ieee san diego - amazon s3s3.amazonaws.com/sdieee/239-ieeesandiegosession31jan13boroug… · 2013...

47
IEEE San Diego - Power & Energy Power & Energy - Computer - Communications Power Electronics Utility Communications - Power Electronics Societies David E. Boroughs, P.E. Executive Advisor/Communications Practice Utility Communications Joint Presentation Executive Advisor/Communications Practice Area Director Quanta Technology www.quanta-technology.com [email protected] (571) 358-7315 January 31, 2013

Upload: others

Post on 12-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

IEEE San Diego

- Power & EnergyPower & Energy- Computer- Communications

Power Electronics Utility Communications- Power Electronics

Societies David E. Boroughs, P.E.Executive Advisor/Communications Practice

Utility Communications

Joint Presentation

Executive Advisor/Communications Practice Area DirectorQuanta Technology www.quanta-technology.com

[email protected](571) 358-7315

January 31, 2013

Page 2: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

This Evening’s Agenda

• Overview of Smart Grid Communications Architecture• Performance Requirements and Applications• Technology Options to Meet Performance Requirements

2

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 3: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Smart Grid-What is It?

• Many definitions have been posed since the concept began…

The one we like –• The Smart Grid is a

i ti b dcommunications-basedsharing of information among the operating and management functions across the utility enterprise to improve reliability, optimize performance and energy efficiency, and reduce costs.

• The Smart Grid also requires intelligent functions andThe Smart Grid also requires intelligent functions and processing within the grid equipment.

3

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 4: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Concept Of The “Smart Grid” And An Enterprise-Wide Utility Focus.p y

T&D Planning & EngineeringAsset MgmtMaintenance

MgmtSystemsPlanning

SCADAEMS OOperations

Planning

DSMDMS

T&D OperationsExecutive Dashboards

Distribution ManagementMWMOMSGISProcurement & Market Ops

Planning &Forecasting

Bidding &Scheduling

Settlements

Trading &Contracts

ResourceDispatch

Customer ServicesMDMS CIS BillingCall Center

Power/Resource Scheduling

Enterprise Level

SystemsIntegration

Scheduling AMI Head End SystemsHAN

4

2013 IEEE San Diego - Power & Energy and Power Electronics SocietiesCommunications Infrastructure

Page 5: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Operational and Non-Operational DataNon-Operational Data• Operational Data

– Real-time mission critical monitoring and control data-SCADAReal time mission critical monitoring and control data SCADA

• Substation data

• Distribution automation data

– Historically: time division multiplex (TDM) based point-to-point

– Future: packet or data frame based

• Non-Operational Datap– Fault record files that capture a fault event (Operational Support)

– Video surveillance

M t d t– Meter data

– Corporate data

– Historically: anything from nothing, to TDM, to IP

5

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

– Future: packet or data frame based

Page 6: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Security Considerations

• “Convergence” Trend For Different Data Types To ShareConvergence Trend For Different Data Types To Share A Common Communications Infrastructure

• Security Considerations• Data Types Physically or Logically Separated to the Greatest

Extent Possible

• Guarantees Greater Security for Sensitive Operational Data

• NERC/CIP: Electronic Security Perimeters– Pertains to Data With Routable ProtocolsPertains to Data With Routable Protocols

• Utilization of Encryption and Authentication, especially wireless links

6

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 7: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

PERFORMANCE ANDPERFORMANCE AND APPLICATION REQUIREMENTS

Network AvailabilityNetwork LatencyQuality of Service (QoS) C it Pl iCapacity Planning

7

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 8: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Smart Grid Communications: Core & Access Networks

8

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 9: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Smart Grid Functionalities and Communications Needs

S O “C f S

9

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Source: DOE Publication “Communications Requirements of Smart Grid Technologies”, October 5, 2010

Page 10: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Performance Requirement 1: Network Availabilityy

• Network availability components.– The amount of time the network is available for use.

• Excluded times of use include:– Downtime.– Bit-error-rate degradation below a useable threshold.

AvailabilityObjective

Allowabledowntime

Comments

• Network availability (along with other performance parameters) should be stated in service level agreements with telecommunications service providers.

Objective downtimeper year

99.999% 5.3 mins Met with highest level of redundant equipment configurations and route diversity.

99.99% 53 mins Met with very high level of redundant equipment configurations Met with very high level of redundant equipment configurations and route diversity.

99.9% 8.8 hrs Met with high level of redundant equipment configurations and route diversity.

99.5% or 44 hours Met with moderate level of redundant equipment and route

10

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

99 5% oless

ou sor greater

et t ode ate e e o edu da t equ p e t a d outeconfigurations, but with some single “threads” in the network.

Page 11: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Performance Requirement 2: Network Latency

Response requirements (measured in sec.) are distinct from data rate requirements (measured in kb/s or

y

Mb/s), and must be met independently.

