)%&*+'670;@#D'M%0%@06&$

"#$%&'610710

,"-.

R;@A&6;@'4G.

YJI'4D6@Z;)*'N;D0%&

36D%@0&6)'%)%&*+'M%0%@06&$

7/#$&3'+%,%'-)..#-,#+')/'0110'2%3'689:)';%<#$'6'+%,%'*#$#'-)..#-,#+

Page 179:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-9 Version 1.7

"#$%&'I'O #0')62;)#D'P%27%&#01&%>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

Page 180:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-10 September 2011

"#$%&'J'O #0')62;)#D'P%27%&#01&%>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

Page 181:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-11 Version 1.7

"#$%&'()%&*+'.122#&+?1)%'Y'IFFI

!$L+,MIGN,F2&0GH,-7'&<(072,-&)./0&1&2(.-I2O,F2&0GH,91K; -)PO,F2&0GH,91K; #J&0O,F2&0GH,91K;

").&0 ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+\ //-, 6+-0 )!-0 .)-, //-0 6.-!"#$%&'/\\ +)-! 6)-4 /4-. .4-, +!-+ .(-6

!"#$,%&0IJ&5,F2&0GH3 $"*+,%&0IJ&5,F2&0GH%&0IJ&5,F2&0GH,91K; %&0IJ&5,F2&0GH,91K;

?@A BCDE ?@A BCDE/!-+ 6+-, /)-, 6,-,/+-, 60-0 /+-/ 66-!+)-6 .+-, +0-! .(-)

)>"+&'"3.EA"+84.F.G'"+$8".H,I"+:J=.KLM*+,-./#&3".NO

!$L+,MIGN,F2&0GH,-7'&<(072,-&)./0&1&2(. -7'&<(072,4,!"#$,%&0IJ&5 -7'&<(072,4,!"#$,%&0IJ&5-I2O,F2&0GH,91K; -)PO,F2&0GH,91K; #J&0O,F2&0GH,91K; #=$ #=$ > >

").&0 ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+\ //-, 6+-0 )!-0 .)-, //-0 6.-! (-0 5(-) !-!1 5(-.1"#$%&'/\\ +)-! 6)-4 /4-. .4-, +!-+ .(-6 ,-! 5,-/ (-.1 5,-)1

!$L+,MIGN,F2&0GH,-7'&<(072,-&)./0&1&2(. -7'&<(0724,$"*+ -7'&<(0724,$"*+-I2O,F2&0GH,91K; -)PO,F2&0GH,91K; #J&0O,F2&0GH,91K; #=$ #=$ > >

").&0 ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+\ //-, 6+-0 )!-0 .)-, //-0 6.-! (-6 (-, )-01 (-/1"#$%&'/\\ +)-! 6)-4 /4-. .4-, +!-+ .(-6 5)-/ ,-/ 5(6-,1 ,-)1

)/%$%&D%&6D.,A.;J9P9.5,&A%D))/%$%&D%&6D.,A.9QN9Q.5,&A%D

Page 182:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-12 September 2011

"#$%&'%)%&*+'2%#$1&%2%)0$'#0'6Q$%&>#06&+

Page 183:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-13 Version 1.7

((

"#$%&'()%&*+'2%#$1&%2%)0'1$;)*'A;*A'%)%&*+'670;@#D'M%0%@06&$'#0'XQ$%&>#06&+'D%>%D

"#$%&'610710

,"-.

R;@A&6;@'4G.

YJI'4D6@Z;)*'N;D0%&

36D%@0&6)'%)%&*+'M%0%@06&$

7/#$&3'+%,%'-)..#-,#+')/'0110'2%3'0=6

Page 184:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-14 September 2011

(+

"#$%&'E'()%&*+'O #0')62;)#D'P%27%&#01&%

5!,,, , !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,, ),,,,,-,/,

,-,/!

,-,),

,-,)!

,-,!,

,-,!!

,-,4,

,-,4!

,-,6,

']8$8SL%'^_

;<%&=>'?AB

2REM'3Q@S%&

>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,460! ,-,,((+ ,-,6,4/ ,-,!44(

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,/)+0 ,-,,+,) ,-,)0(6 ,-,/+0/

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,460! ,-,,((+ ,-,6,4/ ,-,!44(

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,/)+0 ,-,,+,) ,-,)0(6 ,-,/+0/

Page 185:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-15 Version 1.7

(/

"#$%&'E'()%&*+'R;$0&;Q10;6)$

,-,!. ,-,4, ,-,4+ ,-,4) ,-,44 ,-,4. ,-,6,,

!,,

(,,,

(!,,

+,,,

[EQ<M$

;<%&=>'`8<$

,

+,

),

4,

.,

(,,,-,!. ,-,4, ,-,4+ ,-,4) ,-,44 ,-,4. ,-,6,

[Q@

QL#M89%'[EQ<M$

QR,BCDE,21

,-,/) ,-,/4 ,-,/. ,-,), ,-,)+ ,-,)) ,-,)4 ,-,).,

(,,,

+,,,

/,,,

),,,

!,,,

4,,,

6,,,

.,,,

[EQ<M$

;<%&=>'`8<$

,

+,

),

4,

.,

(,,,-,/) ,-,/4 ,-,/. ,-,), ,-,)+ ,-,)) ,-,)4 ,-,).

[Q@

QL#M89%'[EQ<M$

TI.IU'&,?@A,21

Page 186:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-16 September 2011

(!

"#$%&'E'P60#D'()%&*+'O #0')62;)#D'P%27%&#01&%

5!,,, , !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,, ),,,,,-,/,,-,/!,-,),,-,)!,-,!,,-,!!,-,4,,-,4!,-,6,,-,6!,-,.,,-,.!,-,0,,-,0!,-(,,,-(,!

']8$8SL%'^_'OEM#L

;<%&=>'?AB

2REM'3Q@S%&

,-(,( ,-(,+ ,-(,/ ,-(,) ,-(,! ,-(,4,

+,,

),,

4,,

.,,

(,,,

(+,,

(),,

[EQ<M$

`8<$

,

+,

),

4,

.,

(,,,-(,( ,-(,+ ,-(,/ ,-(,) ,-(,! ,-(,4

[Q@

QL#M89%'[EQ<M$

"#$%&'('OEM#L';<%&=>'H8$ME=&#@'#<:'[7a

*7()',F2&0GH,,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-(,++) ,-,,(/6 ,-(,40) ,-(,,+(

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,460! ,-,,((+ ,-,6,4/ ,-,!44(

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,/)+0 ,-,,+,) ,-,)0(6 ,-,/+0/

*7()',F2&0GH,,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-(,++) ,-,,(/6 ,-(,40) ,-(,,+(

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,460! ,-,,((+ ,-,6,4/ ,-,!44(

