igarss.pdf

34
Improved BINARY PARTITION TREE construc8on for hyperspectral images: Applica8on to object detec8on Introduc)on BPT construc)on Pruning strategy Conclusions S.Valero , P. Salembier , J. Chanussot, C.M.Cuadras 1 ,2 2 3 GIPSALab, Signal & Image Dept, GrenobleINP, Grenoble, France Signal Theory and Comunic. Dept, Technical University of Catalonia, Spain University of Barcelona, Spain 2 1 3 1

Upload: grssieee

Post on 24-May-2015

288 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: igarss.pdf

Improved  BINARY  PARTITION  TREE    construc8on    for  hyperspectral  

images:  Applica8on  to  object  detec8on  

Introduc)on  BPT  construc)on  Pruning  strategy  Conclusions  

S.Valero          ,  P.  Salembier      ,  J.  Chanussot,    C.M.Cuadras    1    ,2    2    3  

GIPSA-­‐Lab,  Signal  &  Image  Dept,  Grenoble-­‐INP,  Grenoble,  France  Signal  Theory  and  Comunic.  Dept,  Technical  University  of  Catalonia,  Spain  

University  of  Barcelona,  Spain  

 2    1  

 3  

 1  

Page 2: igarss.pdf

1

   Outline  

Introduc)on  v   Hyperspectral  imagery  v   BPT  

Binary  Par))on  Tree  Construc)on  v  Region  Model  v   Merging  Criterion    

2

Pruning  Strategy  v   Road  detec)on  v   Building  detec)on  

3

Conclusions  4

Introduc)on  BPT  construc)on  Pruning  strategy  Conclusions  

Page 3: igarss.pdf

1

   Outline  

Introduc)on  v   Hyperspectral  imagery  v   BPT  

Binary  Par))on  Tree  Construc)on  v  Region  Model  v   Merging  Criterion    

2

Pruning  Strategy  v   Road  detec)on  v   Building  detec)on  

3

Conclusions  4

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 4: igarss.pdf

   Hyperspectral  Imagery  

X

y

1

2

N

Pxy

Radiance

Wavelength

N

1Pxy

v  Each  pixel  is  a  discrete  spectrum  containing  the  reflected  solar  radiance  of  the  spa)al  region  that  it  represents  

Introduc)on  BPT  construc)on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

v  Different  analysis  techniques  have  been  proposed  in  the  literature.  Most  of  them  process  the  pixels  individually,  as  an  array  of  spectral  data  without  any  spa)al  structure    

Pixels  are  studied  as  isolated  

discrete  spectra    

Page 5: igarss.pdf

   Hyperspectral  Imagery  v  The  ini)al  pixel-­‐based  representa)on  is  a  very  low  level  and              unstructured  representa)on            v  Instead  of  working  with  a  pixel-­‐based  representa)on,  Binary  Par88on  

Trees        are  an  example  of  a  poweful  structured  region-­‐based  image  representa)on.  

 v  The  construc)on  of  Binary  Par88on  Trees    for  hyperspectral      images  has  

been  recently  proposed    

P.  Salembier  and  L.  Garrido.  Binary  par**on  tree  as  an  efficient  representa*on  for  image  processing,  segmenta*on,  and  informa*on  retrieval.  IEEE  Transac)ons  on  Image  Processing,  vol.9(4),  pp.561-­‐576,  2000.    S.Valero,  P.Salembier  and  J.Chanussot.  New  hyperspectral  data  representa)on  using  Binary  Par))on  Tree.  IEEE  Proceedings  of  IGARSS,  2010  

1  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

1  

2  

2  

Page 6: igarss.pdf

   BPT  v  BPTs  can  be  interpreted  as  a  structured  image  representa)on  containing  

a  set  of  hierarchical  regions  stored  in  a  tree  structure    v  Each  node  represen)ng  a  region  in  the  image,  BPTs  allow  us  to  extract  

many  par))ons  at  different  levels  of  resolu)on    

Introduc)on  BPT  construc)on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 7: igarss.pdf

   BPT  v  BPTs  can  be  interpreted  as  a  structured  image  representa)on  containing  

a  set  of  hierarchical  regions  stored  in  a  tree  structure    v  Each  node  represen)ng  a  region  in  the  image,  BPTs  allow  us  to  extract  

many  par))ons  at  different  levels  of  resolu)on    

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 8: igarss.pdf

   BPT  v  BPTs  can  be  interpreted  as  a  structured  image  representa)on  containing  

a  set  of  hierarchical  regions  stored  in  a  tree  structure    v  Each  node  represen)ng  a  region  in  the  image,  BPTs  allow  us  to  extract  

many  par))ons  at  different  levels  of  resolu)on  

How  can  BPT  be  extended  to  the  case  of  hyperspectral  data  ?  