Different functions have different requirements for the

Function Delivery requirements

Different functions have different requirements for the delivery of the message, for example:

Data Delivery- Phasor Management Unit (PMU) and Operations Center/Visual device

50ms-100ms

Data Delivery- Between EMS and Endpoint- critical control data

1-2 seconds control data Data Delivery- Source to EMS operational data 5-10 seconds Retrieve Engineering Support Data 10 min. – 24 hours and upAMI Data Hourly

11

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

AMI Data Hourly

Page 12: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Performance Requirement 3: Quality of Service ProvisioningQ y g

• Refers to control mechanisms that can provide different service quality or priorities to different users or data flows.

• “Traffic contracts” established between transport and application software• Traffic contracts established between transport and application software during a session establishment phase.– Reserving capacity in network nodes.– Controlling the scheduling prioritiesControlling the scheduling priorities.– Releasing the reserved capacity when not required.

• Important in operational SCADA, as well as real-time streaming multimedia services.

Class Delay Throughput Loss Jitter

– VoIP or IP-based video.• QoS is not required when more than adequate BW is available

y g pGold Low Guarantee Low Low

Silver No Guarantee Guarantee Guarantee No Guarantee

Bronze No Guarantee Guarantee No Guarantee No Guarantee

12

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Best Effort No Guarantee No Guarantee No Guarantee No GuaranteeExample Service Provider Class of Service

Page 13: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Performance Requirement 4: Capacity Planningp y g

•Traffic Modelingg– “Operational” And “Non-Operational (fault data)”

TrafficS b t ti T ffi L d O B kb T t– Substation Traffic Load On Backbone Transport Network

– Distribution Automation Load On Access NetworkDistribution Automation Load On Access Network– AMI Traffic Load On Access Network– HAN Traffic Load On Access Network

•Overall Combined Traffic Effects On Total Network

13

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 14: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

SCADA: Intelligent Electronic Device (IED)

• Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers), g y , )

• Future Replacement for Remote Terminal Units (RTU)

14

2013 IEEE San Diego - Power & Energy and Power Electronics Societies14

Page 15: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Substation SCADA Data

• Typical IED Characteristicsyp

Operational Non-Operational

# of Analog # of Digital Bytes / Scan # of Analog # of Digital # of SOE # of DFRBytes / Upload

Analog Digital

Small IED 4 8 64 16 4 8 1 65,616

Medium IED 8 16 128 32 16 16 1 0 65,824

Large IED 16 24 256 48 32 24 1 1 8,706,096

15

2013 IEEE San Diego - Power & Energy and Power Electronics Societies15

Page 16: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wide-Area Network Monitoring And Control (WAMPAC)/SCADA

GPS

Communication standardsIEEE C37 118 2 *

Timing standardsIEEE 1588 C37 238

Monitoring And Control (WAMPAC)/SCADA

Real Time Monitoring & Alarming

IEEE C37.118.2 *IEC 61850-90-5 *

ICCP

C37.238

EMS

Phasor Data Concentrator

Real-time controls

Concentrator (PDC)PMU

Measurement standards

C37.118.1*

PMU

Off-line Dynamics AnalysisData Storage

PMU

PMU

16

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

External users Data storage standardsIEEE C37.111 COMTRADE

PMU

Page 17: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Substation Synchrophasor/PMU DataSynchrophasor/PMU Data

• Constant Real-Time Monitoring of System Status– 30 samples per second PMU Packet Overhead (bytes): 18– 30 samples per second

(volts, amps, phase angle, etc.)– From Multiple Substations to

( y )

Transmit Rate (packets/sec): 30

Phasor Data format: 1=Integer; 2=Real RealFreq + DFreq 4

Phasor Data Concentrator at Control Center

• Data Also sent to ISO and other

q q 4Number of Phasors sent: 16

Number of Analogs 2

Number of Digital words 1D t Si (b t )/ i l PMU 160

Utilities in Region

• One PMU example = 54 kbpsTotal Data Volume Adds Up

Data Size (bytes)/single PMU 160

Total # of PMUs: 1

Data size for N PMUs (all same packet size) 160– Total Data Volume Adds Up

Quickly for Multiple PMUs– Would Need to Be Accounted

packet size) 160Ethernet + TCP/IP Packet Overhead (bytes): 66Total Bytes/dataframe 226

Required Bandwidth (bits/sec): 54,240

17

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

In Capacity Planning as Full-Time Continuous Data Flow

17

Page 18: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Modeling of Substation Traffic Load on Backhaul TransportLoad on Backhaul Transport

Typical Transmission Substation

# of IEDs

A point

D Point

Total Point Count

Bytes / Scan

Burst Loading/Se

c

A point

D Point

SER DFR % of Interest

Sec / Upload Scan

Accepted Latency

(sec)Bytes / Upload

Burst Bytes /

Sec

A D A DSmall IED 40 160 320 480 6 2 6 2 15,360 4,267 160 320 40 0 30% 600 600 2,624,640 1,312

Operational Non-Operational

Sec / ScanAccepted Latency

(Sec)

Medium IED 10 320 160 480 6 2 6 2 23,040 4,693 160 160 10 0 30% 600 600 658,240 329 Large IED 10 640 240 880 6 2 6 2 44,800 8,747 320 240 10 10 40% 600 600 87,060,960 58,041 PMU 0.03 0.03 225 6750Total SA 60 1120 720 1840 6 83,425 24,457 640 720 60 10 600 90,343,840 59,682