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,/)+0 ,-,,+,) ,-,)0(6 ,-,/+0/

Page 187:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-17 Version 1.7

5627#&;$6)'6B'[\1;%0]'L;0A'[C6;$+]'R#0#'.0#0;$0;@$

b3E8$>c'L#$%&'%<%&=>'&%=8E<'8$':%N8<%:'#$'#'$%TM8E<'EN':#M#'MR#M'8<TLQ:%$'L#&=%'NLQTMQ#M8E<$'8<'MR%'L#$%&'%<%&=>':Q%'ME'@E:%'TE@K%M8M8E<

bdQ8%Mc'L#$%&'%<%&=>'&%=8E<'8$':%N8<%:'#$'#'$%TM8E<'EN':#M#'FR%&%'MR%&%'#&%'<E'L#&=%'%<%&=>'NLQTMQ#M8E<$':Q%'ME'@E:%'TE@K%M8M8E<

Page 188:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-18 September 2011

"#$%&'E'[\1;%0'()%&*+':%*;6)]

, +,, ),, 4,, .,, (,,,,-,,

,-,(

,-,+

,-,/

,-,)

,-,!

,-,4

,-,6

,-,.

,-,0

,-(,

,-((

'dQ8%M!/+'dQ8%M^_'dQ8%MOEM#L

;<%&=>'?AB

2REM'3Q@S%&

-&)2 $%V/I&(,*7()',F2&0GH ,-(,((/ /-)!(04;5)V/I&(,QR,F2&0GH ,-,4640 /-(+4/);5)V/I&(,?@A,F2&0GH ,-,//)) (-+,,46;5)

-&)2 $%V/I&(,*7()',F2&0GH ,-(,((/ /-)!(04;5)V/I&(,QR,F2&0GH ,-,4640 /-(+4/);5)V/I&(,?@A,F2&0GH ,-,//)) (-+,,46;5)

Page 189:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-19 Version 1.7

"#$%&'E'C6;$+'R#0#'#)M'\1;%0'()%&*+'R#0#'5627#&;$6)

W7I.H,%)() V/I&(,%)() W7I.H,4,V/I&(#J&0)G& $(,%&J #J&0)G& $(,%&J %&'(),#J&0)G&

*7()',F2&0GH,91K; (,+-+) (-/6 (,(-(/ ,-/)! (-((BCDE,21,F2&0GH,91K 46-0! (-(+ 46-40 ,-/(+ ,-+4?@A,21,F2&0GH,91K; /)-+0 +-,) //-)) ,-(+ ,-.!

+72<'/.I72S^<'MR8$'%J#@KL%e'FR%<'TE@K#&8<='#&S8M&#&>'$%TM8E<$'EN'bYQ8%Mc'#<:'b<E8$>c':#M#e'MR%'@%#<'9#LQ%'EN'MR%'MEM#L'L#$%&'%<%&=>'T#<'TR#<=%'S>'(-(('@A'?E&'f'(1B-''

OR%'@%#<'EN'MR%'(,4)'#<:'!/+'<@'?Z&%%<B'%<%&=8%$'T#<'TR#<=%'S>',-+4'@A'#<:',-.!'@A'?E&',-/.1'#<:'+-)61'&%$K%TM89%L>B-

ORQ$e'#<>'L#$%&'%<%&=>'@%#$Q&%@%<M'F8LL'R#9%'#'$@#LL'%&&E&'?f(1B:%K%<:8<='E<'MR%'$#@KL8<='M8@%'?&%=8E<B'#<:'MR%'<Q@S%&'EN'b<E8$>c':#M#'8<TLQ:%:'8<'MR%'$#@KL%-

Page 190:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-20 September 2011

(0

, (,,,, +,,,, /,,,, ),,,, !,,,, 4,,,, 6,,,, .,,,,,-,,,,-,,!,-,(,,-,(!,-,+,,-,+!,-,/,,-,/!,-,),,-,)!,-,!,,-,!!,-,4,,-,4!,-,6,,-,6!,-,.,,-,.!,-,0,,-,0!,-(,,

']8$8SL%'^_

;<%&=>'?AB

2REM'3Q@S%&

"#$%&'I'()%&*+'O -DD'M#0#';)@D1M;)*'D#$%&'01&)'6)

^<8M8#L'MQ&<5E<

CL8=<@%<M'[R%TU$"#$%&'`LETU%:

>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

Page 191:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-21 Version 1.7

, !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,,,-,/

,-,)

,-,!

,-,4

,-,6

,-,.

']8$8SL%'^_

;<%&=>'?AB

2REM'3Q@S%&

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,664. .-!++/+;5) ,-,.,!0 ,-,4)6)

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,//.! ,-,,(4+ ,-,!(.) ,-,/+6

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,664. .-!++/+;5) ,-,.,!0 ,-,4)6)

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,//.! ,-,,(4+ ,-,!(.) ,-,/+6

>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

.D67%';$'7&6Q#QD+'M1%'06'M%0%@06&'6&'B;D0%&'A%#0;)*

"#$%&'I'()%&*+'O #0'')62;)#D'P%27%&#01&%

Page 192:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-22 September 2011

+

"#$%&'I'()%&*+'R;$0&;Q10;6)$

,-,44 ,-,4. ,-,6, ,-,6+ ,-,6) ,-,64 ,-,6. ,-,.,,

!,,

(,,,

(!,,

+,,,

+!,,

[EQ<M$

`8<$

,

+,

),

4,

.,

(,,,-,44 ,-,4. ,-,6, ,-,6+ ,-,6) ,-,64 ,-,6. ,-,.,

[Q@

QL#M89%'[EQ<M$

QR,BCDE,21

,-,/) ,-,/4 ,-,/. ,-,), ,-,)+ ,-,)) ,-,)4 ,-,). ,-,!, ,-,!+,

(,,,

+,,,

/,,,

),,,

!,,,

4,,,

6,,,

[EQ<M$

;<%&=>'`8<$

,

+,

),

4,

.,

(,,,-,/! ,-,), ,-,)! ,-,!,

[Q@

QL#M89%'[EQ<M$

TI.IU'&,?@A,21

Page 193:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-23 Version 1.7

++

"#$%&'I'()%&*+'O C6&2#D;^%M'R%>;#0;6)'B&62'0A%'3%#)

, !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,,5,-(!

5,-(,

5,-,!

,-,,

,-,!

,-(,

,-(!

,-+,

,-+!

,-/,

,-/!

,-),

,-)!']8$7%9P%#<'^_7%9P%#<

;<%&=>'5'3E&@#L8I%:'7%98#M8E<'N&E@'P%#<

2REM'3Q@S%&

Page 194:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-24 September 2011

"#$%&'J'()%&*+'O -DD'M#0#<';)@D1M;)*'D#$%&'01&)'6)

, (,,,, +,,,, /,,,, ),,,, !,,,, 4,,,, 6,,,,

,-,,

,-,+

,-,)

,-,4

,-,.