?  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 9: igarss.pdf

   Aim:  BPT  for  HS  image  analysis  

CONSTRUCTION     PRUNING    Hyperspectral    

image  Classifica)on  

Object  detec)on  Segmenta)on  

v  We  propose  to  construct  a  BPT  in  order  to  represent  an  HS  image  with  a  new              region-­‐based  hierarchical  representa)on  

BPT  representa)on  

Hyperspectral    image  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 10: igarss.pdf

   Aim:  BPT  for  HS  image  analysis  

CONSTRUCTION     PRUNING    Hyperspectral    

image  Classifica)on  

Object  detec)on  Segmenta)on  

v  In  this  paper:  Pruning  strategy  aiming  at  object  detec)on  is  proposed  

BPT  Search  Hyperspectral    

image   The  pruning  look  for    regions  characterized  by  some  features  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 11: igarss.pdf

1

   Outline  

Introduc)on  v   Hyperspectral  imagery  v   BPT  

Binary  Par))on  Tree  Construc)on  v  Region  Model  v   Merging  Criterion    

2

3

Conclusions  4

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Pruning  Strategy  v   Road  detec)on  v   Building  detec)on  

Page 12: igarss.pdf

   Hyperspectral  Imagery  

F  

E  

A   B  

C   D  

G  G  

E  

F  

C   D  

E  

C   D  

B                A   B  

v  The  BPT  is  a  hierarchical  tree  structure  represen)ng  an  image    v  The  tree  leaves  correspond  to  individual  pixels,  whereas  the  root  represents  the  en)re  image    v  The  remaining  nodes  represent  regions  formed  by  the  merging  of  two  children    v  The  tree  construc)on  is  performed  by  an  itera)ve  region  merging  algorithm  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 13: igarss.pdf

   Hyperspectral  Imagery  

A   B  

C   D  

C   D  

B                A   B  

v  The  BPT  is  a  hierarchical  tree  structure  represen)ng  an  image    v  The  tree  leaves  correspond  to  individual  pixels,  whereas  the  root  represents  the  en)re  image    v  The  remaining  nodes  represent  regions  formed  by  the  merging  of  two  children    v  The  tree  construc)on  is  performed  by  an  itera)ve  region  merging  algorithm  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 14: igarss.pdf

   Hyperspectral  Imagery  

E  

A   B  

C   D   C   D  

E  

C   D  

B                A   B  

v  The  BPT  is  a  hierarchical  tree  structure  represen)ng  an  image    v  The  tree  leaves  correspond  to  individual  pixels,  whereas  the  root  represents  the  en)re  image    v  The  remaining  nodes  represent  regions  formed  by  the  merging  of  two  children    v  The  tree  construc)on  is  performed  by  an  itera)ve  region  merging  algorithm  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 15: igarss.pdf

   Hyperspectral  Imagery  

F  

E  

A   B  

C   D  

E  

F  

C   D  

E  

C   D  

B                A   B  

v  The  BPT  is  a  hierarchical  tree  structure  represen)ng  an  image    v  The  tree  leaves  correspond  to  individual  pixels,  whereas  the  root  represents  the  en)re  image    v  The  remaining  nodes  represent  regions  formed  by  the  merging  of  two  children    v  The  tree  construc)on  is  performed  by  an  itera)ve  region  merging  algorithm  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 16: igarss.pdf

   Hyperspectral  Imagery  

F  

E  

A   B  

C   D  

G  G  

E  

F  

C   D  

E  

C   D  

B                A   B  

v  The  BPT  is  a  hierarchical  tree  structure  represen)ng  an  image    v  The  tree  leaves  correspond  to  individual  pixels,  whereas  the  root  represents  the  en)re  image    v  The  remaining  nodes  represent  regions  formed  by  the  merging  of  two  children    v  The  tree  construc)on  is  performed  by  an  itera)ve  region  merging  algorithm  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 17: igarss.pdf