Equivalent data in kilobits 667.4 195.65333 Equivalent traffic in kilobits 722.75 477.46Comm Overhead 25% Communications Load offered to Network (kbps) 244.6 Communications Load offered to Network (kbps) 596.8

Typical Distribution Substation `

# of IEDs

A point

D Point

Total Point Count

Bytes / Scan

Burst Loading/Se

c

A point

D Point

SER DFR % of Interest

Sec / Upload Scan

Accepted Latency

(sec)Bytes / Upload

Burst Bytes /

Sec

A D A D

Non-Operational

Sec / ScanAccepted Latency

(Sec)

Operational

A D A DSmall IED 10 40 80 120 6 2 6 2 3,840 1,067 40 80 10 0 10% 1200 1200 656,160 55 Medium IED 10 80 160 240 6 2 6 2 7,680 2,133 160 160 10 0 10% 1200 1200 658,240 55 Large IED 5 80 120 200 6 2 6 2 7,040 1,813 160 120 5 5 10% 1200 1200 11,130,480 928

Total SA 25 200 360 560 6 18,560 5,013 360 360 25 5 1200 12,444,880 1,037 Equivalent traffic in kilobits 148.48 40.106667 Equivalent traffic in kilobits 99.56 8.297

Comm Overhead 25% Communications Load offered to Network (kbps) 50 1 Communications Load offered to Network (kbps) 10 4

18

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Comm Overhead 25% Communications Load offered to Network (kbps) 50.1 Communications Load offered to Network (kbps) 10.4

18

Page 19: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Distribution Automation & Communicating With Feeder DevicesCommunicating With Feeder Devices

Tie Switch

Tie Switch w/

Data Req.0 AI10 DI0.09 Kbps

Data Req.6 AI10 DI0.26 Kbps

SubstationLine Switch Tie Switch w/

line/neutral voltage

indicatorCapacitor

bank

Data Req.14 AI9 DI0.47 Kbps

Data Req.6 AI10 DI0.26 Kbps

Tie Switch w/line/neutral

voltage indicator

Data Req.

Feeder relay IED, RTU, or DA controller

Line Switch

Line SwitchCapacitor

bank

31 AI1 DI0.08 Kbps

Data Req.31 AI1 DI0.08 Kbps

Data Req.14 AI3 DI

Data Req.14 AI9 DI0.47 Kbps

Data Req.14 AI9 DI0.47 Kbps

Switchgear open/close command for automatic line switches. O

Tie Switch

Capacitor bank

Data Req.31 AI1 DI0.08 Kbps

3 DI0.42 Kbps

p

Data Req.14 AI9 DI0.47 Kbps

Occurrence: 3-4 times per year, 160 bits sent in 2 seconds

Switchgear open/close command for automatic tie switches. Occurrence: 3-4 times per year, 40 bits sent in 2 seconds

Feeder breaker open/close command. Occurrence: 3-4 times per year, 20 bits sent in 2 seconds

Line Switch

Line SwitchTie Switch

Tie SwitchControl Center

Data Req.0 AI10 DI0.09 Kbps

Data Req.0 AI10 DI0.09 Kbps

Data Req.14 AI9 DI0.47 Kbps

19

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Capacitor bank

Capacitor bank

Data Req.31 AI1 DI0.08 Kbps

Data Req.31 AI1 DI0.08 Kbps

Page 20: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Distribution Automation Traffic Analysisy

# of Analog # of DigitalAnalog Digital

Line switch controller 20 10 400 60

Tie switch controller 20 10 400 60

Volt/VAR 12 6 240 36

Operational

Bytes / Scan

Typical Substation Data to Support Feeder (Data Direction: Substation to SCADA Control center)

# of SourcesA

pointD

Point

Total Point

Count

Bytes / Scan

Burst Loading/Se

cA D A D

Substation feeder data 4 68 40 108 5 2 5 2 25,520 5,824 0 0 0 0 6 2 6 2 - -

Operational

Sec / Scan Accepted Latency (Sec)

Substation Feeder Data 17 10 340 60Open/Close command-line 0 2 0 12Open/Close Command-tie 0 2 0 12Open/Close Cmd-breaker 0 2 0 12

0 0 0 0 6 2 6 2 0 0 0 0 60 60 5 2 - -

Total Substation Data 4 68 40 108 23.667 25,520 5,824 Equivalent data in kilobits 204.16 46.592

IP Comm Overhead 20% Communications Load offered to Network (kbps) 55.91

Typical Feeder Data Load (Data Direction: Feeder to SCADA Control center)

# of components per feeder

A point

D Point

Total Point Count

Bytes / Scan

Burst Loading/Se

cA D A D

Line switch controller 5 100 50 150 5 2 5 2 43,000 9,500 Tie switch controller 5 100 50 150 5 2 5 2 43,000 9,500 Volt/VAR 2 24 12 36 60 60 60 60 10,320 103

Sec / Scan Accepted Latency (Sec)

Operational

Total Feeder data 12 224 112 336 23.333 96,320 19,103 Equivalent traffic in kilobits 770.56 152.8256