,-(,

']8$8SL%'^_

;<%&=>'?AB

2REM'3Q@S%&

^<8M8#L'MQ&<5E<

CL8=<@%<M'[R%TU$"#$%&'`LETU%:

>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

Page 195:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-25 Version 1.7

5!,,, , !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,, ),,,,,-,+

,-,/

,-,)

,-,!

,-,4

,-,6

,-,.

,-,0']8$8SL%'^_

;<%&=>'?AB

2REM'3Q@S%&

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,.+4. !-+((.;5) ,-,.!)6 ,-,6.04

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,+/.6 4-.06//;5) ,-,/(0+ ,-,+/()

QR,BCDE,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,.+4. !-+((.;5) ,-,.!)6 ,-,6.04

TI.IU'&,?@A,21,$()(I.(I<.SP%#< 27 P#J8@Q@ P8<8@Q@,-,+/.6 4-.06//;5) ,-,/(0+ ,-,+/()

>$%$.?$'".@""A.6,++"6%"3.B,+.C:/.$A3.B&#%"+.1+$AD-&%%$A6"

.D67%'7&6Q#QD+'M1%'06'M%0%@06&'6&'B;D0%&'A%#0;)*

"#$%&'J'()%&*+'O #0')62;)#D'P%27%&#01&%

Page 196:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-26 September 2011

"#$%&'J'()%&*+'R;$0&;Q10;6)$

,-,60 ,-,., ,-,.( ,-,.+ ,-,./ ,-,.) ,-,.!,

(,,,

+,,,

/,,,

),,,

[EQ<M$

;<%&=>'`8<$

,

+,

),

4,

.,

(,,,-,60 ,-,., ,-,.( ,-,.+ ,-,./ ,-,.) ,-,.!

[Q@

QL#M89%'[EQ<M$

QR,BCDE,21

,-,+) ,-,+! ,-,+4 ,-,+6 ,-,+. ,-,+0 ,-,/, ,-,/(,

+,,,

),,,

4,,,

.,,,

[EQ<M$

;<%&=>'`8<$

,

+,

),

4,

.,

(,,,-,+) ,-,+4 ,-,+. ,-,/,

[Q@

QL#M89%'[EQ<M$

TI.IU'&,?@A,21

Page 197:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-27 Version 1.7

+4

"#$%&'J'()%&*+'O C6&2#D;^%M'R%>;#0;6)'B&62'0A%'3%#)

5!,,, , !,,, (,,,, (!,,, +,,,, +!,,, /,,,, /!,,, ),,,,

5,-,!

,-,,

,-,!

,-(,

,-(!

,-+,

,-+!

,-/,

,-/!

']8$7%9P%#<'^_7%9P%#<

;<%&=>'5'3E&@#L8I%:'7%9#8M8E<'N&E@'MR%'P%#<

2REM'3Q@S%&

Page 198:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-28 September 2011

"#$%&'()%&*+'.122#&+X@0'H'IFFI

XU.&0J)(70H,MIGN,F2&0GH,-7'&<(072,-&)./0&1&2(. XU.&0J)(70H,4,!$L+,%&'()-I2O,F2&0GH,91K; -)PO,F2&0GH,91K; #J&0O,F2&0GH,91K; #=$ #=$ > >

").&0 ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( /+-0 !4-4( )0-+ 6,-4 /)-/ 4.-, !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+ /+-6 4)-6 .,-4 .,-4 //-0 66-6 ,-, 5,-. 5,-(1 5(-(1"#$%&'/ +/-( 60-, /(-0 .!-! +/-0 .+-6 5(-// (-, 5!-41 (-+1

!$L+,MIGN,F2&0GH,-7'&<(072,-&)./0&1&2(.-I2O,F2&0GH,91K; -)PO,F2&0GH,91K; #J&0O,F2&0GH,91K;

").&0 ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( !"#$%&'()*&+ !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+\ //-, 6+-0 )!-0 .)-, //-0 6.-!"#$%&'/\\ +)-! 6)-4 /4-. .4-, +!-+ .(-6

Page 199:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-29 Version 1.7

-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'@#D;Q&#0;6)>;!?'+#,#-,)$'+%,%'-)..#-,#+')/@0110A'2%3'095'*B,C'2#,#-,)$'6A'2B&B,BD#$'6'EFG >%B/H56I0110A'2%3<'6=5A'016A'%/+'05J'*B,C'2#,#-,)$'0A'2B&B,BD#$'0''EFG >%B/H56I!<<KLM,B)/@':),CB/&'-C%/&#+'N#,*##/'2%3<'095A'6=5A'016A'05J'%/+'2%3'0=6'*C#/',C#'+#,#-,)$'6A'%/+'0A'%/+',C#'CB&C'#/#$&3'O).#-,$)/'L#%<K$#L#/,<'*#$#',%P#/

DQL$%'C@

KL8MQ:%'?TEQ<M$B

O8@%

P#J'[EQ<M

P8<'[EQ<M?`#TU=&EQ<:B

DQL$%'G#9%NE&@

Page 200:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-30 September 2011

($0;2#0%'6B',"-.'()%&*+'B&62'-D0;2%0%&'R%0%@06&$

Page 201:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-31 Version 1.7

($0;2#0%'6B',"-.'()%&*+'B&62'-D0;2%0%&'R%0%@06&$

Page 202:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-32 September 2011

-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'@#D;Q&#0;6)'R%0%@06&E'R;*;0;^%&'E

R#+'IVW

Page 203:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-33 Version 1.7

"#$%&'E',"-.'R%0%@06&E'O -""'M#0#<';)@D1M;)*'D#$%&'01&)'6)

^<8M8#L'MQ&<5E<78=8M8I%&'8$'$#MQ&#M%:'#M'MQ&<'E<

Page 204:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-34 September 2011

"#$%&'E',"-.'R%0%@06&E'O #0')62;)#D'P%27%&#01&%

Page 205:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-35 Version 1.7

/)

"#$%&'E',"-.'R%0%@06&E'()%&*+'.0#0;$0;@$'O #0')62;)#D'P%27%&#01&%

,-,!! ,-,4, ,-,4! ,-,6, ,-,6!,

+,,

),,

4,,

.,,

(,,,

(+,,

[EQ<M$

`8<$

+,

),

4,

.,

(,,,-,!! ,-,4, ,-,4! ,-,6, ,-,6!

