ieee infocom 2002 1 an energy-efficient mac protocol for wireless sensor networks wei ye 1, john...

16
IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1 , John Heidemann 1 , Deborah Estrin 2 1 USC Information Sciences Institute 2 UCLA and USC/ISI

Upload: abel-mccormick

Post on 19-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 1

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Wei Ye1, John Heidemann1, Deborah Estrin2

1USC Information Sciences Institute2UCLA and USC/ISI

Page 2: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 2

Introduction

Wireless sensor network• Special ad hoc wireless network• Large number of nodes w/ sensors & actuators• Battery-powered nodes energy efficiency• Unplanned deployment self-organization• Node density & topology change robustness

Sensor-net applications• Nodes cooperate for a common task• In-network data processing

Page 3: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 3

Medium Access Control in Sensor Nets

Important attributes of MAC protocols1. Collision avoidance2. Energy efficiency3. Scalability in node density4. Latency5. Fairness6. Throughput7. Bandwidth utilization

Primary

Secondary

Page 4: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 4

Major sources of energy waste• Idle listening

Energy consumption of typical 802.11 WLAN cardsidle:receive — 1:1.05 to 1:2 (Stemm 1997)

Example: directed diffusion (Intanagonwiwat 2000)

Energy Efficiency in MAC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300

Ave

rage

Dis

sipa

ted

Ene

rgy

(Jou

les/

Nod

e/R

ecei

ved

Eve

nt)

Network Size

Diffusion

Omniscient MulticastFlooding

00.0020.0040.0060.0080.01

0.0120.0140.0160.018

0 50 100 150 200 250 300

Ave

rage

Dis

sipa

ted

Ene

rgy

(Jou

les/

Nod

e/R

ecei

ved

Eve

nt)

Network Size

Diffusion

Omniscient Multicast

Flooding

Over always-listening MAC Over energy-aware MAC

Page 5: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 5

Major sources of energy waste (cont.)• Idle listening

Long idle time when no sensing event happens

• Collisions• Control overhead• Overhearing

We try to reduce energy consumption from all above sources

Combine benefits of TDMA + contention protocols

Energy Efficiency in MAC

Common to all wireless

networks

Dominant in sensor nets

Page 6: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 6

Sensor-MAC (S-MAC) Design

Tradeoffs

Major components in S-MAC• Periodic listen and sleep• Collision avoidance• Overhearing avoidance• Message passing

Latency

Fairnes

s

Energy

Page 7: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 7

Periodic Listen and Sleep

Problem: Idle listening consumes significant energy

Solution: Periodic listen and sleep

• Turn off radio when sleeping• Reduce duty cycle to ~ 10% (200ms

on/2s off)

sleeplisten listen sleep

Latency Energy

Page 8: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 8

Periodic Listen and Sleep

Schedules can differ

• Prefer neighboring nodes have same schedule— easy broadcast & low control overhead Border nodes:

two schedules

broadcast twice

Node 1

Node 2

sleeplisten listen sleep

sleeplisten listen sleep

Schedule 2

Schedule 1

Page 9: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 9

Periodic Listen and Sleep

Schedule Synchronization • Remember neighbors’ schedules

— to know when to send to them

• Each node broadcasts its schedule every few periods of sleeping and listening

• Re-sync when receiving a schedule update

• Schedule packets also serve as beacons for new nodes to join a neighborhood

Page 10: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 10

Collision Avoidance

Problem: Multiple senders want to talk

Options: Contention vs. TDMASolution: Similar to IEEE 802.11 ad hoc mode (DCF)• Physical and virtual carrier sense• Randomized backoff time• RTS/CTS for hidden terminal problem• RTS/CTS/DATA/ACK sequence

Page 11: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 11

Overhearing Avoidance

Problem: Receive packets destined to others

Solution: Sleep when neighbors talk• Basic idea from PAMAS (Singh, Raghavendra 1998)• But we only use in-channel signaling

Who should sleep?

• All immediate neighbors of sender and receiver

How long to sleep?• The duration field in each packet

informs other nodes the sleep interval

Page 12: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 12

Message Passing

Problem: Sensor net in-network processing requires entire message

Solution: Don’t interleave different messages• Long message is fragmented & sent in burst• RTS/CTS reserve medium for entire message• Fragment-level error recovery — ACK

— extend Tx time and re-transmit immediatelyOther nodes sleep for whole message time

Fairnes

s

Energy

Msg-level

latency

Page 13: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 13

Msg Passing vs. 802.11 fragmentation

S-MAC message passing

RTS 21 ......

Data 19ACK 18CTS 20

Data 17ACK 16

Data 1ACK 0

RTS 3 ......

Data 3ACK 2CTS 2

Data 3ACK 2

Data 1ACK 0

Fragmentation in IEEE 802.11 • No indication of entire time — other nodes

keep listening• If ACK is not received, give up Tx —

fairness

Page 14: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 14

Implementation on Testbed Nodes

PlatformMotes (UC Berkeley)

8-bit CPU at 4MHz,8KB flash, 512B RAM916MHz radio

TinyOS: event-drivenCompared MAC modules

1.IEEE 802.11-like protocol w/o sleeping

2.Message passing with overhearing avoidance

3.S-MAC (2 + periodic listen/sleep)

Page 15: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 15

Experiments

Topology and measured energy consumption on source nodes

Source 1

Source 2

Sink 1

Sink 2

• Each source node sends 10 messages — Each message has

400B in 10 fragments

• Measure total energy over time to send all messages

0 2 4 6 8 10

200

400

600

800

1000

1200

1400

1600

1800Average energy consumption in the source nodes

Message inter-arrival period (second)

Energy consumption (mJ)

802.11-like protocol Overhearing avoidanceS-MAC

Page 16: IEEE INFOCOM 2002 1 An Energy-Efficient MAC Protocol for Wireless Sensor Networks Wei Ye 1, John Heidemann 1, Deborah Estrin 2 1 USC Information Sciences

IEEE INFOCOM 2002 16

Conclusions

S-MAC offers significant energy efficiency over always-listening MAC protocols

Future Plans• Measurement of throughput and latency

Throughput reduces due to latency, contention, control overhead and channel noise

• Experiments on large testbeds~100 Motes, ~30 embedded PCs w/ MoteNIC

URL: http://www.isi.edu/scadds/