ikw75n60t_2_8

13
IKW75N60T TRENCHSTOPSeries q IFAG IPC TD VLS 1 Rev. 2.8 2013-12-05 Low Loss DuoPack : IGBT in TRENCHSTOPand Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Very low VCE(sat) 1.5V (typ.) Maximum Junction Temperature 175°C Short circuit withstand time 5s Positive temperature coefficient in VCE(sat) very tight parameter distribution high ruggedness, temperature stable behaviour very high switching speed Low EMI Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC 1) for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Applications: Frequency Converters Uninterrupted Power Supply Type V CE I C V CE(sat),Tj=25°C T j,max Marking Package IKW75N60T 600V 75A 1.5V 175C K75T60 PG-TO247-3 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage, T j ≥ 25C V CE 600 V DC collector current, limited by T jmax T C = 25C I C 80 2) 75 A T C = 100C Pulsed collector current, t p limited by T jmax I Cpuls 225 Turn off safe operating area V CE = 600V, T j = 175C, t p = 1μs - 225 Diode forward current, limited by T jmax T C = 25C I F 80 2) 75 T C = 100C Diode pulsed current, t p limited by T jmax I Fpuls 225 Gate-emitter voltage V GE 20 V Short circuit withstand time 3) V GE = 15V, V CC 400V, T j 150C t SC 5 s Power dissipation T C = 25C P tot 428 W Operating junction temperature T j -40...+175 C Storage temperature T stg -55...+150 Soldering temperature, 1.6mm (0.063 in.) from case for 10s T sold 260 1) J-STD-020 and JESD-022 2) Value limited by bondwire 3) Allowed number of short circuits: <1000; time between short circuits: >1s. G C E PG-TO247-3

Upload: venkat86ram

Post on 18-Sep-2015

5 views

Category:

Documents


0 download

DESCRIPTION

Device Datasheet

TRANSCRIPT

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 1 Rev. 2.8 2013-12-05

    Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft,fast recovery anti-parallel Emitter Controlled HE diode

    Very low VCE(sat) 1.5V (typ.) Maximum Junction Temperature 175C Short circuit withstand time 5s Positive temperature coefficient in VCE(sat) very tight parameter distribution high ruggedness, temperature stable behaviour very high switching speed Low EMI Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC1) for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

    Applications: Frequency Converters Uninterrupted Power Supply

    Type VCE IC VCE(sat),Tj=25C Tj,max Marking Package

    IKW75N60T 600V 75A 1.5V 175C K75T60 PG-TO247-3

    Maximum Ratings

    Parameter Symbol Value Unit

    Collector-emitter voltage, Tj 25C VC E 600 V

    DC collector current, limited by TjmaxTC = 25C

    IC802)

    75

    A

    TC = 100C

    Pulsed collector current, tp limited by Tjmax IC p u l s 225

    Turn off safe operating area VCE = 600V, Tj = 175C, tp = 1s - 225

    Diode forward current, limited by TjmaxTC = 25C IF

    802)

    75TC = 100CDiode pulsed current, tp limited by Tjmax IF p u l s 225Gate-emitter voltage VG E 20 V

    Short circuit withstand time3)

    VGE = 15V, VCC 400V, Tj 150CtS C 5 s

    Power dissipation TC = 25C P t o t 428 W

    Operating junction temperature T j -40...+175CStorage temperature T s t g -55...+150

    Soldering temperature, 1.6mm (0.063 in.) from case for 10s T s o l d 260

    1) J-STD-020 and JESD-0222) Value limited by bondwire3) Allowed number of short circuits: 1s.

    G

    C

    E

    PG-TO247-3

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 2 Rev. 2.8 2013-12-05

    Thermal Resistance

    Parameter Symbol Conditions Max. Value Unit

    CharacteristicIGBT thermal resistance,junction case

    R t h J C 0.35 K/W

    Diode thermal resistance,junction case

    R t h J C D 0.6

    Thermal resistance,junction ambient

    R t h J A 40

    Electrical Characteristic, at Tj = 25 C, unless otherwise specified

    Parameter Symbol ConditionsValue

    Unitmin. Typ. max.