[Q@

QL#M89%'[EQ<M$

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,4.,0 ,-,,+!0 ,-,6.// ,-,!(,4

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,4.,0 ,-,,+!0 ,-,6.// ,-,!(,4

O#8L'8<'MR%':8$M&8SQM8E<'&%NL%TM$'NLQTMQ#M8E<$'8<'MR%'L#$%&'%<%&=>':Q%'ME'@E:%'TE@K%M8M8E<'?b<E8$>c':#M#B

Page 206:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-36 September 2011

"#$%&'I',"-.'R%0%@06&E'O -""'M#0#<';)@D1M;)*'D#$%&'01&)'6)

^<8M8#L'MQ&<5E<78=8M8I%&'8$'$#MQ&#M%:'#M'MQ&<'E<

Page 207:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-37 Version 1.7

/4

"#$%&'I',"-.'R%0%@06&E'O #0')62;)#D'P%27%&#01&%

,-,4! ,-,6, ,-,6! ,-,., ,-,.!,

(,,

+,,

/,,

),,

!,,

4,,

6,,

[EQ<M$

`8<$

+,

),

4,

.,

(,,,-,4! ,-,6, ,-,6! ,-,., ,-,.!

[Q@

QL#M89%'[EQ<M$

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,66.6 ,-,,+!! ,-,.0,) ,-,4,+!

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,66.6 ,-,,+!! ,-,.0,) ,-,4,+!

Page 208:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-38 September 2011

"#$%&'J',"-.'R%0%@06&E'O -""'M#0#<';)@D1M;)*'D#$%&'01&)'6)

^<8M8#L'MQ&<5E<78=8M8I%&'8$'$#MQ&#M%:'#M'MQ&<'E<

Page 209:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-39 Version 1.7

"#$%&'J',"-.'R%0%@06&E'O #0')62;)#D'P%279

Page 210:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-40 September 2011

/

"#$%&'J',"-.'R%0%@06&E'.0#0;$0;@$O #0')62;)#D'P%27

,-,6, ,-,6! ,-,., ,-,.! ,-,0,,

(,,

+,,

/,,

),,

!,,

[EQ<M$

`8<$

+,

),

4,

.,

(,,,-,6, ,-,6! ,-,., ,-,.! ,-,0,

[Q@

QL#M89%'[EQ<M$

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,.+6+ ,-,,+! ,-,0(6) ,-,4.44

F2&0GH,$()(I.(I<.,9K;SP%#< 2M7%9 P#J8@Q@ P8<8@Q@,-,.+6+ ,-,,+! ,-,0(6) ,-,4.44

Page 211:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-41 Version 1.7

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*';)$0&12%)0'#)M'6Q$%&>#06&+'PS-5

K !"" PS-5'M#0#'#&%';)'#;&O>#@1129K -DD'45('%)%&*+'T36D%@0&6)U'2%#$1&%2%)0$'#&%'$#.%,B"#K -M_1$02%)0$'06'0A%'45('#00%)1#0;6)'D%>%D$'L%&%')%%M%M'M1&;)*'0A%'0%$0'TA;*AD;*A0%M';)'26$0'7D60$U

K PA%'#D0;2%0%&'M%0%@06&'%)%&*+'>#D1%$'TEFVW')2'6)D+U'#&%'M%&;>%M'1$;)*'0A%'$#2%'#D*6&;0A2'#$';)'6&Q;0

K C60%'0A#0'0A%&%'L;DD'Q%'#'@A#)*%';)'0A%'#D0;2%0%&'M%0%@06&'%)%&*+'LA%) P` *#;)'#M_1$02%)0$'L%&%'2#M%

Page 212:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-42 September 2011

Q#.%,B"# "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*';)$0&12%)0'PS-5'L;0A'3#;)'P#&*%0

K PA%'EFVW'#)M'YJI')2'%)%&*+'2%#$1&%2%)0$'B&62'0A%'3#;)'P#&*%0'1$%'0L6<'D6LO%)%&*+'M%0%@06&$'T36D%@0&6) ?J.OEFU'L;0A'B;Q%&'7;@Z'6BB$'6)'#)';)0%*&#0;)*'$7A%&%'T$%%')%`0'$D;M%U9

K -DD'36D%@0&6)'%)%&*;%$'#&%'$#.%,B"#'/),'%N<).K,#K -M_1$02%)0$'06'0A%'#00%)1#0;6)'D%>%D$'L%&%'2#M%'M1&;)*'0A%'0%$0'TA;*AD;*A0%M';)'26$0'7D60$U

K PA%'#D0;2%0%&'M%0%@06&'%)%&*+'>#D1%$'TEFVW')2'6)D+U'#&%'M%&;>%M'1$;)*'0A%'$#2%'#D*6&;0A2'#$';)'6&Q;0

K C60%'0A#0'0A%&%'L;DD'Q%'#'@A#)*%';)'0A%'#D0;2%0%&'M%0%@06&'%)%&*+'LA%)'P` *#;)'#M_1$02%)0$'L%&%'2#M%9'

Page 213:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-43 Version 1.7

)/

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*'/)$0&12%)0'PS-5'1$;)*'3#;)'P#&*%0'#)M'45('"#$%&'P%$0'.+$0%2'T"$&P.U

^<M%=&#M8<='2KR%&%

_8$L%>$

a8LM%&"ET#M8E<+

`*2(

2_2'"O_

P#8<'"O_

/J/'gKM8T#L'`%<TR

Z"C2'"#$%&'D8TUENN

(,4)';'@E<8ME&

!/+';'@E<8ME&

"#@%#$Q&%@%<M

2RQMM%&

`*2+

OE'2_2'O#&=%M

OE'Z"C2M%L%$TEK%

a8LM%&"ET#M8E</

2REF%R%#:$!"#$%&'(&)*(*)(+,#-./

`%#@'_%:QT%&

a8LM%&"ET#M8E<!

a8LM%&'"ET#M8E<(

CK%&MQ&%'h'a8LM%&

a8LM%&'"ET#M8E<)

$

D27

J/J/$

OE'!/+';<%&=>'PE<8ME&

OE'(,4)';<%&=>'PE<8ME&

Page 214:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-44 September 2011

"#$%&'E

Page 215:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-45 Version 1.7

)!

