ignou - lecture notes -linear algebra (1)

Upload: ruchi21july

Post on 11-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    1/29

    Block 5 Basis of Multivariate Normal (MVN).

    0

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    2/29

    UNIT 1 RECA !" #INEAR A#$EBRA

    %tructure

    1.1 Introduction

    Objectives

    1.2 Real Symmetric Matrices

    Spectral decomposition theorem

    1.3 Positive deinite and nonne!ative deinite matrices

    S"uare root method

    1.# Idempotent matrices

    1.$ %ochran&s 'heorem

    1.( Sin!ular )alue *ecomposition

    1.+ Summary

    1., Reerence

    1.- Solutions /nsers

    1.1 INTR!&UCTI!N

    In this unit e recapitulate certain concepts and results hich ill be useul in the

    study o multivariate statistical analysis. e start ith the study o real symmetric

    matrices and the associated "uadratic orms. e deine a classiication or the

    "uadratic orms and develop a method or determinin! the class to hich a !iven

    "uadratic orm belon!s. Positive deinite and nonne!ative deinite matrices hich

    e shall notice in unit 2 as the dispersion matrices4 are very important or the study o

    multivariate distributions and in particular the multivariate normal distribution. In

    the section 1.3 e obtain some characteri5ations o positive deinite and nonne!ativedeinite matrices and study some o their useul properties. e !ive a method o

    computin! a s"uare root o a matrices hich play an important role in transormin!

    correlated random variables to uncorrelated random variables as e shall see in the

    unit 2. Idempotent matrices and %ochran&s theorem play a 6ey role in the distribution

    o "uadratic orms in independent standard normal variables particularly in

    connection ith the distribution o "uadratic orms to be independent chi7s"uares. In

    sections 1.# and 1.$ e study the properties o idempotent matrices and prove the

    al!ebraic version o %ochran&s theorem respectively. Sin!ular value decompositions

    plays a very important role in developin! the theory and studyin! the properties o

    canonical correlations beteen to random vectors. In section 1.( e study the

    sin!ular value decomposition.

    1

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    3/29

    e use the olloin! notations. Matrices are denoted by boldace capital letters li6e

    A' B' C. )ectors are denoted by boldace italic loer case letters li6ex'y, z. Scalars

    are denoted by loer case letters li6e a b . 'he transpose ran6 and trace o amatri8 A are denoted by At ran6 A and trA4 respectively. Rndenotes the n7

    dimensional 9uclidean space.

    !ectives *

    /ter completin! this unit you should be able to

    *etermine the deiniteness o a !iven "uadratic orm /pply the spectral decomposition in the study o principal components %ompute a trian!ular s"uare root o a positive deinite matri8 /pply the properties o positive and nonne!ative deinite matrices to the

    problems that ill be studied in unit 2 on multivariate normal distribution.

    /pply %ochran&s theorem to the distribution o "uadratic orms in normal

    variables /pply the sin!ular value decomposition in the development o canonical

    correlations.

    1.+REA# %,MMETRIC MATRICE%

    Real symmetric matrices play a very important role in the study o Multivariate

    statistical analysis. :or e8ample the variance7covariance matrices are real symmetric

    matrices. 'hey also play crucial role in the distribution o "uadratic orms in

    correlated normal random variables. e shall denote the i, j4th

    element o a matri8Aby aij. 'hen e rite A; aij44.

    *einition< / s"uare matri8 Ao order nx nis said to be a real symmetric matri8

    i i4 all the elements o A are real and ii4 aij; aji or i j; 1 = n.

    98ample 1. hich o the olloin! are real symmetric matrices>

    i4

    3

    2

    i

    iii4

    321

    321iii4

    12

    31iv4

    $#

    #1

    Solution 'he

    olloin! results ill be useul toards that end.

    #

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    6/29

    'heorem 1. %onsider a "uadratic orm @x4 ;xtAxhere A is symmetric. Ma6e a

    nonsin!ular linear transormation o the variables< y; Tx here T is nonsin!ular4

    call the transormed "uadratic orm as 4.4 11 yyyt

    t = ATT 'hen the ran!es o

    @x4 and (y)are the same.