   Hyperspectral  Imagery  

The  crea)on  of  BPT  implies  two  important  no)ons  

 v  Region  model  MRi  It  specifies  how  an  hyperspectral  region  is  represented  and  how  to  model  the  union  of  two  regions.    

v Merging  criterion  O(Ri,Rj)  The  similarity  between  neighboring  regions  determining  the  merging  order  

Rij  

Rj   Ri  

O(Ri,Rj)  O(Ri,Rj)  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Page 18: igarss.pdf

   Aim:  BPT  for  HS  image  analysis  

CONSTRUCTION     PRUNING    Hyperspectral    

image  Classifica)on  

Object  detec)on  Segmenta)on  

v  How  to  represent  hyperspectral  image  regions?  

v  Which  similarity  measure  defines  a  good  merging  order?  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Page 19: igarss.pdf

   Region  Model  

Nbins  

Hλi  

B   A  

We  propose  a  non-­‐parametric  sta)s)cal  region  model  

consis)ng  in  a  set  of  N  probability  density  func)ons  

   

 where  each  Pi  represents  the  

probabili)y  that  the  spectra  data  set  has  a  specific  radiance  value  

in  the  wavelength  λi    

Radiance  

Wavelength  λ  λi  

A  

B  

Pixel  1  Pixel  2  Pixel  3  

F.  Calderero  and  F.  Marques.Region-­‐Merging  techniques  using  informa*on  theory  sta*s*cal  measures.  IEEE  Transac)ons  on  Image  Processing,  vol.19,  pp.1567-­‐1586,  2010.  

2  

2  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Page 20: igarss.pdf

   Aim:  BPT  for  HS  image  analysis  

CONSTRUCTION     PRUNING    Hyperspectral    

image  Classifica)on  

Object  detec)on  Segmenta)on  

v  How  to  represent  hyperspectral  image  regions?  

v  Which  similarity  measure  defines  a  good  merging  order?  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Page 21: igarss.pdf

   Merging  Criterion  

Mul8dimensional  Scaling  

Mul8dimensional  Scaling  

Step  2  

Principal  Coordinates  

Associa8on  Measure  

Principal  Coordinates  

Step  1  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Page 22: igarss.pdf

   Merging  Criterion  

Mul8dimensional  Scaling  

Mul8dimensional  Scaling  

Step  1  

Principal  Coordinates  

Principal  Coordinates  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Analyze  the  inter-­‐waveband  similarity  rela)onships  for  each  data  via  metric  scaling  to  obtain  

the  principal  coordinates  

Page 23: igarss.pdf

   Merging  Criterion:  Step  2  

Mul8dimensional  Scaling  

Mul8dimensional  Scaling  

Step  2  

Principal  Coordinates  

Principal  Coordinates  

Associa8on  Measure  

PC1  

PC2    PC1=    PC2  β      +e    

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Region  Model  Merging  Criterion  

Are  Regression  Coefficients  equal  to  0  ???  

An  associa)on  measure  is  defined  by  considering  that  PC1  and  PC2  form  a  mul)variate  regression  

model    

Page 24: igarss.pdf

   Rosis  Hyperspectral  data  

RGB  Composi)on  

Data  Set  :  Rosis  Pavia  Center  103  bands    

BPT  is  constructed  by  using  the  proposed  merging  order  

103  bands  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Nregions=22   Nregions=32   Nregions=42  

Page 25: igarss.pdf

   Rosis  Hyperspectral  data  Ground  truth  manually  created  

Hierarchical  BPT  level  RHSEG  soiware  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

NRegions=22  NRegions=22  

 A  symmetric  distance  for  object  evalua)on:  It  is  defined  as  the  he  minimum  number  of  pixels  whose  

labels  should  be  changed    to  achieve  perfect  matching,  normalized  by  the  total  number  of  pixels  

of  the  image  minus  one  

Symmetric  distance  to  ground  truth    equal  to  0.48  

Symmetric  distance  to  ground  truth    equal  to  0.227  

[Tilton,  2005]  