"#$%&'E'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%''TE'2;)'#>%&#*%$U

C8&5C8&

PEL%TM&E<'&%#:8<=$'8<8M8#LL>'$#MQ&#M%:[E&&%TM%:'$#MQ&#M8E<'S>'#MM%<Q#M8<='$8=<#L

Page 216:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-46 September 2011

"#$%&'E'()%&*;%$''TE'2;)'#>%&#*%$U'>$9'/)M%`

C8&5C8&

PEL%TM&E<'&%#:8<=$'8<8M8#LL>'$#MQ&#M%:[E&&%TM%:'$#MQ&#M8E<'S>'#MM%<Q#M8<='$8=<#L

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 217:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-47 Version 1.7

"#$%&'E'X$@9'a'-279'51&&%)0''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 218:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-48 September 2011

"#$%&'E'P%27%&#01&%$ TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 219:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-49 Version 1.7

"#$%&'E'()%&*+'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

C8&5C8&

Page 220:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-50 September 2011

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 221:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-51 Version 1.7

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 222:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-52 September 2011

"#$%&'E'R&;>%'=1D$%L;M0A'#)M':%B%&%)@%'P%27%&#01&%'TE'2;)'#>%&#*%$U'>$9'P;2%

Page 223:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-53 Version 1.7

"#$%&'E'()%&*+'#)M',#;)'TE'2;)'#>%&#*%$U'>$9'/)M%`

C8&5C8&

Page 224:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-54 September 2011

"#$%&'E'()%&*+'#)M':%B9'P%279'TE'2;)'#>%&#*%$U'>$9'/)M%`

C8&5C8&

Page 225:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-55 Version 1.7

"#$%&'I

Page 226:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-56 September 2011

"#$%&'I'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%''TE'2;)'#>%&#*%$U

W7,)I04)I0,U).&'I2&,5)(),)J)I')U'&,Y70,").&0,A

Page 227:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-57 Version 1.7

"#$%&'I'()%&*;%$''TE'2;)'#>%&#*%$U'>$9'/)M%`

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 228:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-58 September 2011

!6

"#$%&'I'P%27%&#01&%$''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 229:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-59 Version 1.7

!

"#$%&'I'R&;>%'=1D$%L;M0ATE'2;)'#>%&#*%$U'>$9'/)M%`

Page 230:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-60 September 2011

"#$%&'I'R&;>%'=1D$%L;M0A'#)M':%B%&%)@%'P%27%&#01&%'TE'2;)'#>%&#*%$U'>$9'P;2%

Page 231:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-61 Version 1.7

"#$%&'J

Page 232:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-62 September 2011

"#$%&'J'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%''TE'2;)'#>%&#*%$U

C8&5C8&i

W7,)I04)I0,U).&'I2&,5)(),)J)I')U'&,Y70,").&0,@,Z0I70,(7,.()0(,7Y,*T#+

Page 233:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-63 Version 1.7

4+

"#$%&'J'()%&*;%$'TE'2;)'#>%&#*%$U'>$9'/)M%`

C8&5C8&i

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 234:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-64 September 2011

"#$%&'J'P%27%&#01&%$'TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 235:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-65 Version 1.7

"#$%&'J'R&;>%'=1D$%L;M0A'TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 236:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-66 September 2011

"#$%&'J'R&;>%'=1D$%L;M0A'a':%B'P%27'TE'2;)'#>%&#*%$U'>$9'P;2%

Page 237:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-67 Version 1.7

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*';)$0&12%)0'PS-5

3;);'P#&*%0

G##.1RG2.3$%$.$+".,A".-&AS%".$'"+$8"D

Page 238:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-68 September 2011

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*';)$0&12%)0'PS-5'L;0A'3;);'P#&*%0

K PA%'EFVW'#)M'YJI')2'%)%&*+'2%#$1&%2%)0$'B&62'0A%'3;);'P#&*%0'1$%'0L6<'D6LO%)%&*+'M%0%@06&$'T36D%@0&6) ?J.OEFU'L;0A'#'B;Q%&'7;@Z'6BB'T$%%')%`0'$D;M%U9

K -DD 36D%@0&6) %)%&*;%$'#&%'$#.%,B"#'/),'%N<).K,#K -M_1$02%)0$'06'0A%'#00%)1#0;6)'D%>%D$'L%&%'2#M%'M1&;)*'0A%'0%$0'TA;*AD;*A0%M';)'7D60$U

K PA%'#D0;2%0%&'M%0%@06&'%)%&*+'>#D1%$'TEFVW')2'6)D+U'#&%'M%&;>%M'1$;)*'0A%'$#2%'#D*6&;0A2'#$';)'6&Q;0

K C60%'0A#0'0A%&%'L;DD'Q%'#'@A#)*%';)'0A%'#D0;2%0%&'M%0%@06&'%)%&*+'LA%)'*#;)'#M_1$02%)0$'L%&%'2#M%9'

Page 239:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-69 Version 1.7

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*'/)$0&12%)0'PS-5'1$;)*'3;);'P#&*%0'4%#2'R127'#)M'45('"#$%&'P%$0'.+$0%2'T"$&P.U

P#8<'"O_

OE'Z"C2'M%L%$TEK%

Z"C2'"#$%&'D8TU5ENN

a8LM%&"ET#M8E<'/

a8LM%&'"ET#M8E<'+

_8$L%>$

G#=E<'FR%%L2REF%&R%#:$

"8=RM[LE$%5EQM'`EJ`%#@':Q@K*`L#TU'=L#$$

`*2

a8LM%&"ET#M8E<'(

OE'"2&O2'!/+';<%&=>'PE<8ME&

OE'"2&O2'(,4);<%&=>'PE<8ME&

OE'CO2'Z"C2'"#$%&D8TU5ENN'7%M%TME&

a%%:MR&EQ=R$

Page 240:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-70 September 2011

"#$%&'E

Page 241:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-71 Version 1.7

6,

"#$%&'E'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

C8&5C8&

Page 242:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-72 September 2011

6

"#$%&'E'()%&*;%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

C8&5C8&

78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 243:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-73 Version 1.7

"#$%&'E'()%&*+'#)M',#;)'TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 244:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-74 September 2011

"#$%&'E'()%&*+'#)M':%B9'P%279'TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 245:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-75 Version 1.7

6)

"#$%&'E'X$@9'a'-279'51&&%)0''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 246:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-76 September 2011

6!

"#$%&'E'P%27%&#01&%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

Page 247:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-77 Version 1.7

64

"#$%&'E'()%&*+'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 248:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-78 September 2011

66

"#$%&'E':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 249:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-79 Version 1.7

"#$%&'E':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'P;2%

O8@%$M#@K'?$%T$B

Page 250:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-80 September 2011

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 251:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-81 Version 1.7

"#$%&'I

Page 252:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-82 September 2011

"#$%&'I'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'TE'2;)'#>%&#*%$U

78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

C8&5C8&

Page 253:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-83 Version 1.7

.

