icrisat 2 march 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · u ni te d s...

78
Wilfred Vermerris Department of Microbiology and Cell Science-IFAS University of Florida Genetics Institute Sustainable production of fuels and chemicals from sorghum ICRISAT 2 March 2016

Upload: others

Post on 29-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

• Wilfred Vermerris • Department of Microbiology and Cell Science-IFAS

• University of Florida Genetics Institute

Sustainable production of

fuels and chemicals

from sorghum

ICRISAT 2 March 2016

Page 2: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Agriculture’s Challenge

ENERGY

POPULATION CLIMATE

www.nasa.gov

Page 3: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Florida as a test case for sustainable bioenergy production

• Sunny and warm climate plus long

growing season conducive to crop

production

• High pest and disease pressure

• Much of the Florida peninsula can be

classified as marginal land

• Low organic matter content

• Low water retention capacity

• Limitations on use of irrigation,

pesticides and fertilizers

Climate change and the need to avoid competition with food production will require the development of reliable crop production systems under increasingly challenging conditions

Page 4: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Plant

Shut-Down

Maintenance

Sweet sorghum can extend the processing window of

sugarcane

Jan Feb Mar April May June July Aug Sept Oct Nov Dec

Sweet Sorghum

Planting

S.S. Harvest

1st Crop

S.S. Harvest

2nd Crop Biofuel Cane Biofuel Cane

Sweet Sorghum

Planting

Planting and harvest logistics for a biorefinery that

processes sugarcane and sweet sorghum

Page 5: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

United States Department of Agriculture

Topics

Animal HealthBiotechnologyEmployment ResourcesEnergyEnvironment and Natural ResourcesEmergency Preparedness andResponseFarm BillFood and NutritionFood SafetyForestryHomeland SecurityLaws and RegulationsMarketing and TradeOutreachPlant HealthResearch and ScienceRural and Community DevelopmentTravel and Recreation

Programs and Services

ASSISTING RURAL COMMUNITIES

BroadbandGrants and LoansDisaster AssistanceInsurance Programs

FOOD AND NUTRITION

SNAPWICFood SecurityChild Nutrition ProgramsNational Organic Program

CONSERVATION

Restoration and ConservationEnvironmental Markets

Next-generation sweet sorghums: Sustainable production of

fuels and chemicals from juice and bagasse

pentoses

fuels

fuels

chemicals

chemicals (e.g. D-and L-lactate)

CO2

ferm

en

tation

ferm

en

tatio

n

pre

treatm

ent

hexoses

chemicals

CBP

Sweet sorghum

Page 6: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

United States Department of Agriculture

Topics

Animal HealthBiotechnologyEmployment ResourcesEnergyEnvironment and Natural ResourcesEmergency Preparedness andResponseFarm BillFood and NutritionFood SafetyForestryHomeland SecurityLaws and RegulationsMarketing and TradeOutreachPlant HealthResearch and ScienceRural and Community DevelopmentTravel and Recreation

Programs and Services

ASSISTING RURAL COMMUNITIES

BroadbandGrants and LoansDisaster AssistanceInsurance Programs

FOOD AND NUTRITION

SNAPWICFood SecurityChild Nutrition ProgramsNational Organic Program

CONSERVATION

Restoration and ConservationEnvironmental Markets

Next-generation sweet sorghums: Sustainable production of

fuels and chemicals from juice and bagasse

pentoses fuels

chemicals

fuels

chemicals (e.g. D-and L-lactate)

CO2

ferm

en

tation

ferm

en

tatio

n

pre

treatm

ent

hexoses

lignin

nanotubes

chemicals

heat

CBP

Sweet sorghum

enhanced

plastics

jet fuel

Page 7: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Sweet sorghum in Florida…..