IP Comm Overhead 20% Communications Load offered to Network (kbps) 183.391

`Typical Command data (Data Direction: SCADA Control center to Feeder)

Operational# of

components per feeder

A point

D Point

Total Point Count

Bytes / Scan

Burst Loading/Se

cA D A D

Open/Close Command-Line 5 0 10 10 5 2 5 2 120 60 Open/Close Command-tie 2 0 4 4 5 2 5 2 48 24 Open/Close Cmd-breaker 1 0 2 2 5 2 5 2 24 12

Operational

Sec / Scan Accepted Latency (Sec)

20

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Total Feeder data 8 0 16 16 5 192 96 Equivalent traffic in kilobits 1.536 0.768

IP Comm Overhead 20% Communications Load offered to Network (kbps) 0.922

20

Page 21: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

AMI and Home Area Networks

Ad d M t i I f t t (AMI)Advanced Metering Infrastructure (AMI)

• Daily or monthly reads• Tamper reporting• Outage notificationg• Data aggregation• Load profiling• Meter diagnostics reporting• Other commodity meter reading• Physical connect/disconnect• Physical connect/disconnect• Load (current) limiting• Advanced (time-based) rate offerings• Remote meter programming/ configuration• Self-diagnostics and self-reporting

Two-Way Communication:Interval reads in real-time

• PQ monitoring and reporting• On-demand reads• Home area network monitoring/control• DG detection and control• Data security and interoperability

More bandwidth requirements than pre-

smart grid utility networks!

21

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Data security and interoperabilityg y

Page 22: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

AMI Traffic Estimation Model

Message Type and Direction

Desired Response

Time

Maximum Desired

response time

(secs)

Estimated Message

SizeEstimated Frequency

Estimated Average

Data Payload

Estimated Peak Data Payload Notes( ) q y y y

Bytes/Message

Messages per day Bytes/day

message size (Bytes) per

response time (sec)

System (TDSP to Meter)

Polling cell relay <1 hour 3600 0 0 0 0.00 minimal dataAccount Management

and Authentication<1 hour 3600 102 3 306 0.03

Comm nication S stemCommunication System Overhead

Network Administrative Overhead

Protocol Overheadsubtotal 306 0.03 0

Utility (meter to MDM)Tamper < 5 min 300 102 0.00034 0 0.00 minimal average daily

dataMeter status < 5 min 300 102 3 306 0.34 status every 8 hrs

bytes/time period

ywith PQ and voltage

Meter Reads Electric < 5 min 300 1000 96 96,000 3.33 15 min reads and could include TOU, EV, and DER info

Meter Reads Gas < 5 min 300 200 3 600 0.67 8 hr readsMeter Reads Water < 5 min 300 200 3 600 0.67 8 hr readsMeter configuration

download< 5 min 300 2500 0.08333 208 0.00 minimal average daily

dataMeter firmware upgrade 1 day 86400 1,000,000 0 0 0.00 minimal average daily

datadataRemote disconnect < 60 sec 60 400 0.00068 0 0.00 minimal average daily

dataRemote connect < 60 sec 60 400 0.00068 0 0.00 minimal average daily

dataAccount Management

and Authentication< 5 min 300 102 2 204 0.34 querey assumed 2

times a dayConsumption/Power

Quality< 10 sec 10 102 1 102 0.00 minimal on demand

unscheduled readssubtotal 98,021 5.35bytes/time period

22

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Total Meter Traffic (both ways)

bytes/time period

98,327 5.38 peak assumes worst case of all reporting

at same timebits/sec

(avg)9.10 43.00 average=most likely

data rate

Page 23: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

HAN Traffic ModelREP TO HAN

Message Type and Direction

Desired Response

Time

Maximum Response

Time (sec)

Estimated Message

SizeEstimated Frequency

Estimated Average

Data Payload

Estimated Peak Data Payload

Spreading factor: 5-Minute

Throughput Estimate

messagemessage

size (Bytes)message

BytesNo. HAN devices

message size (B) per device

Bytes/Message

Messages per day Bytes/day

size (Bytes) per response

time (sec)

Bytes spread over

5 minRetail signals (REP to HAN)

Direct Load reduction < 60 sec 60 102 2 204 1.70 102.00HAN Devices(no. per home) 6 102 < 5 min 300 612 3 1,836 2.04 612.00

Energy ServicesDisplay Device < 5 min 300 306 3 918 1.02 306.00

Energy Management SystemSmart Appliance

PCTLoad Control

Price signaling < 5 min 300 200 8 1,600 0.67 200.00HAN Firmware Update/ Confirmation N/A 0 0 0 0.00

Account Management and Authentication

1 day 86400 102 0.00274 0 0.00

Subtotal bytes/time period

4,558 5.43 1220.00

bits/sec (avg)

0.42 43.42 32.53

HAN TO REP

Message Type and Direction

Desired Response

Time

Maximum response

time (secs)

Estimated Message

Size

Estimated Frequenc

y

Estimated Average

Data Payload

Estimated Peak Data Payload

Spreading factor: 5-Minute

Throughput Estimate

B t M

message size (Bytes)

per message B t dBytes

/MessageMessages

per day Bytes/dayresponse time (sec)