"#$%&'I'()%&*;%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

C8&5C8&

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

Page 254:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-84 September 2011

"#$%&'I':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 255:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-85 Version 1.7

"#$%&'I':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'P;2%

O8@%$M#@K'?$%T$B

Page 256:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-86 September 2011

"#$%&'J

Page 257:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-87 Version 1.7

"#$%&'J'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'TE'2;)'#>%&#*%$U

78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

C8&5C8&i

Page 258:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-88 September 2011

"#$%&'J'()%&*;%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

^<:%J

C8&5C8&i

78NN%&%<T%'8<'PEL%TM&E<'&%#:8<=$':Q%'ME'#:VQ$M@%<M$'8<'MR%'`[;

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 259:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-89 Version 1.7

"#$%&'J':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 260:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-90 September 2011

"#$%&'J':%B%&%)@%'P%27%&#01&%'#)M'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'P;2%

Page 261:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-91 Version 1.7

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*'6Q$%&>#06&+'PS-5

G##.1RG2.3$%$.$+".,A".-&AS%".$'"+$8"D

Page 262:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-92 September 2011

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*'6Q$%&>#06&+'PS-5

PA%'EFVW'#)M'YJI')2'%)%&*+'2%#$1&%2%)0$'B&62'0A%'3;);'P#&*%0'1$%'0L6<'D6LO%)%&*+'M%0%@06&$'T36D%@0&6) ?J.OEFU'L;0A'B;Q%&'7;@Z'6BB$'6)'#)';)0%*&#0;)*'$7A%&%'T$%%')%`0'$D;M%U9-DD 36D%@0&6) %)%&*;%$'#&%'$#.%,B"#'/),'%N<).K,#-M_1$02%)0$'06'0A%'#00%)1#0;6)'D%>%D$'L%&%'2#M%'M1&;)*'0A%'0%$0'TA;*AD;*A0%M';)'7D60$UPA%'#D0;2%0%&'M%0%@06&'%)%&*+'>#D1%$'TEFVW')2'6)D+U'#&%'M%&;>%M'1$;)*'0A%'$#2%'#D*6&;0A2'#$';)'6&Q;0C60%'0A#0'0A%&%'L;DD'Q%'#'@A#)*%';)'0A%'#D0;2%0%&'M%0%@06&'%)%&*+'LA%)'*#;)'#M_1$02%)0$'L%&%'2#M%9'

Page 263:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-93 Version 1.7

!"#$%&'" "#$%&'()%&*+'3%#$1&%2%)0$'M1&;)*'XQ$%&>#06&+'PS-5'1$;)*'3;);'P#&*%0'4%#2'R127'#)M'45('"#$%&'P%$0'.+$0%2'T"$&P.U

P#8<'"O_

OE'Z"C2'M%L%$TEK%

Z"C2'"#$%&'D8TU5ENN

a8LM%&"ET#M8E<'/

a8LM%&'"ET#M8E<'+

_8$L%>$

G#=E<'FR%%L2REF%&R%#:$

"8=RM[LE$%5EQM'`EJ`%#@':Q@K*`L#TU'=L#$$

`*2

a8LM%&"ET#M8E<'(

OE'"2&O2'!/+';<%&=>'PE<8ME&

OE'"2&O2'(,4);<%&=>'PE<8ME&

OE'CO2'Z"C2'"#$%&D8TU5ENN'7%M%TME&

a%%:MR&EQ=R$

Page 264:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-94 September 2011

"#$%&'E

Page 265:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-95 Version 1.7

"#$%&'E'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'

Page 266:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-96 September 2011

C8&5C8&

Page 267:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-97 Version 1.7

"#$%&'E'()%&*+'#)M',#;)'TE'2;)'#>%&#*%$U'>$9'/)M%`

^<:%J

Page 268:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-98 September 2011

"#$%&'E'()%&*+'#)M':%B9'P%279'TE'2;)'#>%&#*%$U'>$9'/)M%`

^<:%J

Page 269:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-99 Version 1.7

"#$%&'E'X$@9'a'-279'51&&%)0''TE'2;)'#>%&#*%$U'>$9'/)M%`

^<:%J

Page 270:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-100 September 2011

"#$%&'E'P%27%&#01&%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

Page 271:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-101 Version 1.7

(,

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'>$9'/)M%`

Page 272:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-102 September 2011

(

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'/)M%`

Page 273:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-103 Version 1.7

(

"#$%&'E'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'P;2%

O8@%$M#@K'?$%T$B

Page 274:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-104 September 2011

"#$%&'I

Page 275:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-105 Version 1.7

"#$%&'I'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'TE'2;)'#>%&#*%$U

Page 276:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-106 September 2011

(,!

"#$%&'I'()%&*;%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

C8&5C8&

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 277:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-107 Version 1.7

(,4

"#$%&'I'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'/)M%`

Page 278:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-108 September 2011

"#$%&'I'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'P;2%

Page 279:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-109 Version 1.7

"#$%&'J

Page 280:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-110 September 2011

"#$%&'J'R%0%@06&'#)M'36D%@0&6)':%D#0;>%'()%&*;%$'>$9'P;2%'TE'2;)'#>%&#*%$U

Page 281:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-111 Version 1.7

"#$%&'J'()%&*;%$'>$9'/)M%`'TE'2;)'#>%&#*%$U

C8&5C8&

7&EK'EQM$':Q%'ME'LEF'%<%&=>'#<:'M&8==%&'$%MM8<='EN'PEL%TM&E<$

Page 282:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-112 September 2011

"#$%&'J'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'/)M%`

Page 283:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-113 Version 1.7

"#$%&'J'R&;>%'=1D$%L;M0A''TE'2;)'#>%&#*%$U'#)M':%B%&%)@%'P%27%&#01&%'>$9'P;2%

Page 284:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-114 September 2011

((/

C12Q%&'6B'"#$%&'.A60$'N;&%MB&62'"#$%&'R%D;>%&+'06'/aP'1)0;D'IFFI'R#+'IbH'TX@0'WU

+71Z72&2( *7()',X2,*I1&,,,,9,N7/0.,;,

X2[XYY,+H<'&.970,1&<N)2I.1,)<(/)(I72.;

W7(&.

"#$%&'( 4!4-,6 (// 7#M#'#$'EN'(,*,)*,+'''2REM$'a8&%:j.4e.(4e).,"#$%&'+ !//-/+ 0/ 7#M#'#$'EN'(,*,)*,+'''2REM$'a8&%:j6+e(6.e64,"#$%&'/ )+,-,( 6+ 7#M#'#$'EN'(,*,)*,+'''2REM$'a8&%:j!!e.+!e/4,

Page 285:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-115 Version 1.7

(()

.122#&+K!#$%&'$()*+$%(,$&-.%$,$/0-(1.%2/'(34!5(2/-0%.,$/0(0$-02/'(&0(3567K7*,)&%2-*/(+208(5497(&#$%&'$()*+$%(,$&-.%$,$/0-(:$;*%$(1$"2#$%<(0*(34!5