• Commercial sorghum breeding programs have

traditionally been based in Texas and the Great Plains

– Primary focus has been on grain and forage

sorghums

• Sweet sorghum breeding programs have traditionally

been based in MS, TN, KY, later also TX

• Use of existing sweet sorghum germplasm in Florida

does not generate the yields reported in the regions

where the germplasm originated

– Pests and diseases prevalent in the region

– Low-fertility soils, low water retention capacity, storms

• The UF sorghum breeding program is focusing on developing regionally adapted sweet sorghums that give high yields with limited inputs

Page 8: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Our number 1 target: Anthracnose resistance

• Colletotrichum sublineolum

– Fungal pathogen

– Thrives in humid

conditions

• Major problem in

southeastern USA

– Infects all aerial parts of

sorghum

– 70% yield reduction

Source: http://www.plantwise.org

/KnowledgeBank/Datasheet.aspx

Page 9: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Source: Crouch and Beirn, Fungal Diversity, 2009

Page 10: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Adapting sorghum to Florida

Commercial Improved UF cultivars

Dry weight yields: 15-20 t/ha

Page 11: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Mapping anthracnose resistance loci

• Bk7

– Florida inbred line

– Anthracnose resistant

– Unknown resistance mechanism

• Early Hegari-Sart

– Anthracnose

susceptible

• Biparental mapping population

– 135 lines

– F4 and F5

Bk7 Early Hegari-Sart

Terry Felderhoff

Page 12: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Mapping population

• Selection of inbred parents with

contrasting phenotypes

– Cross parents

– Heterozygous F1 selfed

– Multiple F2 progeny grown

– Continued selfing within lines

– 135 F4 and F5 lines

• Increased recombination

– Genetic mosaics of parental alleles,

and mostly homozygous

• Observe disease phenotypes among

lines within the population

– Replicate across years and locations

• Identify resistance loci by association

Page 13: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Genotyping by Sequencing

• Truncated genome sequencing

• Fast, inexpensive, data rich

• Single Nucleotide Polymorphisms (SNPs) determined

base on sequence comparisons among mapped

fragments derived from the parents

• GBS performed at Cornell University

Source: http://cbsu.tc.cornell.edu/lab/doc/GBS_overview_20111028.pdf

Page 14: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

The raw GBS data are dirty!

A custom filtering procedure:

Terry Felderhoff

Page 15: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Determining the association between

SNP markers and disease resistance

• Determine distribution of marker alleles across infected and

uninfected lines

– Fisher’s exact test, -log10 of p-value

– H0: no difference in frequency of allele between contrasting

disease phenotypes

– Ha: high frequency of Bk7 alleles in resistant plants

– False discovery rate (FDR) with α=0.05 used as threshold

Marker Allele

Early Hegari Bk7

Disease

Phenotype

Resistant a b a+b

Susceptible c d c+d

a+c b+d

a+b+c+d

=n

Terry Felderhoff

Page 16: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Association analysis

1 3 2 4 5 6 7 8 9 10

Page 17: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

(Too many) Candidate genes….

• Chromosome 7 locus

– No reported anthracnose resistance loci in literature

– 44.9 Mbp containing 740 transcripts

• Chromosome 9 locus

– Known Cs1B resistance gene on chromosome 9 • 1.8 Mb from closest edge of QTL

• Multiple recombination events between QTL and Cs1B

– 3.2 Mb containing 342 transcripts

• Similarity search of transcripts with BLASTX followed by BLAST2GO ontology analysis

– Chrom 7 locus has 46 candidate genes

– Chrom 9 locus has 39 candidate genes

Page 18: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Fine-mapping resistance loci

× Susceptible parent

Resistant parent

Resistant cultivar 1

• The five newly released sweet sorghum cultivars share the

anthracnose resistant parent ‘Bk7’ in their pedigree

• Selection criteria for these sweet sorghums included anthracnose

resistance

• Seven generations of inbreeding will have increased the probability of

recombination events in and around the QTL

×

F7

P

Chr 9 QTL

Resistant cultivar 2

Resistant cultivar 3

Resistant cultivar 4

Inbreeding with selection for resistance

Page 19: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Validating candidate genes

• As a result of the fine mapping, the resistance QTL

was reduced from 3.2 Mb to 0.6 Mb, with just 6

candidate resistance genes

• Virus-induced gene silencing will be used to validate

the role of these genes in anthracnose resistance

Brome Mosaic Virus

RNA1

RNA2

RNA3

Tim Nelson, Samuel Roberts Noble Foundation

Silencing of resistance gene

Colletotrichum conidia

Resistant line

Page 20: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Improving biomass conversion with

brown midrib mutants • Generated in the 70’s at Purdue University via chemical

mutagenesis – 19 mutants

• Nine spontaneous bmr mutants discovered later on

• Initially used as forage because of improved intake and

palatability

Page 21: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Brown midrib sorghums

• What is the impact of the various bmr

mutations on cell wall composition and

biomass conversion?