    Static CharacteristicCollector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=0.2mA 600 - - VCollector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=75A

    T j=25CT j=175C

    --

    1.51.9

    2.0-

    Diode forward voltage VF VG E=0V, IF=75AT j=25CT j=175C

    --

    1.651.6

    2.0-

    Gate-emitter threshold voltage VG E ( t h ) IC=1.2mA,VC E=VG E 4.1 4.9 5.7Zero gate voltage collector current IC E S VC E=600V ,

    VG E=0VT j=25CT j=175C

    --

    --

    405000

    A

    Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 100 nATransconductance g f s VC E=20V, IC=75A - 41 - SIntegrated gate resistor RG i n t -

    Dynamic CharacteristicInput capacitance C i s s VC E=25V,

    VG E=0V,f=1MHz

    - 4620 - pFOutput capacitance Co s s - 288 -Reverse transfer capacitance C r s s - 137 -Gate charge QG a t e VC C=480V, IC=75A

    VG E=15V- 470 - nC

    Internal emitter inductancemeasured 5mm (0.197 in.) from case

    LE - 13 - nH

    Short circuit collector currentAllowed number of short circuits: 1s.

    IC ( S C ) VG E=15V, tS C5sVC C = 400V,T j 150C

    - 690 - A

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 3 Rev. 2.8 2013-12-05

    Switching Characteristic, Inductive Load, at Tj=25 C

    Parameter Symbol ConditionsValue

    Unitmin. typ. max.

    IGBT CharacteristicTurn-on delay time td ( o n ) T j=25C,

    VC C=400V, I C=75A,VG E=0/15V,rG=5 , L =100nH,C=39pF

    L , C f rom Fig. EEnergy losses includetail and diode reverserecovery.

    - 33 - nsRise time t r - 36 -Turn-off delay time td ( o f f ) - 330 -Fall time t f - 35 -Turn-on energy Eo n - 2.0 - mJTurn-off energy Eo f f - 2.5 -Total switching energy E t s - 4.5 -Anti-Parallel Diode CharacteristicDiode reverse recovery time t r r T j=25C,

    VR=400V, IF=75A,diF /d t=1460A/s

    - 121 - nsDiode reverse recovery charge Q r r - 2.4 - CDiode peak reverse recovery current I r r m - 38.5 - ADiode peak rate of fall of reverserecovery current during tb

    di r r /d t - 921 - A/s

    Switching Characteristic, Inductive Load, at Tj=175 C

    Parameter Symbol ConditionsValue

    Unitmin. typ. max.

    IGBT CharacteristicTurn-on delay time td ( o n ) T j=175C,

    VC C=400V, I C=75A,VG E=0/15V,rG=5 , L =100nH,C=39pF

    L , C f rom Fig. EEnergy losses includetail and diode reverserecovery.

    - 32 - nsRise time t r - 37 -Turn-off delay time td ( o f f ) - 363 -Fall time t f - 38 -Turn-on energy Eo n - 2.9 - mJTurn-off energy Eo f f - 2.9 -Total switching energy E t s - 5.8 -Anti-Parallel Diode CharacteristicDiode reverse recovery time t r r T j=175C

    VR=400V, IF=75A,diF /d t=1460A/s

    - 182 - nsDiode reverse recovery charge Q r r - 5.8 - CDiode peak reverse recovery current I r r m - 56.2 - ADiode peak rate of fall of reverserecovery current during tb

    di r r /d t - 1013 - A/s

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 4 Rev. 2.8 2013-12-05

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    10Hz 100Hz 1kHz 10kHz 100kHz0A

    50A

    100A

    150A

    200A

    TC=110C

    TC=80C

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGEFigure 1. Collector current as a function of

    switching frequency(Tj 175C, D = 0.5, VCE = 400V,VGE = 0/15V, rG = 5)

    Figure 2. Safe operating area(D = 0, TC = 25C, Tj 175C;VGE=0/15V)