Page 26: igarss.pdf

1

   Outline  

Introduc)on  v   Hyperspectral  imagery  v   BPT  

Binary  Par))on  Tree  Construc)on  v  Region  Model  v   Merging  Criterion    

2

Pruning  Strategy  v   Road  detec)on  v   Building  detec)on  

3

Conclusions  4

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Road  detec)on  Building  detec)on  

Page 27: igarss.pdf

   Aim:  BPT  for  HS  image  analysis  

CONSTRUCTION     PRUNING    Hyperspectral    

image  Classifica)on  

Object  detec)on  Segmenta)on  

v  Pruning  strategy  aiming  at  object  detec)on  is  proposed  

BPT  Search  Hyperspectral    

image   The  pruning  look  for    regions  characterized  by  some  features  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Hyperspectral  imagery  BPT  

Page 28: igarss.pdf

   Object  Detec8on  Strategy  

   

v  Hyperspectral  object  detec)on  has  been  mainly  developed  in  the              context  of  pixel-­‐wise  spectral  classifica)on.    

v  Objets  are  not  only  characterized  by  their  spectral  signature.  

v  Spa)al  features  such  as  shape,  area,  orienta)on  can  also  contribute  significantly  to  the  detec)on.  

v  Roads  appear  as  elongated  structures  having  fairly  homogeneous  radiance  values  usually  corresponding  to  asphalt.  

Road  detec)on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Besides  the  informa8on  provided  by  asphalt  spectrum,  a  road  

contains  important  spa8al  features    

Page 29: igarss.pdf

   Object  Detec8on  Strategy  

   

λ2tRi

λ2tRj

are the eigenvalues of BRi and BRj which are pro-

portional to the variances of the corresponding principal axes. Here

Ns is the minimum dimension for which

�Nst=1 λ2

tR�Nt=1 λ2

tR≈ 1 and (u�

tvp)2

is just the correlation coefficient between the t-th and p-th coordi-

nates. Thus the numerator in ck is a weighted average of the rela-

tionships between principal axes. Clearly 0 ≤ c1 ≤, ... ≤ cs ≤, ... ≤ cNs = 1. The dimension s is then chosen such that Cs is

high, for instance Cs = 0.9. At this point, having two regions de-

fined by their standard coordinates URi and URj whose dimensions

are Nxs, the Wilk’s criterion W for testing B=0 in a multivariate

regresion model is given by:

W (Ri, Rj) = det(I − U�Rj

URiU�Ri

URj ) =s�

i=1

(1− r2i ) (4)

where det means the determinant and ri corresponds to the

canonical correlation of each axis. Using Eq. 4, an association

measure can be defined as:

AW (Ri, Rj) = 1−W (Ri, Rj) = 1−s�

i=1

(1− r2i ) (5)

satisfying 0 ≤ AW (Ri, Rj) ≤ 1 and AW (Ri, Rj) = 1 if Ri

is equal to Rj . Thus, this leads us to the definition of the proposed

merging criterion:

OMDS(Ri, Rj) = argminRi,Rj

1 − AW (Ri, Rj) (6)

3. OBJECT DETECTION WITH BPT

Hyperspectral object detection has been mainly developed in the

context of pixel-wise spectral classification. The main problem of

this approach is that objects are not only characterized by their spec-

tral signature. Indeed, spatial features such as shape, area, orienta-

tion, etc., can also contribute significantly to the detection.

In order to integrate the spatial and spectral information, BPT is pro-

posed as a search space for constructing a robust object identification

scheme. The strategy is to analyze the BPT using a set of descrip-

tors computed for each node. The work presented here proposes the

analysis of three different descriptors for each node:

D = {Dshape, Dspectral, Darea} (7)

The proposed shape, spectral and area descriptors are related

to the specficic object of interest. Studying D from the leaves to

the root, the approach consists in removing all nodes that signifi-

cantly differ from the characterization proposed by a referenceDref .

Hence, given this reference, the idea consists in considering that the

searched object instances are defined by the closest nodes to the root

node that have descriptors close to the Dref . model. In order to

illustrate the generality of the approach, we describe two detection

examples: roads and building in urban scenes.