• If we clone the most ‘valuable’ bmr

genes, we will not only generate

convenient molecular markers, but also

learn something about biochemical

targets

• Ultimately: enzyme engineering based

on detailed structural models

Saballos et al. (2008) Bioenerg. Res. 1: 198

Page 22: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

OGO

OCH3S

O

HO

OH

OH

OH

OH3CO

G

OG OH

OH

OCH3

G

O

OCH3

G HO

OH

H3CO

S

O

GOH

HO

O

O

O

G

O

OCH3

S

HO OH

OH

HO

O

OCH3

O

H3CO G

OHO

HO

OCH3

H3CO

OCH3H3CO

OCH3

OCH3

O

H3CO

G

OH

H S G p-hydroxyphenyl guaiacyl syringyl

COOH COOH

NH2

OH

OH

OH OH OH

OH

OCH3 H3CO

OH

H2 COH

OH

OCH3 H3CO

H2 COH

OH

H2 COH

O O O

OCS-CoA OCS-CoA

OCH3

OCH3

OCH3

bmr12

bmr6

bmr2

Page 23: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

0

5

10

15

20

25

N-bmr 2 N-bmr 3 N6-bmr N-bmr 12 N-bmr 19

Kla

so

n l

ign

in (

mg

/g )

Wt-bmr isolines

Wt bmr

Klason lignin (Purdue collection)

The bmr mutations reduce lignin content by ~15-20%

Saballos et al. (2008) Bioenerg. Res. 1: 198

Page 24: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Unpretreated

Pretreated

(dilute sulfuric acid)

Enzymatic saccharification of stover (Purdue)

Saballos et al. (2008) Bioenerg. Res. 1: 198

Glucose yields of sorghum stover from bmr and wild-type lines without and

with pretreatment after 48 h of enzymatic saccharification (60 FPU/g cellulose)

Page 25: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Lignin content vs. subunit composition

Page 26: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Lignin content vs. glucose yield (USDA)

• Lignin content

alone does not

explain variation in

glucose yield

• The S/G ratio

appears to

influence glucose

yield following a

threshold model

• The threshold lies

somewhere

between 0.08 and

0.4

Kla

son lig

nin

(m

g/g

)

S/G 0.63 0.03

Glu

cose y

ield

(m

g/g

)

0

50

100

150

200

250

300

BTx623 bmr12-ref bmr12-30 bmr12-34 bmr12-35

0

5

10

15

20

25

BTx623 bmr12-ref bmr12-30 bmr12-34 bmr12-35

0.07 0.08 0.42

c c b b

b

ab a

c b

bc

Sattler et al. (2012) BioEnerg. Res.

Page 27: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Plant Physiology 165: 1440 (2014)

s-trans s-cis

productive non-productive

s-trans s-cis

productive non-productive

H3CO

Can we engineer COMT for broader or

more specific substrate specificity?

• Tailor lignin subunit composition

• Minimize negative impacts on plant

growth

Page 28: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Substrate inhibition of COMT

Page 29: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Substrate orientation

matters

s-trans s-cis

productive non-productive

The high rotational energy associated with the conformation of the propenal side chain prevents the spontaneous switch of the non-productive isomer to the productive isomer

Can we use these structural features to engineer COMT for broader or more specific substrate specificity without inhibition? • Tailor lignin subunit composition • Minimize negative impacts on plant

growth

Page 30: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Industrial-scale processing

Page 31: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Industrial-scale processing

Page 32: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

University of Florida Stan Mayfield Biorefinery

• L+SScF

– Liquefaction through

phosphoric acid/ steam

pretreatment (190C, 5 min)

and saccharification

• 3 x 10,000 Gal fermentors

Page 33: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Techno-economic analysis

Assumptions:

2.5% enzyme, $1.00 kg enzyme, $40/ ton dry bagasse, 0.24 g EtOH/g DW I. Nieves/ R. van Rijn

Page 34: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te
Page 35: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