    Proo< Aet belon! to the ran!e o @x4. So there is a vectorx0such the ; @x04 ;

    00 xxtA . ritey0; Tx0. Ho ; 00 xx

    tA ; 0

    11

    0 xxttt

    TATTT ; 0

    11

    0 yyt

    t ATT ;

    (y0). Eence belon!s to the ran!e o (y). 'hus the ran!e o @x4 is a subset o theran!e o (y). Since Tis nonsin!ular by reversin! the ar!uments e can sho that

    the ran!e o (y)is a subset o the ran!e o @x4.

    hat e are sayin! throu!h the 'heorem 1 is that the ran!e o a "uadratic orm is

    invariant under nonsin!ular linear transormations. 'hus the deiniteness o a

    "uadratic orm is invariant under nonsin!ular linear transormations. Ma6in! a

    nonsin!ular linear transormation can also be interpreted as chan!in! the basis as as

    done in section 1#.# o M'9702.4

    Recall that a real s"uare matri8 %is called an ortho!onal matri8 i %t; %71. It is easy

    to see that i % and T are ortho!onal matrices o the same order then so is %Tor

    Tt%t% T ; TtIT; I. Similarly % T Tt%t; I. Eence %T4t; Tt%tis the inverse o

    S'. /lso it is easy to veriy that

    T!

    !1 is an ortho!onal matri8 i T is an

    ortho!onal matri8.

    Our object is to determine the deiniteness o a "uadratic orm @x4 the matri8 o

    hich is not necessarily dia!onal. e shall no sho that e can ma6e anortho!onal transormation o the variables i.e. e can ma6e a transormation y; x

    here is an ortho!onal matri84 such that under this transormation the "uadratic

    orm is transormed into a "uadratic orm 2iiy . Since e 6no ho todetermine the deiniteness o 2iiy and since the deiniteness o 2iiy is thesame as that o @x4 e have the deiniteness o @x4.

    I A is a real matri8 then it is not necessary that its ei!en values are real. :or

    e8ample i A;

    01

    10 then the ei!en values are iand ?i. Eoever i Ais real

    and symmetric then all its ei!en values are real as shon belo.

    'heorem 2. Aet Abe a real symmetric matri8. /ll the ei!en values o Aare real and

    all the ei!en vectors o Acan be chosen to be real.

    Proo< Aet +ibe an ei!en value o Aand let the correspondin! ei!en vector be

    x+iyhere and are real numbers andxandyare real vectors. %learly at least oneoxandyis nonnull asx+iy bein! an ei!en vector is nonnull. Ho

    Ax+iy4 ; +i4x+iy4

    9"uatin! the real parts on both sides and the ima!inery parts on both sides o theabove e"uality e !et

    $

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    7/29

    Ax; x-y = = = = 2.14Ay; y+x = = = = 2.24

    Premultiplyin! 2.14 byytand 2.24 byxt e !et

    ytAx; ytx-yty = = = = 2.34xtAy; xty+xtx = = = = 2.#4

    Since Ais symmetric andytAxis a scalar e haveytAx; ytAx4t;xtAty;xtAy.

    Similarlyytx;xty. Ho subtractin! 2.34 rom 2.#4 e !et

    xtxyty4 ; 0. Since at least one ox andyis non7nullxtxyty0.

    Eence all the ei!en values o Aare real. :urther Ax+iy4 ; x+iy4 yields Ax; x

    and Ay; y. Since at least one oxandyis non null andxandyare real e canchoose the non7null vector beteenxandyas an ei!en vector o Acorrespondin! to

    .

    Ho e are ready to prove an important result concernin! the real symmetric

    matrices namely the spectral decomposition theorem.

    'heorem 3. Aet Abe a real symmetric matri8 o order n x n. 'hen there e8ists a real

    ortho!onal matri8 o order n x nsuch that A ; there is a real dia!onal

    matri8.

    Proo< e shall prove the theorem by induction on n. Aet Abe a 1 x 1 real symmetric

    matri8 i.e. A; ahere a is a real number. %learly 1t.a.1 ; 1.a.1 ; a. /lso 1 is an

    ortho!onal matri8 o order 1 x 1 since 1t.1 ; 1.1 ; 1. So the theorem is true or n ; 1.