!"#$ $"*+,-&)./0&1&2(. %&'(),!"#$4$"*+ %&'(),!"#$4$"*+,#J&0)G&,678&0,9:; #J&0)G&,678&0,9:; #=$ #=$ #=$ > > >

").&0 ?@A BCDE *7()' ").&0 ?@A BCDE *7()' ?@A BCDE *7()' ?@A BCDE *7()'"#$%&'( (-)( +-.. )-+0 23+ (-/4 +-., )-(4 ,-,! ,-,. ,-(/ /-!1 +-.1 /-,1"#$%&'+ (-+. /-+, )-). 23/ (-+0 /-(, )-/0 5,-,( ,-(, ,-,0 5,-61 /-(1 +-,1"#$%&'/ ,-00 /-+. )-+6 23( (-(. /-+4 )-)/ 5,-(0 ,-,+ 5,-(4 5(0-+1 ,-.1 5/-01

K=/$%'<(,$&-.%$,$/0-(1.%2/'(34!5(2/-0%.,$/0(0$-02/'(&0(3567!"#$,F2&0GH $"*+,F2&0GH%&0IJ&5,F2&0GH,91K; %&0IJ&5,F2&0GH,91K;

?@A BCDE ?@A BCDE/!-+ 6+-, /)-, 6,-,/+-, 60-0 /+-/ 66-!+)-6 .+-, +0-! .(-)

MIGN,F2&0GH,-7'&<(072#J&0O,F2&0GH,91K;

").&0 ?@A BCDE"#$%&'( !"#$%&'()*&+"#$%&'+ //-0 6.-!"#$%&'/ +!-+ .(-6

K=/$%'<(,$&-.%$,$/0-(&0(*:-$%#&0*%<(> 7*,)&%2-*/(+208(3567(=/$%'<(,$&-.%$,$/0-(!$L+ XU.&0J)(70H XU.&0J)(70H,4,!$L+,%&'()

#J&0O,F2&0GH,91K; #J&0O,F2&0GH,91K; #=$ #=$ > >").&0 ?@A BCDE ?@A BCDE ?@A BCDE ?@A BCDE"#$%&'( !"#$%&'()*&+ /)-/ 4.-, !"#$%&'()*&+ !"#$%&'()*&+"#$%&'+ //-0 6.-! //-0 66-6 ,-, 5,-. 5,-(1 5(-(1"#$%&'/ +!-+ .(-6 +/-0 .+-6 5(-/ (-, 5!-41 (-+1

7%&89%:';<%&=>'?@AB'! C9%&#=%'DEF%&?GB*),'HI

K!"02,$0$%(?$0$@0*%("&-$%($/$%'<(@&"2:%&02*/

CLL'K#&#@%M%&$'U<EF<'?T#L8S&#M%:B'NE&'%#TR'L#$%&5:%M%TME&*:8=8M8I%&'TE@S8<#M8E<'F8MR8<'f'(+1

Page 286:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-116 September 2011

.122#&+'O @6)0;)1%MK Q#.%,B"# 4&-$%($/$%'<(1.%2/'(2/-0%.,$/0(9A!7K 5627#&;$6)'L;0A'-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+

c =#&#2%0%&$'M%0%&2;)%MK Q#.%,B"# 4&-$%($/$%'<(1.%2/'(*:-$%#&0*%<(9A!7K 5627#&;$6)'L;0A'-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+

c =#&#2%0%&$'M%0%&2;)%MK 7*%%$"&02*/(+208(4B5

c 5$$(-$)&%&0$(7C(62$"1(B$)*%0(D&00&@8$1EK 7*%%$"&02*/(+208(4F!

c 5$$(-$)&%&0$(7C(62$"1(B$)*%0(D&00&@8$1E(K !"#$%&'" "#$%&'%)%&*+'2%#$1&%2%)0$'M1&;)*';)$0&12%)0'PS-5 ( 5627#&;$6)'L;0A'-D0;2%0%&'R%0%@06&'D#$%&'%)%&*+'

Page 287:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-117 Version 1.7

(

56)@D1$;6)$k(,4)'<@'L#$%&'%<%&=>l

k 3E'$8=<8N8T#<M'TR#<=%'$8<T%'L#$%&':%L89%&>'ME'Z"C2-'k!/+'<@'%<%&=>l

k 3E'$8=<8N8T#<M'TR#<=%'NE&'L#$%&$'('#<:'+e'$8<T%'Z2a['@%#$Q&%@%<M$k 7%TL8<%:'S>'f'!-41'?(-/ @AB'NE&'"#$%&'/'$8<T%'Z2a['@%#$Q&%@%<M$

kCLM8@%M%&':%M%TME&$*:8=8M8I%&$'T#L8S&#M%:'ME'K&E98:%'#<'E<5E&S8M'%$M8@#M%'EN'MR%'L#$%&'%<%&=>'k[E&&%L#M8E<'F8MR'"DC'5 <E'$M&E<='TE&&%L#M8E<'NEQ<:'k[E&&%L#M8E<'F8MR'"_2'5 <E'$M&E<='TE&&%L#M8E<'NEQ<:'

Page 288:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-118 September 2011

Page 289:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-119 Version 1.7

Appendix E.2

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 1

GLA

S La

ser

Gai

n C

orre

ctio

n 5/

24/2

004

Page 290:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-120 September 2011

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4N

ASA

GSF

C-L

aser

Rem

oteS

ensin

gBr

anch

pml-

2

Ener

gy E

stim

ate f

rom

A

ltim

eter

Det

ecto

r Sta

rt P

ulse

Detec

tor 1

Detec

tor 2

Lase

r 12.9

650E

-14N/

ALa

ser 2

2.786

8E-14

2.257

2E-14

Lase

r 32.7

937E

-142.3

357E

-14

Page 291:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-121 Version 1.7

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 3

Lase

r Cam

paig

n 2B

Las

er

Hist

ory

Page 292:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-122 September 2011

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 4

Lase

r Cam

paig

n 2B

Las

er

Hist

ory

Impl

icat

ions

•!

Abou

t a 1

.6 m

J ju

mp

in e

stim

ated

Las

er E

nerg

y w

ith o

rigin

al fo

rmul

a.

•!Q

uick

and

dirt

y fi

x w

as to

sub

tract

1.6

mJ

from

Las

er E

nerg

y ou

tput

.

•!Th

is s

ubtra

ctiv

e of

fset

has

the

prob

lem

that

as

the

ener

gy a

sym

ptot

es to

ze

ro, t

he e

nerg

y w

ill e

vent

ually

sho

w a

s ne

gativ

e L

aser

ene

rgy,

cle

arly

no

n-re

pres

enta

tive.

•!If

a m

ultip

licat

ive

fact

or o

f 0.9

6 is

app

lied

to th

e da

ta a

fter t

he g

ain

chan

ge,

the

sam

e sm

ooth

ing

effe

ct o

f the

dis

cont

inui

ty c

an b

e ac

hiev

ed.

Page 293:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-123 Version 1.7

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 5

Gai

n C

orre

ctio

n vs

. Gai

n Se

tting

Cor

rela

tion

Page 294:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-124 September 2011

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 6

New

Gai

n Fo

rmul

a

•!At

Gai

n =

41 (t

he g

ain

at w

hich

all

of o

ur c

alib

ratio

ns a

re b

ased

) for

mul

a ou

tput

is u

ncha

nged

from

pre

viou

s fo

rmul

a.