‘Smart delivery’ of drugs or DNA

• Use of carriers that target specific organs or tissues

– Viral vectors (DNA) – Adeno associated virus

– Carbon nanotubes (drugs, DNA) - $500/gram

• Benefits:

– Lower dose, reduced side effects

– Reduced degradation of therapeutics

• Challenges

– Viruses: immunogenic

– CNTs: cytotoxic

lbl.gov sciencephoto.com

gaia3d.co.uk

Page 36: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Lignin nanotubes (LNTs)

Lignin base-layer

Deposition of DHP liner

Dissolution of membrane

membrane

109 pores cm-2

109 nanotubes cm-2

Caicedo et al. (2012) Nanotechnology 23: 105605

Page 37: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Nanotubes Nanowires

200 nm 200 nm

1 µm 1 µm

COOH

OH

COOH

OH

OCH3

TEM

SEM

Caicedo et al. (2012)

ferulic acid : p-coumaric acid

5 : 1

ferulic acid : p-coumaric acid

1 : 5

Page 38: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Lignin nanotubes have low cytotoxicity

Carbon nanotubes: 50% cell loss at 5-10 mg/mL (Pantarotto et al., 2004)

Thioglycolic acid lignin NaOH lignin

Ten et al. (2014) Biomacromolecules

Page 39: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Pine TGA LNTs

15 μm

Confocal microscope images showing the nuclei of human

HeLa cells in cell culture.

Pine NaOH LNTs

Page 40: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

LNT-mediated transfection of HeLa cells with GFP gene

• Gene expression levels vary

as a function of lignin source

and isolation method

Blank (-) PEI (+)

Sorghum-KL

Poplar-KL

Poplar-TGA 100 x magnification 1.4 mg LNTs per well

Page 41: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Mechanism of DNA uptake in the cell?

endocytosis endocytosis

Page 42: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

MAGNET Streptavidin-paramagnetic bead

Biotinylated DNA

Is there a physical interaction between LNT

and DNA?

Page 43: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Native DNA

LNT

1 μm bead

Biotinylated DNA

Ten et al. (2014) Biomacromolecules

Page 44: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Delivery of therapeutic agents

Therapeutic agent

Ligand for cell-specific receptor Labile bond

Labile bond

Page 45: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

So what are the prospects for sweet sorghum?

• There is plenty of land available to produce bioenergy

without competing with food production

– Requires adapted germplasm

• Sweet sorghum cultivars and hybrids are/will be

available, even for regions where sweet sorghum is a

new crop

– brown midrib hybrid sweet sorghums with

anthracnose resistance

– Plant breeding can benefit from and contribute to

genomics-assisted crop improvement methods

– Structural biology and genome editing as tools to

redesign metabolic pathways

• The bioprocessing technology is available to use both

the juice and the bagasse as a source of fermentable

sugars for fuels and chemicals

Page 46: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Challenges for biorefineries in the US

• The original three drivers for renewable fuels were

– Energy independence (control of supplies)

– Finite supplies of petroleum

– Mitigation of climate change

• Hydraulic fracking in the US effectively took care of

the first two drivers

• The prices of oil and natural gas are at record lows

– Difficult for biofuels to compete

This has had a major impact on the construction of new biorefineries We need a level playing field (tax policies) and a mechanism to reward sustainably produced biofuels from home-grown crops

Page 47: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Acknowledgements

United States Department of Agriculture

Topics

Animal HealthBiotechnologyEmployment ResourcesEnergyEnvironment and Natural ResourcesEmergency Preparedness andResponseFarm BillFood and NutritionFood SafetyForestryHomeland SecurityLaws and RegulationsMarketing and TradeOutreachPlant HealthResearch and ScienceRural and Community DevelopmentTravel and Recreation

Programs and Services

ASSISTING RURAL COMMUNITIES

BroadbandGrants and LoansDisaster AssistanceInsurance Programs

FOOD AND NUTRITION

SNAPWICFood SecurityChild Nutrition ProgramsNational Organic Program

CONSERVATION

Restoration and ConservationEnvironmental Markets

ChulHee Kang (WSU)

Scott Sattler (USDA-ARS)

John Ralph (UWisc)

Hugo Cuevas (USDA-ARS)

Terry Felderhoff

Alejandra Abril

Ji Wang

Ana Saballos

Rick van Rijn

Sanyukta Shukla

John Erickson

Lonnie Ingram

Amelia Dempere

Julene Tong

KT Shanmugam

Jim Preston

Randy Powell

Page 48: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te
Page 49: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Main features of LNTs

• Ability to customize

– Optical properties

– Dimensions (tubes vs. rods)

– Nano-mechanical properties

– Site of delivery: cytosol vs. nucleus

• Physical and chemical properties vary as a

function of lignin source

– Can be tailored via genetic approaches!