    Aet the theorem be true n ; ma possible inte!er 14. Aet Abe a matri8 o orderm14 x m14. Aet x1 be a normali5ed ei!en vector o Acorrespondin! to ei!en

    value 1. 'hen Ax1; 1x1. 'henx1can be e8tended to an orthonormal basisx1=xn o R

    m+1. See unit 12 o M'97024. rite R ; x1

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    8/29

    here is a real dia!onal matri8. ritin! % ;

    1

    1

    %-

    - e notice that % is an

    ortho!onal matri8 and

    RtAR; t%0-

    -%

    or A; ttR%0-

    -R%

    rite ; R%. Since R and % are ortho!onal matrices so is as noticed earlier.

    ritin!

    =0-

    -

    e observe that is a real dia!onal matri8.

    'hus the theorem is true or n ; m1.

    Eence the theorem ollos by induction on n.

    'he beauty o the theorem 3 lies in its interpretation. Aet Abe a real symmetric

    matri8 and let A; there is ortho!onal and is a real dia!onal matri8. e

    then have

    A ; or Ap1

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    9/29

    98ample #. Obtain a spectral decomposition o the matri8 A 4

    21

    1#.

    Solution< 'he characteristic e"uation o the matri8 is

    21

    1#; 0

    or # 7 42 7 4 ? 1 ; 0

    or 27 ( + ; 0

    'he roots are 232

    2,3((=

    So the ei!en values are 23+ and 23 .

    Aet

    =

    2

    1

    u

    uu be the ei!en vector o the !iven matri8 correspondin! to the ei!en value

    23+ .

    'hen -IA =+ uK423J or -=

    2

    1

    211

    121

    u

    u

    Hotice that the second column o ( )IA 423 + is ( 21 times the irst column.So 1and21 21 =+= uu satisy the e"uation ( ) -IA =+ u423

    'o normali5e u e divide it by its norm namely ( ) 22#121 22 +=++ . 'hus thenormali5ed ei!en vector correspondin! to the ei!en value 23+ is

    +

    + 1

    21

    22#

    1. It can be shon similarly that the normali5ed ei!en vector

    correspondin! to 23 is ( )

    ++ 211

    22#

    1. Eence A ; t here

    ( )

    ++

    +=

    211

    121

    22#

    1 and

    +=

    230

    023 .

    sin! theorem 3 e can determine the deiniteness o a "uadratic orm. %onsider the

    "uadratic orm @x4 ;xtAx. Aet A; tbe a spectral decomposition o A. 'hen

    @x4 ;xtx;ytyherey; tx. Since is nonsin!ular in act ortho!onal4 thedeiniteness o @x4 is the same as the deiniteness oyty. 'he deiniteness oyty

    is determined by the dia!onal elements 1=. nare the ei!en values o A.

    'hus

    ,

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    10/29

    xtAxis

    =>=

    ji

    ji

    i

    ji

    i

    ji

    ji

    i

    ji

    i

    someor0andsomeor0iindeinite

    someor0andallor0itesemideinine!ative

    allor0ideinitene!ative

    someor0and0itesemideinipositive

    allor0ideinitepositive

    Lecause o the one7one correspondence beteen real symmetric matrices and the

    "uadratic orms e call a real symmetric matri8 A as positive deinite positive

    semideinite ne!ative deinite ne!ative semideinite or indeinite accordin! as the

    "uadratic orm xtAx is positive deinite positive semideinite ne!ative deinite

    ne!ative semideinite or indeinite respectively.

    98ample #. *etermine the deiniteness o the "uadratic orms i42

    221

    2

    12 xxxx + andii4 323121

    2

    3

    2

    2

    2

    1 333 xxxxxxxxx ++ .

    Solution< i4 'he matri8 o the "uadratic orm is A;

    1$.0

    $.02.

    e see that the characteristic e"uation A7 I ; 0 is274174 0.2$ ; 0 or 27 3 2.2$ ; 0

    Eence the ei!en values hich are the roots o the above e"uation are 2

    --3

    or32 and 32.