Bytes spread over 5 min

HAN (HAN to REP)Energy services < 2 min 120 102 3 306 0.85 102.00

Energy Management Systems (Lighting Control Systems)

< 2 min 120 102 3 306 0.85 102.00

Load control < 2 min 120 102 2 204 0.85 102.00PCT < 2 min 120 102 3 306 0.85 102.00

Smart appliances < 3 min 180 102 3 306 0.57 102.00In -home displays < 2 min 120 102 3 306 0.85 102.00

Sensors (i e Gas leak detection < 1 min 60 102 0 002740 0 1 70 1 70

23

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Sensors (i.e.. Gas leak detection, water leaks)

< 1 min 60 102 0.002740 0 1.70 1.70

Subtotal bytes/time period

1,734 6.52 614

bits/sec (avg)

0.16 52.13 16.37

Page 24: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Total System Loading Analysis-Backbone

200 Transmission Substations 100 collectors800 Distribution Substations 100% HAN customer acceptance base case

# of Subs or A l C t Di it l C t T t l C t MBit / S

Burst Loading Mbits / Burst Loading

System Level Communication Loading Analysis

Operational Data Non-Operational Data

field devicesAnalog Count Digital Count Total Count MBits / Scan

g(MBits/Sec) Upload

gMbits / Sec

3% of Substations participatingTransmission 6 6,720 4,320 11,040 4.00 1.17 4,337 2.86 Distribution 24 4,800 8,640 13,440 3.56 0.96 2,389 0.20 Substation DA Data 24 1,632 960 2,592 0.61 0.14 Feeder DA Data 90 20,160 10,080 30,240 8.67 1.72 AMI&HAN Meter Data 100 collectors 100% customers Base case 6 12

Operational Data Non-Operational Data

AMI&HAN Meter Data 100 collectors,100% customers Base case 6.12 PMU Data from Transmission Subs 200 full time data stream 10.80 Total 344 33,312 24,000 57,312 16.85 20.92 - 6,726 3.06 Comm Overhead 20% Communications Load (Mbps) 25.10 3.685% of Substations participatingTransmission 10 11,200 7,200 18,400 6.67 1.96 7,228 4.77

Operational Data Non-Operational Data

Distribution 40 8,000 14,400 22,400 5.94 1.60 3,982 0.33 Substation DA Data 40 2,720 1,600 4,320 1.02 0.23Feeder DA Data 150 33,600 16,800 50,400 14.45 2.87AMI&HAN Meter Data 100 collectors,100% customers Base case 6.12 PMU Data from Transmission Subs 200 full time data stream 10.80 Total 440 55 520 40 000 95 520 28 08 23 58 11 210 5 11Total 440 55,520 40,000 95,520 28.08 23.58 - 11,210 5.11 Comm Overhead 20% Communications Load (Mbps) 28.30 6.1310% of Substations participatingTransmission 20 22,400 14,400 36,800 13.35 3.91 14,455 9.55 Distribution 80 16,000 28,800 44,800 11.88 3.21 7,965 0.66 Substation DA Data 80 5,440 3,200 8,640 2.04 0.47Feeder DA Data 300 67,200 33,600 100,800 28.90 5.73

Operational Data Non-Operational Data

24

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

AMI&HAN Meter Data 100 collectors,100% customers Base case 6.12 PMU Data from Transmission Subs 200 full time data stream 10.80 Total 680 111,040 80,000 191,040 56.17 30.24 - 22,420 10.21 Comm Overhead 20% Communications Load (Mbps) 36.29 12.26

Page 25: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

End-to-End Smart Grid Communications• Security Issues• Technology Options Communications path for

performance and traffic analysisgy p

HomeNetwork

Meters & Premise

Gateways

Access Communication

Back HaulCommunication

Back-Office & Operational

SystemsExternal Data Access

performance and traffic analysis

NetworkGateways

AMI MgmtSystem

AMI MgmtSystem

Home /CustomerNetwork

LocalField

CommsNeighborhoodAggregation

NeighborhoodAggregationT&D

ManagementT&D

Management

Utility Wide

CommWeb

Access

CommunicationData Access

3rd Parties

Field Crew

MonitoringAMI

NetworkManagement System

Management System

Monitoring,DA

Comm.Customers

DGMonitoring

SA, DA

Field Workforce Automation

Field Workforce Automation

Distribution EquipmentT&D Equipment

Control & Monitoring Centers

PEV

25

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

WiFi, WiMax, PLC, RF Mesh, GSM, CDMA

Zigbee, Bluetooth, HomePlug

Microwave, fiber, SONET, Ethernet, MPLS

Internet, HTTPS, VPN

Ethernet LAN

Page 26: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Choosing Technology to Meet Requirements

Access TechnologyAttributesT t C it /

Cellular SONETPLC BPLLicensed RF pt‐pt

Unlicensed RF pt‐pt

Meshed RF

Requirements

Transport Capacity/ Throughput Lo  Hi Med Med Med Med HiScalability/ Flexibility Lo  Lo Med Med Hi Hi Hi

/Reliability/ Restoration Lo  Lo Lo Lo Hi Med HiSecurity Hi Hi Med Lo Lo Hi HiEase of Implementation/ Operation Med Hi Med Med Lo Lo MedCost Effectiveness Med Lo Med Med Hi Med Med

LEGENDLEGENDHi: Relatively high ranking among technology optionsMed: Relatively moderate ranking among technology optionsL R l ti l l ki t h l ti

26

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Lo: Relatively low ranking among technology options• Message here: No one size fits all!