• Potential as a high-value co-product from a

biorefinery

Page 50: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Sorghum: A versatile C4 grass

• Annual, seed-propagated, naturally self pollinating

• Originated in Africa, cultivated across the globe

• Genetically diverse

• Robust: adaptable to many different conditions

– Tolerates hot and dry environments

– Limited input requirements

• Used for the production of grain, sugars and biomass

• Biomass:

– 40% cellulose

– 30% hemicellulose (glucuronoarabinoxylans >

xyloglucans)

– 20% lignin: H (3%), G (59%), S (38%)

– 10% pectin, waxes, ‘extractives’, minerals

Page 51: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Production of fuels and chemicals from

sweet sorghum in Florida

• Tall plants that accumulate soluble sugars

in the stem juice (15-22%)

• Stress tolerant (drought, heat) and limited

input requirements compared to sugarcane

• Minimal competition with food production

• Compatible with sugarcane production in

South Florida

• Ideal crop for transition from sugar-based to

lignocellulosic fuels and chemicals

Page 52: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Cultivar breeding strategy: Pedigree method

F5: estimate sugar yield; compare

performance against checks; look

for homogeneity; bulk seed

F4: as F3 plus select for sugar

based on destructive sampling of

sibs

F3: select 5-10 individuals among

and within families for biomass,

maturity, disease resistance

F2: select 5-20 biggest and cleanest

plants

Parents: high-sugar x other trait

400 F2 plants

5-20 F3 families

1-5 F5 families

5-10 F4 families

Each year we evaluate 10-20 sweet

sorghums from around the world

Release top performers

F6: replicated yield trials

(two years, three locations) 1-3 F6 families

Page 53: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Sweet sorghum hybrids • Hybrids are the product of a cross between two different inbred

parents; the progeny is planted and harvested

• Benefits of hybrids:

– You need the parents to make more seed (happy breeder)

– Potential for superior yield

– Seed production is combine-compatible (maybe….)

• Challenge 1: Since sorghum is a self-pollinating species, you

need a male-sterile female ‘A-line’ to ensure cross-pollination

• Challenge 2: The only way to propagate the A-line is to cross it

with a fertile B-line that is otherwise genetically identical

• Challenge 3: In order to get fertile hybrid seed (necessary for

sugar accumulation!), a fertility-restoring ‘R-line’ needs to be

available as a pollen donor

Seed

Parent Maintaine

r

Pollinator Seed

Parent Maintaine

r

Pollinator Seed

Parent Maintaine

r

Pollinator

Seed

Parent Maintaine

r

Pollinator

A B R

Sanyukta Shukla

Hybrid seed

produced from

fertilizing A-line

with R-pollen

Page 54: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Combine-compatible hybrid seed production

More challenges:

• Sugar accumulation is an additive trait

– both hybrid parents need to be sweet in order to

produce sweet offspring

• Sugar yield is the product of sugar concentration and

juice volume

– big stalks contain more juice

• If we select the parents carefully based on their dwarf

genotype, we can get tall offspring from short, combine

compatible parent lines

• But given that all known sweet sorghums are tall, is

height a prerequisite for being sweet?

Page 55: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

• Four independent loci

– dw1, dw2, dw3, dw4

• Recessive mutations that

reduce height in an additive

fashion by ~ 40 cm per

locus

• Height reduction enables

combine harvest of

sorghum grain and

improves harvest index

From: Quinby 1967

Dwarf genes control height in sorghum

Page 56: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Tall sorghums tend to be sweeter…..

y = 0.017x + 8.4817 R² = 0.222

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400

Sugar concentration as a function of plant height °

Brix

Plant height (cm)

Data based on 250 F3 families derived from grain x sweet sorghum

Ana Saballos, Terry Felderhoff, Sanyukta Shukla

But….