3.1. Detection of roads

Roads appear as elongated structures having fairly homogeneous ra-

diance values usually corresponding to asphalt. Given their charac-

teristic shape, Dshape is the elongation of the region. In order to

compute it, we first define the smallest rectangular bounding box

allowed to have an arbitrary orientation that includes the region cor-

responding to the BPT node under study. Dshape is defined as the ra-

tio between the width and the height of the bounding box. Dspectral

is the correlation coefficient between the mean spectrum of the BPT

node and a reference spectrum of the road material. Darea is defined

as the area of the region which should be higher than the minimum

area required to consider that a region can be a road. This minimum

parameter should be set according to the spatial resolution of the im-

age. Computing D for all BPT nodes, the idea is to select the father

nodes closer to the root which have a low elongation, a high correla-

tion between asphalt material and an area higher than a threshold.

3.2. Detection of buildings

Following the same strategy, we consider that the rectangularity of a

region is an important characteristic for buildings. Then, a rectangu-

larity descriptor is proposed asDshape. It is computed by the ratio of

the area of the BPT node and the area of the smallest bounding box

including the region (as in the previous application, the bounding

box can have arbitrary orientation). Dshape=1 for perfectly rectan-

gular regions. Dspectral also corresponds to the correlation coeffi-

cient measured between the mean spectrum of the BPT node and a

reference spectrum of the building material. Darea is the required

area to consider that a region can be a building.. The procedure of

the detection is the same as the roads.

4. EXPERIMENTAL RESULTS

We first provide an evaluation of the BPT construction proposed in

Section 2. The experiments have been performed using a portion

of a publicy available HYDICE hyperspectral. After removing wa-

ter absorption and noisy bands, the data contain 167 spectral bands.

Fig. 4(a) shows a RGB combination of three of them. The BPT is

computed by the procedure described in Section 2. The number of

bins to represent the histograms depends of the image range (here

Nbins = 256). The first component dimension found by the se-

quence ck is s = 3. To evaluate the quality of the BPT construction,

we extract a segmentation result involving a given number NR of re-

gions by undoing the last NR− 1 mergings over the initial partition.

In this section, we compare the partition extracted from the BPT

with the classical RHSEG [11]. In the case of RHSEG, the similar-

ity criterion used is SAM with spectral clustering weight 0.1[12]. To

evaluate the resulting partitions, the symmetric distance dsym [13]

is used as a partition quality evaluation. Having a partition P and a

ground truth GT , the symmetric distance corresponds to the mini-

mum number of pixels whose labels should be changed in partition

P to achieve a perfect matching with GT , normalized by the total

number of pixels in the image. The manually created GT is shown

in Fig. 4(b).

Fig. 4(c)(d) show the segmentation results obtained with BPT and

RHSEG, respectively. In both cases, the resulting partitions involve

63 regions. Comparing both results, the quantitive dsym and the

visual evaluation corroborates that the partition extracted from the

BPT are much closer to the ground truth than the one computed with

RHSEG. This experiment has been done with several other images

acquired by different hyperspectral sensors, but, due to space limi-

tations, we can only present one data set. However, the conclusions

were the same on the remaining dataset.

A second set of experiments are conducted now for object de-

tection and recognition. We compare the classical pixel-wise clas-

sification against the strategy proposed in section 3 for building and

road detection. The pixel-wise classification consists in detecting

λ2tRi

λ2tRj

are the eigenvalues of BRi and BRj which are pro-

portional to the variances of the corresponding principal axes. Here

Ns is the minimum dimension for which

�Nst=1 λ2

tR�Nt=1 λ2

tR≈ 1 and (u�

tvp)2

is just the correlation coefficient between the t-th and p-th coordi-

nates. Thus the numerator in ck is a weighted average of the rela-

tionships between principal axes. Clearly 0 ≤ c1 ≤, ... ≤ cs ≤, ... ≤ cNs = 1. The dimension s is then chosen such that Cs is

high, for instance Cs = 0.9. At this point, having two regions de-

fined by their standard coordinates URi and URj whose dimensions

are Nxs, the Wilk’s criterion W for testing B=0 in a multivariate

regresion model is given by:

W (Ri, Rj) = det(I − U�Rj

URiU�Ri

URj ) =s�

i=1

(1− r2i ) (4)

where det means the determinant and ri corresponds to the

canonical correlation of each axis. Using Eq. 4, an association

measure can be defined as:

AW (Ri, Rj) = 1−W (Ri, Rj) = 1−s�

i=1

(1− r2i ) (5)

satisfying 0 ≤ AW (Ri, Rj) ≤ 1 and AW (Ri, Rj) = 1 if Ri

is equal to Rj . Thus, this leads us to the definition of the proposed

merging criterion:

OMDS(Ri, Rj) = argminRi,Rj

1 − AW (Ri, Rj) (6)

3. OBJECT DETECTION WITH BPT

Hyperspectral object detection has been mainly developed in the

context of pixel-wise spectral classification. The main problem of

this approach is that objects are not only characterized by their spec-

tral signature. Indeed, spatial features such as shape, area, orienta-

tion, etc., can also contribute significantly to the detection.

In order to integrate the spatial and spectral information, BPT is pro-

posed as a search space for constructing a robust object identification

scheme. The strategy is to analyze the BPT using a set of descrip-

tors computed for each node. The work presented here proposes the

analysis of three different descriptors for each node:

D = {Dshape, Dspectral, Darea} (7)

The proposed shape, spectral and area descriptors are related

to the specficic object of interest. Studying D from the leaves to

the root, the approach consists in removing all nodes that signifi-

cantly differ from the characterization proposed by a referenceDref .

Hence, given this reference, the idea consists in considering that the

searched object instances are defined by the closest nodes to the root

node that have descriptors close to the Dref . model. In order to

illustrate the generality of the approach, we describe two detection

examples: roads and building in urban scenes.

3.1. Detection of roads

Roads appear as elongated structures having fairly homogeneous ra-

diance values usually corresponding to asphalt. Given their charac-

teristic shape, Dshape is the elongation of the region. In order to

compute it, we first define the smallest rectangular bounding box

allowed to have an arbitrary orientation that includes the region cor-

responding to the BPT node under study. Dshape is defined as the ra-

tio between the width and the height of the bounding box. Dspectral

is the correlation coefficient between the mean spectrum of the BPT

node and a reference spectrum of the road material. Darea is defined

as the area of the region which should be higher than the minimum

area required to consider that a region can be a road. This minimum

parameter should be set according to the spatial resolution of the im-

age. Computing D for all BPT nodes, the idea is to select the father

nodes closer to the root which have a low elongation, a high correla-

tion between asphalt material and an area higher than a threshold.

3.2. Detection of buildings

Following the same strategy, we consider that the rectangularity of a

region is an important characteristic for buildings. Then, a rectangu-

larity descriptor is proposed asDshape. It is computed by the ratio of

the area of the BPT node and the area of the smallest bounding box

including the region (as in the previous application, the bounding

box can have arbitrary orientation). Dshape=1 for perfectly rectan-

gular regions. Dspectral also corresponds to the correlation coeffi-

cient measured between the mean spectrum of the BPT node and a

reference spectrum of the building material. Darea is the required

area to consider that a region can be a building.. The procedure of

the detection is the same as the roads.

4. EXPERIMENTAL RESULTS

We first provide an evaluation of the BPT construction proposed in

Section 2. The experiments have been performed using a portion

of a publicy available HYDICE hyperspectral. After removing wa-

ter absorption and noisy bands, the data contain 167 spectral bands.

Fig. 4(a) shows a RGB combination of three of them. The BPT is

computed by the procedure described in Section 2. The number of

bins to represent the histograms depends of the image range (here

Nbins = 256). The first component dimension found by the se-

quence ck is s = 3. To evaluate the quality of the BPT construction,

we extract a segmentation result involving a given number NR of re-

gions by undoing the last NR− 1 mergings over the initial partition.

In this section, we compare the partition extracted from the BPT

with the classical RHSEG [11]. In the case of RHSEG, the similar-

ity criterion used is SAM with spectral clustering weight 0.1[12]. To

evaluate the resulting partitions, the symmetric distance dsym [13]

is used as a partition quality evaluation. Having a partition P and a

ground truth GT , the symmetric distance corresponds to the mini-

mum number of pixels whose labels should be changed in partition

P to achieve a perfect matching with GT , normalized by the total

number of pixels in the image. The manually created GT is shown

in Fig. 4(b).