    Eence the "uadratic orm is positive deinite.

    ii4 'he matri8 o the "uadratic orm is A;

    1$.1$.1

    $.11$.1

    $.1$.11

    It is easy to notice that the sum o each ro in Ais 72.

    Eence A

    =

    11

    1

    211

    1

    . 'hus 72 is an ei!en value o A. :urther the sum o the ei!en

    values hich is the same as the trace o A is 3. Eence there must be at least one

    positive ei!en value o A. So the "uadratic orm is in deinite.

    92. Aet Abe a real symmetric matri8 a dia!onal element o hich is ne!ative.

    Sho that Acannot be positive deinite or positive semideinite.

    93. *etermine the deiniteness o the olloin! "uadratic orms

    --

    -I ris an

    e8ample o an idempotent matri8 o ran6 r.

    :urther i Ais an idempotent matri8 and is a nonsin!ular matri8 o the same order

    then A71. A71; A271; A71.

    'hus A71is an idempotent matri8.

    Eence

    --

    -Ir71is an idempotent matri8 o ran6 ror every nonsin!ular matri8 .

    e shall no sho that every idempotent matri8 o ran6 r is o the orm

    --

    -Ir71or some nonsin!ular matri8 .

    'heorem -. Aet / be an n xnmatri8 o ran6 r1 rn714. 'hen Ais idempotent i

    and only i A;

    --

    -Ir71or some nonsin!ular matri8 .

    Proo< I& part has already been proved above. :or the only i& part let Abe an

    n xnidempotent matri8 o ran6 r1 rn714. Aet A; a1

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    18/29

    Akk ll

    ae ; 0 $; 1= n-r. 1.#.24

    %onsider ;rnrnr llllii

    aeaeaa

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    19/29

    Solution< 'he i,i4th element o AB is !iven by =

    n

    j

    jiijba

    1

    . Eence trAB4 ;

    = =

    m

    i

    n

    j

    jiijba

    1 1

    ; = =

    n

    j

    m

    i

    jiijba

    1 1

    ; = =

    n

    j

    m

    i

    ijjiab

    1 1

    ; trBA4 since =

    m

    i

    ijjiab

    1

    is the j,j4th

    element o BA.

    e are no ready to prove

    'heorem 10. Aet Abe an idempotent matri8 o order n xn. 'hen ran6 A; trA4.

    Proo< 'he proo is trivial i ran6 Ais 0 or n. Aet ran6 A; rhen 1 rn71. 'hen

    by theorem - there e8ists a nonsin!ular matri8 such that A;

    --

    -Ir71.

    Ho trA4 ;

    17

    --

    -I

    rtr ;

    --

    -I17rtr ; rtr

    r =

    --

    -I; ran6 A.

    e state belo another result on idempotent matrices.

    'heorem 11. / s"uare matri8 Ao order n xn is idempotent i and only i ran6 I7A4

    ; n7 ran6 A.

    :or proo one may reer to Rao and Lhimasan6aram 20004 Pa!e 13#.

    'heorem 12. Aet Abe a real symmetric and idempotent matri8 o ran6 r. 'hen there

    e8ists an ortho!onal matri8 % such that A ; %

    --

    -I r%t. Eence A is nonne!ative

    deinite.

    Proo< Aet as an e8ercise.

    98ample #. Aet Aand Bbe idempotent matrices o the same order. 'hen sho that

    ABis idempotent i and only i AB; BA; -.

    Solution< I& part is trivial. :or the only i& part let A Band ABbe idempotent.

    'hen AB; AB4AB4 ; A2B2AB BA; A B AB BA. So ABBA;

    -. Premultiplyin! by A e !et ABABA; -. Ho post multiplyin! the previous

    e"uality by A e !et ABAABA ; - or ABA ; -. Eence AB ; - and as a

    conse"uence BA ;-.

    913. Aet Abe a 2 x2 idempotent matri8. %an a11be e"ual to 2>

    91#. Aet A and B be idempotent matrices. 'hen sho that

    B-

    -A is also

    idempotent.

    1,

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    20/29

    91$. Sho that i Aand Bare idempotent and the column space o Ais contained

    in the column space o B the BA; A.