Page 57: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Production of combine harvestable hybrid sweet sorghum seed

• Tall sorghums tend to be sweeter than short sorghums, but

short sorghums can be sweet

– Height is not a prerequisite in sweet sorghums

• Good news: It is possible to produce short sweet inbred

parents for hybrid sweet sorghums

• Short, sweet inbred parents for hybrid production under

development:

– 22 R-lines

– 73 B-lines (to be converted to A-lines)

Sanyukta Shukla dw1 dw2 Dw3 Dw4 Dw1 Dw2 dw3 dw4

Dw1 Dw2 Dw3 Dw4

Page 58: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Catalytic mechanism of sorghum COMT

• What is the catalytic mechanism of COMT?

• What determines substrate specificity?

• Can we engineer COMT for broader or more

specific substrate specificity?

– Tailor lignin subunit composition

– Minimize negative impacts on plant growth

• Purify recombinant SbCOMT protein in E. coli

• X-ray crystallography of apo-enzyme and

ternary complex (= with substrate)

• Determine 3D structure of enzyme, including

substrate binding pocket

Green et al. (2014) Plant Physiol.

Page 59: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

X-ray crystallography

Page 60: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

• GBS: ‘brute force’

– Many markers over entire genome

– Number of samples (in increments of 96 samples)

– Service fee for libraries and sequencing ($35/sample)

– Labor cost for data analysis

• PCR

– Fewer markers, only at loci of interest

– Cost is a function of • Number of samples

• Number of markers

• Primer success rate and specificity

– Labor cost primarily for experiments

GBS vs PCR-based genotyping

A

C

T

A

Page 61: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

A customizable model to determine the

most cost-effective genotyping method

Page 62: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Fine-mapping resistance loci

× Backcross Susceptible

parent

Resistant inbred

S

R

R

R

R R

S

S

×

BC1

BC1S1

Page 63: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Bio-functionalization

Figure 7

Figure 7

Can we make a lignin nanotube recognize a target?

Figure 7

Figure 7

Glass slide with Concanavalin A

Figure 7

Figure 7

Glass slide under UV-fluorescence

Functionalized nanotubes Native nanotubes

Caicedo et al. (2012)

Page 64: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Dose-dependent gene expression

100 ng 300 ng 1100 ng

Fixed amount of Pine-TGA LNTs with increasing amounts of plasmid DNA

100 x magnification 1.4 mg LNTs per well

Page 65: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Mechanical properties vary as a function of lignin source

• Nano-indentation: 5 nm

• Measure hardness (H) and

Young’s modulus (E)

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

70

80H (GPa) E (GPa)

Page 66: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

United States Department of Agriculture

Topics

Animal HealthBiotechnologyEmployment ResourcesEnergyEnvironment and Natural ResourcesEmergency Preparedness andResponseFarm BillFood and NutritionFood SafetyForestryHomeland SecurityLaws and RegulationsMarketing and TradeOutreachPlant HealthResearch and ScienceRural and Community DevelopmentTravel and Recreation

Programs and Services

ASSISTING RURAL COMMUNITIES

BroadbandGrants and LoansDisaster AssistanceInsurance Programs

FOOD AND NUTRITION

SNAPWICFood SecurityChild Nutrition ProgramsNational Organic Program

CONSERVATION

Restoration and ConservationEnvironmental Markets

Next-generation sweet sorghums: Sustainable production of

fuels and chemicals from juice and bagasse

pentoses

fuels

chemicals (e.g. D-and L-lactate)

fuels

chemicals

CO2

ferm

en

tation

ferm

en

tatio

n

pre

treatm

ent

hexoses

chemicals

CBP

Sweet sorghum

Page 67: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Nanotubes versus nanowires