•!At

Gai

n =

71 (p

rese

nt s

ettin

g) fo

rmul

a ou

tput

dec

reas

es e

stim

ate

by a

fa

ctor

of ~

0.96

, whi

ch s

moo

thes

out

the

Lase

r Ene

rgy

curv

e fo

r the

Las

er

Cam

paig

n 2B

.

•!At

nex

t gai

n ch

ange

, the

new

offs

et c

an b

e ch

ecke

d ag

ains

t thi

s fo

rmul

a. If

it

does

not

fit

with

a li

near

app

roxi

mat

ion,

a 2

nd o

rder

pol

ynom

ial f

it ca

n be

app

lied.

GV

GA =

Cga

in/((

28 – 1

) * (1

.048

1 –

(1.1

72x1

0-3 *

Cga

in)))

Page 295:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-125 Version 1.7

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 7

App

licat

ion

of N

ew G

ain

Form

ula

Page 296:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-126 September 2011

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 8

App

licat

ion

of N

ew G

ain

Form

ula

– Fi

ner S

cale

Page 297:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-127 Version 1.7

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 9

Adv

anta

ges/D

isadv

anta

ges

•!Ad

vant

ages

–!

New

cur

ve fi

t is

a fa

ctor

cha

nge

inst

ead

of a

n ap

plie

d of

fset

. –!

Shou

ld b

e m

ore

accu

rate

as

ener

gy a

sym

ptot

es to

zer

o.

–!Ca

n be

qui

ckly

mod

ified

whe

n ne

w g

ain

chan

ges

occu

r as

need

ed.

•!Di

sadv

anta

ges

–!It

will

sub

tly c

hang

e th

e al

read

y ex

istin

g en

ergy

his

tory

(but

sho

uld

mak

e it

mor

e ac

cura

te).

–!Sl

ight

ly m

ore

com

plic

ated

(but

not

ove

rwhe

lmin

gly

so –

It h

as a

lread

y be

en im

plem

ente

d as

an

optio

n fo

r the

pre

parin

g of

this

pre

sent

atio

n).

Page 298:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-128 September 2011

Geo

scien

ce!

La

ser!

Al

timet

er!

Sy

stem!

5/24

/200

4 N

ASA

GSF

C -

Lase

r Rem

ote S

ensin

g Br

anch

pm

l - 1

0

Sum

mar

y

•!A

new

gai

n fo

rmul

a fo

r Las

er E

nerg

y Es

timat

ion

is p

ropo

sed.

•!Ne

w fo

rmul

a sh

ould

incr

ease

the

accu

racy

of p

ast,

pres

ent a

nd fu

ture

en

ergy

est

imat

es.

•!Ea

sy to

impl

emen

t, bu

t req

uire

s a

re-re

duct

ion

of a

ll hi

stor

ical

dat

a si

nce

the

gain

cha

nge

from

41

to 7

1 oc

curr

ed d

urin

g La

ser C

ampa

ign

2B.

Page 299:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

Laser Energy Calibration The Algorithm Theoretical Basis Document for Level

September 2011 Page E-129 Version 1.7

Page 300:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Laser Energy Calibration

Version 1.7 Page E-130 September 2011

Page 301:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page AB-1 Version 1.7

Abbreviations & Acronyms

APID Application Process Identifier. CCSDS Packets identify the APID as supplied by the Spacecraft Instrument; EDOS identifies the APID as a concatenation of Spacecraft Identification (SCID) and the APID.

CCSDS Consultative Committee for Space Data Systems

EDOS EOS Data and Operations System

EOS NASA Earth Observing System Mission Program

EOSDIS Earth Observing System Data and Information System

GLAS Geoscience Laser Altimeter System instrument or investigation

GPS Global Positioning System

GSFC NASA Goddard Space Flight Center at Greenbelt, Maryland

GSFC/WFF NASA Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia

HK Housekeeping

ID Identification

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR Light Detection and Ranging

LPA LASER Profiler Array

N/A Not (/) Applicable

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

PDS Production Data Sets

POD Precision Orbit Determination

PROD ID Data Product Identification

SCF GLAS investigation Science Computing Facility and workstation(s)

SRS Stellar Reference System

TBD to be determined, to be done, or to be developed

TLM Telemetry

UNIX the operating system jointly developed by the AT&T Bell Laboratories and the Univer-sity of California-Berkeley System Division

Page 302:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Abbreviations & Acronyms

Version 1.7 Page AB-2 September 2011

Page 303:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

September 2011 Page GL-1 Version 1.7

Glossary

Level 0 The level designation applied to an EOS data product that consists of raw instrument data, recorded at the original resolution, in time order, with any duplicate or redundant data packets removed.

Level 1A The level designation applied to an EOS data product that consists of reconstructed, unprocessed Level 0 instrument data, recorded at the full resolution with time refer-enced data records, in time order. The data are annotated with ancillary information including radiometric and geometric calibration coefficients, and georeferencing parameter data (i.e., ephemeris data). The included, computed coefficients and param-eter data have not however been applied to correct the Level 0 instrument data con-tents.

Level 1B The level designation applied to an EOS data product that consists of Level 1A data that have been radiometrically corrected, processed from raw data into sensor data units, and have been geolocated according to applied georeferencing data.

Level 2 The level designation applied to an EOS data product that consists of derived geophys-ical data values, recorded at the same resolution, time order, and georeference location as the Level 1A or Level 1B data.

Level 3 The level designation applied to an EOS data product that consists of geophysical data values derived from Level 1 or Level 2 data, recorded at a temporally or spatially resa-mpled resolution.

Level 4 The level designation applied to an EOS data product that consists of data from mod-eled output or resultant analysis of lower level data that are not directly derived by the GLAS instrument and supplemental sensors.

product Specifically, the Data Product or the EOS Data Product. This is implicitly the labeled data product or the data product as produced by software on the SDPS or SCF. A GLAS data product refers to the data file or record collection either prefaced with a product label or standard formatted data label or linked to a product label or standard formatted data label file. Loosely used, it may indicate a single pass file aggregation, or the entire set of product files contained in a data repository.

record A specific organization or aggregate of data items. It represents the collection of EOS Data Parameters within a given time interval, such as a one-second data record. It is the first level decomposition of a product file.

Page 304:  · ICESat Contacts: Bob E. Schutz, GLAS Science Team Leader University of Texas Center for Space Research Austin, Texas 78759-5321 David W. Hancock III, Science Software Development

The Algorithm Theoretical Basis Document for Level 1A Processing Glossary

Version 1.7 Page GL-2 September 2011