Page 27: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

OSI Seven Layer Model

OSI layer Examples

Applications7 Application ICCP, DNP 3.0

6 Presentation

ppCommunications

& Interfaces

5 Session

4 Transport TCP, UDP

3 Network IPv4, IPv6, IPSec

2 D t Li k ATM F R l Eth t

WAN Communications MPLS WAN Routers

2 Data Link ATM, Frame Relay, Ethernet

1 Physical 802.3 Hardware, RS-232, RS-485,

fib SONET WiFi WiM Zi b

& Interfaces

27

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

fiber, SONET, WiFi, WiMax, Zigbee

Page 28: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Options for Substation, Feeder, and Meter Communications ConnectivityCommunications Connectivity

“Wi d”“Wired”

“Wireless”

“Leased”

28

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 29: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Fiber Cable

• Extremely High Data Transmission Rates• Immunity From Electromagnetic Interference

C S C f• Can Be Brought Into the Substation Without Concern for Protection Against Ground Rise Voltages

• Available in Multi-conductor Bundles, – Multi-mode or Single-mode

– Optical Ground Wire (OPGW)

– All-Dielectric Self-Supporting (ADSS)

• Data Transport Schemes

– SONET– Ethernet– Wave Division Multiplexing

– Gigabit Passive Optical network (GPON)

– Point-to-multipoint, Fiber To The Premises Network Architecture In Which

29

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

p ,Unpowered Optical Splitters Are Used To Enable A Single Optical Fiber To Serve Multiple Premises, Typically 32-128.

Page 30: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Synchronous Optical Network (SONET)

• TDM on Optical Media With Synchronous Format• Fiber type is typically optical ground wire (OPGW) or all• Fiber type is typically optical ground wire (OPGW) or all-

dielectric self-supporting (ADSS) cables.• Network Established in a Diverse Fiber Ring for Protection– Fiber ring path

switching time < 50 msTechnology beingTechnology being Supersededby Ethernet, IP, MPLS

30

2013 IEEE San Diego - Power & Energy and Power Electronics Societies30

Page 31: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wire: Power Line Communications (PLC)(PLC)

• Initial technology used for over 50 years.• Uses primary voltage distribution and transmission wiresUses primary voltage distribution and transmission wires.• Signal injected into the primary lines via an interface at the

transmission/distribution substation, distribution t f t t ’ itransformer, at customer’s premises.

• Three main typesPLC T h l F b d D t R t O ti l T i lPLC Technology Frequency band Data Rate Operational

rangeTypical Application

Ultra Narrowband 0.3 – 3 KHz30 – 300 Hz

~100 bps 150 km or more Relay protection

Narrowband 3-500 kHz Few bps – 500 kbps

Up to a few km AMR, AMI, DA

Broadband 1.8 – 250 MHz Few Mbps – few hundred Mbps

Up to fewer km Backhaul, multipurpose

31

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 32: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Power Line Carrier Available StandardsStandards•Narrowband PLC Standards

Standard Technology Frequency Band (kHz) Data Rate (kbps)

LonWorks (ISO/IEC 14908‐3) BPSK 86, 131 3.6‐5.4

KNX (ISO/IEC 14543‐3‐5) S‐FSK 125‐140 1.2

CE‐Bus (CEA‐600.31) S‐FSK 100‐400 Up to 10

IEC 61334 S‐FSK CENELEC‐A 2.4

G3 (non‐SDO based) OFDM 36‐90 6 5 6‐45G3 (non SDO based) OFDM 36 90.6 5.6 45

PRIME (non‐SDO based) OFDM 42‐89 21.4‐128.6

ITU‐T G.hnem OFDM 9‐490 Up to 1000

IEEE P1901.2 OFDM 9‐500 Up to 500

•Broadband PLC StandardsStandard  Technology Frequency Band (MHz)  Data Rate UPA/OPERA (non‐SDO based)  OFDM 2‐32 <240 MbpsTIA‐1113  OFDM 4‐28 <14 MbpsIEEE 1901  OFDM/Wavelet 2‐30 <500 kbpspITU‐T G.hn  OFDM 2‐100 <1 Gbps

 

32

2013 IEEE San Diego - Power & Energy and Power Electronics Societies32

Page 33: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wireless Options

• Point-to-Point– Primary use: Core or Field Backhaul

• Microwave Radio

• Directional Spread Spectrum/OFDM

• Point-to-Multipoint, Access– Primary use: Field Backhaul, AMI, DA

• Multiple Address System (MAS)

• WiMax, WiFi

• Leased cellular (LTE, CDMA, GPRS)

• Paging towers (Sensus Flexnet)