Pine NaOH LNT

Pine TGA LNT

Pine NaOH LNW

Pine TGA LNW

Page 68: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Entry into the nucleus:

wires versus tubes made of TGA lignin

NUCLEUS

CYTOSOL

TUBE WIRE

Page 70: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Closing remarks

• A fully integrated processing scheme for

biomass can generate multiple main products

(fuels, chemicals) as well as waste products

with potential value

• Volume versus value

• Market size

• Local versus global demand

• Cost of production: Lab > Pilot > Industrial

volu

me (

m3)

value ($/m3)

high value, low volume low

va

lue h

igh v

olu

me High value, high volume

Page 71: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Indian consortium

IICT, Hyderabad

ICRISAT, Hyderabad

DSR, Hyderabad

JNTU, Hyderabad

CESS, Hyderabad

IIT-Delhi

IIT-Madras

TNAU, Coimbatore

RVSKVV, Gwalior

Abellon Clean Energy Ltd.,

Ahmedabad*

Hindustan Petroleum

Corp. Ltd., Bangalore*

US consortium University of Florida,

Gainesville, FL

University of Missouri,

Columbia, MO

Virginia Tech, Blacksburg,

VA

Montclair State University,

Montclair, NJ

Texas A&M University,

College Station, TX

Green Technologies, LLC

Gainesville, FL*

Tiger Energy Solutions,

LLC, Columbia, MO*

*Industry partners

US funding: $12 million over 5 years

Page 72: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Technical Objectives

• Improve feedstocks using genomics, breeding tools and identify locally

adapted cultivars, and their optimization for large-scale production

• Develop production logistics and identify soil and environmental criteria to

ensure a commercially successful advanced feedstock production system

Feedstock development and supply (WP1)

Conversion technologies (WP2)

• Develop biocatalysts for production of advanced biofuels and co-products; optimize pretreatment and fermentation processes

• Develop products and applications from biorefinery waste streams that minimize environmental impact of biorefinery operations and maximize the revenues

Sustainability, marketing and policy (WP3)

• Analyze and develop certification protocols and sustainability standards

• Assess energy requirements and emissions, and perform economic analyses

• Undertake supply chain management analysis

Page 73: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Field Studies

• 2013 Live Oak

– 2 reps, natural inoculum

• 2013 Citra

– 3 reps, natural inoculum

• 2015 Live Oak

– 2 reps, cultured inoculum

• Observed during soft

dough stage

Page 74: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Primer Optimization and Marker

Evaluation

66 ° 65° 64° 63° 62°

EH Bk7

EH Bk7 EH Bk7 EH Bk7

• Optimization with temperature-gradient PCR

• PCR performed with parent DNA

– Performed at optimum temperature

– Four out of seven markers able to detect SNP differences

Courtesy of Lauren Stutts

Page 75: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

UF Stan Mayfield Biorefinery Pilot Plant

18,000 sq. ft.

3,500 sq. ft.

service labs 8,500 sq. ft. process

6,000 sq. ft.

client space

chiller

Distillation

Page 76: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Phosphoric acid steam

pretreatment

Gravity-assisted removal of

pretreated biomass slurry

Page 77: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Fermentation tanks

Page 78: ICRISAT 2 March 2016ksiconnect.icrisat.org/wp-content/uploads/2016/03/01032016.pdf · U ni te d S ta te s D e pa rtm e nt of A gri c ul ture T o pi cs A n im a l H e a lth B io te

Comparison of conversion processes

Corn Steam Cooker

Fermentation + amylase & glucoamylase

Purification

C. Mature Corn to Ethanol Industry

Lignocellulose

cc-Washing

Dilute Acid Hydrolysis

Liquid/solid Separation

Hemicellulose Fermentation

Cellulose +Lignin

Purification

Hemicellulose

Syrup & inhibitors

Hemicellulose Syrup Detox

A. Sulfuric Lignocellulose Process

Lignocellulose Dilute Acid Hydrolysis

Purification Fermentation + cellulase & hemicellulase

B. Phosphoric Lignocellulose Process (goal)

Fermentation Cellulose+ Cellulase

Liquefaction + amylase & glucoamylase

(Zirconium Hydrolyzer)

Side products of hydrolysis (hydrolysate inhibitors) drive process complexity!

(Stainless Steel Hydrolyzer)

(Stainless Steel Cooker)

Gypsum

Co-products

Co-products

CapX

L+SScF Process (eliminates steps) CapX

CapX

Liquefaction + cellulase & hemicellulase

300 to 500 U/mg protein

Cellulase 0.7 U/mg protein

L.O. Ingram