Fig. 4(c)(d) show the segmentation results obtained with BPT and

RHSEG, respectively. In both cases, the resulting partitions involve

63 regions. Comparing both results, the quantitive dsym and the

visual evaluation corroborates that the partition extracted from the

BPT are much closer to the ground truth than the one computed with

RHSEG. This experiment has been done with several other images

acquired by different hyperspectral sensors, but, due to space limi-

tations, we can only present one data set. However, the conclusions

were the same on the remaining dataset.

A second set of experiments are conducted now for object de-

tection and recognition. We compare the classical pixel-wise clas-

sification against the strategy proposed in section 3 for building and

road detection. The pixel-wise classification consists in detecting

Star8ng  from  the  leaves  

We  analyse  each  BPT  to  look  for  the  nodes  having  specific  spa8al  and  spectral  descriptors  

Road  detec)on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

v  Firstly,  the  spa)al  and  the  spectral  descriptors  are  computed  for  all  BPT  nodes  

   v  Secondly,    following  a  bojom-­‐up  

strategy,  the  pruning  select  nodes  closer  to  the  root  which  have  a  low  elonga)on,    a  high  correla)on  between  asphalt  and  an  area  higher  than  a  threshold  

Page 30: igarss.pdf

   Object  Detec8on:  Example  of  Roads  

v  Roads  appear  as  elongated  structures  

             

Road  detec8on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

 The  ra)o  between  the  height  and  the  width  of  the  minimum  

bounding  box  containing  the  region  

Oriented  Bounding  Box  containing  the  region  

width  height  

Page 31: igarss.pdf

   Object  Detec8on:  Example  of  Roads  

   

Road  detec8on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

v  Roads  have  fairly  homogeneous  radiance  values  usually  corresponding  to  asphalt  

             

Radiance  

Wavelength  λ  

Pixel  1  Pixel  2  Pixel  3  

Mean  Spectrum  

Correla)on  Coefficient  

Asphalt  reference  spectrum  

Correla)on  coefficient  between  the  mean  spectra  of  the  region  and  the  asphalt  reference  spectrum  

Page 32: igarss.pdf

   Object  Detec8on:  Example  of  Roads  

27  regions   37  regions   57  regions  

Par88ons  contained  in  BPT  

Hydice  Hyperspectral    image  

 

Pixel-­‐wise  Asphalt  detec)on  (Spectra  whose  Correla)on  

with  asphalt  is  higher  than  0.9)    

BPT  pruning  strategy  oriented  to  object  

detec)on    

Road  detec)on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 33: igarss.pdf

   Object  Detec8on:  Example  of  Building  

27  regions   37  regions   57  regions  

Par88ons  contained  in  BPT  

Hydice  Hyperspectral    image  

 

Pixel-­‐wise  Building  detec)on  (Spectra  whose  Correla)on  with  reference  is  higher  than  0.9)  

 

BPT  pruning  strategy  oriented  to  object  

detec)on    

Road  detec)on  Building  detec)on  

Introduc8on  BPT  construc8on  Pruning  strategy  Conclusions  

Page 34: igarss.pdf

   Conclusions  

Introduc)on  BPT  construc)on  Pruning  strategy  Conclusions  

 v  A  new  region  merging  algorithm  has  been  presented  here  to  construct  BPTs  as  a  

hyperspectral  region-­‐based  and  hierarchical  representa)on.  

v  Being  a  generic  representa)on,  many  tree  processing  techniques  can              be  formulated  as  pruning  strategies  for  many  applica)ons.  Here,  as  an                    example  of  BPT  processing,  a  pruning  strategy  has  been  proposed  for  object                      detec)on.    v  A  new  similarity  measure  for  merging  hyperspectral  regions  have  been  proposed  

taking  into  account  spa)al  and  spectral  correla)ons.  It  introduces  a  local  dimension  reduc)on  which  is  different  from  the  classical  point  of  view  where  the  reduc)on  is  applied  globally  on  the  en)re  image.  

v  The  processing  example  has  shown  the  advantage  of  using  region-­‐based  representa)ons.