• Satellite, TVWS

• Multipoint-to-Multipoint, Networked– Primary use: AMI, DA,HAN

• Spread Spectrum Radios

33

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

• Peer-to-Peer Meshed

Picture Source: Motorola

Page 34: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Radio Design Considerations

• Coverage– Frequency BandFrequency Band– Antenna Gain/Configuration: SISO, SIMO, MIMO– Power Output (ERP)

M d l ti S h• Modulation Scheme– OFDM, Spread Spectrum– Adaptive

• Performance– Designed to Meet

Intended Application– Latency– Fade Margin (Factor for Network Availability)– Spectral Efficiency (Data Throughput in Allowable Bandwidth)

34

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

– Duplexing: FDD, TDD

Page 35: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Licensed vs unlicensed

• Licensed Radio– Licensed from the Federal Communication Commission (FCC).( )– provide some protection against interference by others.– Limited bandwidth due to spectrum use restrictions– Typically 9.6 to 19.2 kbps in 900 Mhz bandTypically 9.6 to 19.2 kbps in 900 Mhz band– Higher capacity (Mbps) in microwave 6 and 11 Ghz band– Other frequencies 450, 800 Mhz Land Mobile radio– Other bands in future for utility use: 700 Mhz (shared); 3 65 Ghz WiMax– Other bands in future for utility use: 700 Mhz (shared); 3.65 Ghz WiMax

• Unlicensed Radio– 900 MHz, 2.4 GHz, and 5.8 GHz bands

Q i k t– Quicker setup– Can be 10-15% less expensive than licensed system– Concerns for increasing interference due to proliferation of unlicensed devices

FCC t 15 247 Th i k t t f th t itt i t 6 dBi

35

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

– FCC part 15.247: The maximum peak output power of the transmitter into 6 dBiantenna shall not exceed 1 Watt.

Page 36: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wireless Options –Point to Point

• Microwave RadioLicensed 6 11 Ghz Or Higher Frequency Bands– Licensed 6,11 Ghz Or Higher Frequency Bands Requiring Line Of Sight (25 mile hops)

– Often Used For Communications Backbone To Transmission SubstationsTransmission Substations

– Can Be Used To Connect Distribution Substations In Sight Of Microwave TowerC B D i d F Hi h R li bilit B t At A C t– Can Be Designed For High Reliability, But At A Cost

– Can Be Configured In SONET Rings (Adapted To Radio), Typically Multiple OC-3 Radios To Increase Capacity L t t T h l S t I d d t N ti TDM d Eth t– Latest Technology Supports Independent Native TDM and Ethernet Platforms• Adaptive Modulation Techniques

36

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 37: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wireless: Multiple Address Radio (MAS)(MAS)

• Service up to 4.8 kbps but can be increased to 9.6 kbps (limited coverage).

• Capacity is limited by data speed and system scan time. Also, limited by the number of masters that can be physically installed in the system (location, topography, etc.).

• Requires line-of-sight, point-to-multipoint for master and remote radios. • Can typically reach 25 miles, can be extended by using repeaters.

• Reliability: can be improved with remote diagnostics, warm standby equipment and redundant architecture.

• Widely used forMAS

• Widely used for SCADA and DA (most common 900 MHz).

37

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 38: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wireless Options: Networked

•Unlicensed Spread Spectrum– 902-928 MHz or 2.4 GHz Band– Low Power, Spread-spectrum Transmission– Confined to Short Distances (Typically 2-4 Miles Max.)– Packet Switched Mesh “Ad Hoc” Network– Used to Support Peer-to-Peer Communications

Among Distribution Automation SwitchesAmong Distribution Automation Switches– Some Products Can Be Set for Repeating of Other

Radio Data

38

2013 IEEE San Diego - Power & Energy and Power Electronics Societies38

Page 39: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

AMI Network Types: Mesh

Utility Systems

Head-End

Concentrator / Take Out Point

39

2013 IEEE San Diego - Power & Energy and Power Electronics Societies“Enterprise Integration of AMI to Maximize ROI,” Steklac & Tram, DistribuTECH 2006

Page 40: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Wireless: WiFi• Intended to improve the interoperability of wireless local area

network products based on the IEEE 802.11 standards:802.11

protocolRelease Freq.

(GHz)Bandwidth

(MHz)Max Data rate

per streamAllowable

MIMOModulation

protocol (GHz) (MHz) per stream (Mbit/s)

MIMO streams

--- Jun 1997 2.4 20 2 1 DSSS,FHSS

a Sep 1999 5 20 54 1 OFDM

b Sep 1999 2.4 20 11 1 DSSS

g Jun 2003 2.4 20 54 1 OFDM,DSSS

n Oct 2009 2 4/5 20 72 2 4 OFDM

• Allows connectivity in peer-to-peer mode.• Subscriber module sends data to access point over TCP/IP.

n Oct 2009 2.4/5 20 72.2 4 OFDM

40 150

• 5 GHz: latency < 1 ms (10 Mbps)• Power consumption is high compared to some other low-

bandwidth standards, such as ZigBee and Bluetooth.