    1.5 C!C8RAN9% T8E!REM

    %ochran&s theorem concerns the distributions o "uadratic orms in independent

    standard normal variables. Aetx;

    nx

    x

    1

    be a vector o independent standard normal

    variables. Aet A1 A2=A$ be real symmetric nonrandom4 matrices such that

    xtx;xtA1xxtA2x = x

    tA$x. e 6no thatxtxis distributed as chi7s"uare ith

    nde!rees o reedom. %ochran&s theorem asserts thatxtAix i; 1= $are distributed

    as independent chi7s"uares i and only i nran$n

    i

    i=

    =1

    A . In this section e prove an

    al!ebraic version o this result. In the ne8t unit e shall prove the statistical version.

    'heorem 13. Aet A1 A2=A$be real symmetric matrices such that A1 A2 = A$; I. 'he olloin! are e"uivalentIdentiy the correspondin! ei!en vectors. hat is the ran6 o A>

    Solution< A; U

    --

    -:Vt

    here U;

    122

    212

    221

    3

    1 and V;

    1111

    1111

    1111

    1111

    2

    1

    are ortho!onal matrices and ;

    10

    02

    'he ei!en values o AAW are2

    1 ; #2

    2 ; 1 and 0. 'he correspondin! ei!en vectors

    are the irst second and third columns respectively o namely

    2

    2

    1

    3

    1

    2

    1

    2

    3

    1

    and

    1

    2

    2

    3

    1respectively.

    e leave it as an e8ercise to identiy the ei!en values and ei!en vectors o AtA.

    22

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    24/29

    'he ran6 o Ais the same as the number o ros o namely 2.

    e remar6 here that the non5ero ei!en values o AAt and AtA are the same. In act

    or any to matrices Aand Bo order m x nand n x mrespectively the non5ero ei!en

    values o ABand BAare the same. 'he proo is beyon! the scope o this notes. :or

    a proo e reer the reader to Rao and Lhimasan6aram 20004 pa!e 2,2.4

    1.< %UMMAR,

    In this unit e have covered the olloin! points %!#UTI!N% T! E?ERCI%E%

    91. i4 %oeicient o2

    1x 2

    2x andx1x2are respectively 1 71 and 0. So the matri8

    o the "uadratic orm 2221 xx is 10

    01 .

    ii4 %oeicients o2

    1x 2

    2x andx1x2 are respectively 2 $ and 3. So the

    matri8 o the "uadratic orm is

    $$.1

    $.12.

    iii4 %oeicients o2

    1x 2

    2x 2

    3x x1x2x1x3andx2x3are respectively 0 0 0 3

    7# $. So the matri8 o the "uadratic orm *x1x + xx* x1x* is

    0$.22

    $.20$.1

    2$.10

    .

    iv4 %oeicients o2

    1x 2

    2x 2

    3x 2

    #x x1x2 x1x3 x1x# x2x3 x2x# andx3x# are

    respectively 1 1 0 1 0 0 0 0 0 0. So the matri8 o the "uadratic orm2

    1x

    2

    2x 2

    #x is

    1000

    0100

    0010

    0001

    .

    92. Suppose aii D 0. Aet ei denote the ith column o the identity matri8. 'hen

    i

    t

    i ee A ; aiiD 0. Eence Acannot be pd or psd.

    93. i4 'he matri8 o the "uadratic orm2

    221

    2

    1 +$ xxxx + is A;

    +$.2

    $.21.

    'he ei!en values o / are the roots o the characteristic e"uation A7I;0 or174 +74 ? (.2$ ; 0.

    'he %haracteristic e"uation can be reritten as 27 , 0.+$ ; 0.

    Eence the roots are2

    3(#, + and

    2

    3(#, hich are both positive.

    Eence the "uadratic orm2

    221

    2

    1 +$ xxxx + is positive deinite.

    ii4 :orx1; 1 andx2;x3; 0 the value o the "uadratic orm is 1. /!ain orx2; 1x1; x3; 0 the value o the "uadratic orm is 71. Eence the "uadratic

    orm is indeinite.