40

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

• Line-of-sight is important.• 802.11i security can be implemented

Page 41: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Short Range Wireless Networked: ZigBeeZigBee

• High level protocols using small, low-power digital radios based on the IEEE 802.15.4 standard for wireless personal area networks (WPAN)(WPAN).

• Everything is small:• Very low cost • Extremely low power requirements• Bandwidth 20-250 kbps (okay for

many smart grid applications)y g pp )• Range of 10-75 meters

• Unlicensed 2.4 GHz, 915 MHz and 868 MHz.• Home area automation networkHome area automation network.• Designed for sensors and automation.• Selected by California utilities for meter-to-household (e.g.

thermostat) communications

41

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

thermostat) communications.

Picture Courtesy Texas Instruments

Page 42: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Cellular Generation Overview

GenerationTypical Data Rate (Kbps)

Maximum Data Rate (Kbps)

AMPS 1G 4.8 9.6

TDMA 1G 9.6 9.6

GSM 1G 9.6 9.6

CDMA 2G 14.4 14.4

iDEN 2G 15 20

GPRS (GSM) 2.5G 20-40 115

1 RTT (CDMA) 2 75G 50 80 1531xRTT (CDMA) 2.75G 50-80 153

EDGE (GSM) 2.75G 144 384

UMTS (W-CDMA) 3G ("True 3G") 144 2000

1xEV (CDMA2000) 3G ("True 3G") 150 20001xEV (CDMA2000) 3G ( True 3G ) 150 2000

Currently, Most Applications Are for AMR & DA

42

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 43: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

4G Wireless: WiMAX• Worldwide Interoperability for Microwave Access: wireless data over long distances, from

point-to-point links to full mobile cellular type access. Based on the IEEE 802.16 standard (also called WirelessMAN).

• 802.16m-2011 Supports Higher Data Rates: 120-240 Mbps peak down; 60-120 Mbps Uplink Reduced Latency, and Efficient Security Mechanisms

• Intended to eliminate bridging of WiFi hotspots.

• 4G Technology: Coverage and performance comparable to cellular

• From 2 GHz to 11 GHz line-of-sight backbone, 70 mile range.

• Not locked into one vendor– Certification via the WiMax Forum

• Frequency Availability in US

– Today products are available at 2.5 GHz, 5.8 GHz, 2.3 GHz and 3.65 GHz.

– 2 Ghz Licensed Band Reserved by Commercial Carriers in US

Picture Source: Motorola

43

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

– 700 Mhz band Freed up after DTV Conversion is Possible Spectrum for WiMax

– Available for Use in unlicensed band, and the US 3.65 GHz “Lite” Licensed Band

Page 44: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

4G Wireless: Long Term Evolution (LTE)

• Long Term Evolution (LTE):

– A new “4G” technology roadmap that has been chosen by Verizon & AT&T to support the “all IP network”.

– Appearing to Supersede WiMax technology.

– 328 Mbps downlink 86 Mbps uplink328 Mbps downlink, 86 Mbps uplink.

– Cell size of 5 KM (3 miles) envisioned.

– Commercial availability is rolling out.

• Being implemented in 700 MHz band for public safety applications

• Not really in private networks like WiMax at this point

44

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 45: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Representative Vendor Platforms

Technology Classification Example Platforms Representative Vendors

Tropos Trilliant Silver SpringRF Mesh Zigbee, FHSS, DSSS Tropos, Trilliant, Silver Spring Networks, Landis & Gyr

RF Point-to-Multipoint Leased GPRS, EDGE, 1xRTT, LTE Itron, Trilliant, Digi

DSSS, FSK/Flexnet On-Ramp Wireless, Sensus, p ,WiMax, WiFi Clearwire, Alvarion, Tropos

RF Point-to-Point OFDM, OFDMA GE MDS, Motorola

Backhaul Microwave SONET OC-3, DS-3, TDM over IP Alcatel-Lucent, Aviat, NECover IP

Leased Cellular GPRS, EDGE, 1xRTT, LTE AT&T, Sprint, T-Mobile, Verizon

Leased Lines Frame Relay, MPLS, T1 AT&T, Sprint, Verizon

PLC Narrowband Power Line Cooper Power Systems,PLC Narrowband Power Line Carrier

Cooper Power Systems, Archnet, ABB

BPL Broadband Power Line Carrier Ambient, Amperion, Current

SONET Fiber OC-12, OC-48, OC-192 Alcatel-Lucent, Fujitsu, NEC

45

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

jHardened

TDM/SONET/Ethernet T1, OC-48, 100M, 1G SEL, RFL, AMETEK, GE

Page 46: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

Thank You!

46

2013 IEEE San Diego - Power & Energy and Power Electronics Societies

Page 47: IEEE San Diego - Amazon S3s3.amazonaws.com/sdieee/239-IEEESanDiegosession31jan13Boroug… · 2013 IEEE San Diego - Power & Energy and Power Electronics Societies Comm Overhead Communications

If you want to contribute or suggest topics to this series of technicalIf you want to contribute, or suggest, topics to this series of technicalpresentations, please contact:

[email protected]@

Nick Abi-SamraPower & Energy Society - ChairPower Electronics Society- Chair

47

2013 IEEE San Diego - Power & Energy and Power Electronics Societies