    2#

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    26/29

    iii4 'he matri8 o the "uadratic orm is A;

    #00

    033

    032

    . 'he characteristic

    e"uation o / is #74274374 7 -4 ; 0. So # is a root o the above e"uation.

    'he remainin! to roots are the roots o the e"uation 274374 7 - ; 0 or2 7 $ 7 3 ; 0 So the roots are

    2

    122$$ . 'hus all the three roots are

    positive. Eence the !iven "uadratic orm is positive deinite.

    9#. 'he ei!en values o / ;

    21

    12are the roots o the characteristic e"uation

    274271 ; 0 or 27 # 3 ; 0 or 734714 ; 0. So the ei!en values are 1

    ; 3 and 2; 1. Aet

    2

    1

    x

    xbe an ei!en vector correspondin! to 1. 'hen

    2x1x2 ; 3x1x1 2x2 ; 3x2

    or 7x1x2 ; 0

    x17x2 ; 0

    'husx1;x2. So the normali5ed ei!en vector correspondin! to the ei!en value

    3 is

    1

    1

    2

    1.

    It can similarly be shon that

    1

    12

    1 is the normali5ed ei!en vector

    correspondin! to the ei!en value 1. So the spectral decomposition o Ais

    A; ( ) ( )111

    1

    2

    1.111

    1

    1

    2

    1.3

    +

    or

    11

    11

    2

    1

    10

    03

    11

    11

    2

    1

    I Anxn; tis a spectral decomposition o A then A2; tt; 2t.

    Ly induction it can be shon that A$; $t. or $; 12=..

    'hus i 1= nare the ei!en values o A then $n$

    1 are the ei!en values

    o A$. 'he ei!en vectors o A$ can be ta6en to be the same as the ei!en

    vectors o A.

    Eence A100;

    11

    11

    2

    1

    10

    03

    11

    11

    2

    1 100

    .

    2$

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    27/29

    9$. i4 Aet

    =

    22

    2111

    2221

    11

    0

    0

    21

    1#

    b

    bb

    bb

    b

    So211b ; # or b11; 2

    b21b12 ; 1 or2

    11

    11

    12 ==b

    b

    22

    22

    2

    21 =+bb or

    #

    +

    #

    12

    2

    22 ==b

    so2

    +22=b

    'hus the re"uired loer trian!ular s"uare root is

    2

    +

    2

    1

    02.

    ii4 Aet

    =

    33

    3222

    312111

    333231

    2221

    11

    00

    00

    00

    (13

    1$3

    33-

    b

    bb

    bbb

    bbb

    bb

    b

    so211b ;- or b11; 3

    b11b21 ; 3 or b21; 1

    b11b31 ; 3 or b31; 1

    $2

    22

    2

    21 =+bb or2

    22b ; $71 ; # or b22; 2

    b21b31 b22b32 ; 1 or b22b32 ; 171 ; 0 or b32 ; 02

    33

    2

    32

    2

    31 bbb ++ ; ( or233b ; ( 7 0 7 1 ; $ or b33 ; $ .

    'hus the re"uired trian!ular s"uare root is

    $01

    021

    003

    9(. I& part< let Cand &be positive deinite. 'hen

    ( ) 0< >+=

    yyxx

    y

    xyx &C

    &-

    -Ctttt

    henever at least one o x and y is

    non7null. Eence

    &-

    -Cis pd.

    Only i& part< Aet

    &-

    -Cbe pd consider

    ( ) xxx

    x C-&-

    -C-

    tt =

    <

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    28/29

    9+. e 6no that ( ) yyy

    y22

  • 7/23/2019 IGNOU - Lecture Notes -Linear Algebra (1)

    29/29

    in act choose bany non5ero number and ;b

    24

    'hus

    11

    22is idempotent. Eence there is an idempotent matri8 ith a11;

    2.

    91#.

    =

    =

    B-

    -A

    B-

    -A

    B-

    -A

    B-

    -A

    +

    +

    So

    B-

    -Ais idempotent i Aand Bare idempotent.

    91$. Since the column space o Ais contained in the column space o B e !et

    A; B&or some &.

    Ho BA; B.B&; B&; A

    re@are /Prof. P Bhimasankaram, Iia %tatistical Istitute' 8/eraa.