    Pto

    t,P

    OW

    ER

    DIS

    SIPA

    TIO

    N

    25C 50C 75C 100C 125C 150C0W

    50W

    100W

    150W

    200W

    250W

    300W

    350W

    400W

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    25C 75C 125C0A

    30A

    60A

    90A

    120A

    TC, CASE TEMPERATURE TC, CASE TEMPERATUREFigure 3. Power dissipation as a function of

    case temperature(Tj 175C)

    Figure 4. DC Collector current as a functionof case temperature(VGE 15V, Tj 175C)

    Ic

    Ic

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 5 Rev. 2.8 2013-12-05

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V 1V 2V 3V0A

    30A

    60A

    90A

    120A

    15V

    7V

    9V

    11V

    13V

    VGE=20V

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V 1V 2V 3V0A

    30A

    60A

    90A

    120A

    15V

    7V

    9V

    11V

    13V

    VGE=20V

    VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGEFigure 5. Typical output characteristic

    (Tj = 25C)Figure 6. Typical output characteristic

    (Tj = 175C)

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V 2V 4V 6V 8V0A

    20A

    40A

    60A

    80A

    25C

    T J=175C

    VC

    E(sa

    t),C

    OLL

    EC

    TOR

    -EM

    ITT

    SAT

    UR

    ATI

    ON

    VO

    LTA

    GE

    0C 50C 100C 150C0.0V

    0.5V

    1.0V

    1.5V

    2.0V

    2.5V

    IC=75A

    IC=150A

    IC=37.5A

    VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATUREFigure 7. Typical transfer characteristic

    (VCE=20V)Figure 8. Typical collector-emitter

    saturation voltage as a function ofjunction temperature(VGE = 15V)

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 6 Rev. 2.8 2013-12-05

    t,S

    WIT

    CH

    ING

    TIM

    ES

    0A 40A 80A 120A10ns

    100ns

    t r

    td(on)

    t f

    td(off)

    t,S

    WIT

    CH

    ING

    TIM

    ES

    10ns

    100ns

    t r

    td(on)

    t f

    td(off)

    IC, COLLECTOR CURRENT RG, GATE RESISTORFigure 9. Typical switching times as a

    function of collector current(inductive load, TJ=175C,VCE = 400V, VGE = 0/15V, rG = 5, Dynamic test circuit in Figure E)

    Figure 10. Typical switching times as afunction of gate resistor(inductive load, TJ = 175C,VCE= 400V, VGE = 0/15V, IC = 75A,Dynamic test circuit in Figure E)

    t,S

    WIT

    CH

    ING

    TIM

    ES

    25C 50C 75C 100C 125C 150C

    100ns

    t r

    td(on)

    t f

    td(off)

    VG

    E(th

    ),G

    ATE

    -EM

    ITT

    TRS

    HO

    LDV

    OLT

    AGE

    -50C 0C 50C 100C 150C0V

    1V

    2V

    3V

    4V

    5V

    6V

    7V

    min.

    typ.max.

    TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATUREFigure 11. Typical switching times as a

    function of junction temperature(inductive load, VCE = 400V,VGE = 0/15V, IC = 75A, rG=5, Dynamic test circuit in Figure E)

    Figure 12. Gate-emitter threshold voltage asa function of junction temperature(IC = 1.2mA)

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 7 Rev. 2.8 2013-12-05

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    0A 20A 40A 60A 80A 100A 120A 140A0.0mJ

    4.0mJ

    8.0mJ

    12.0mJ

    Ets*

    Eoff

    *) Eon and Ets include lossesdue to diode recovery

    Eon*

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    0.0mJ

    2.0mJ

    4.0mJ

    6.0mJ

    8.0mJ E ts*

    E off

    *) E on and E ts include losses

    due to diode recovery

    E on*

    IC, COLLECTOR CURRENT RG, GATE RESISTORFigure 13. Typical switching energy losses

    as a function of collector current(inductive load, TJ = 175C,VCE = 400V, VGE = 0/15V, rG = 5, Dynamic test circuit in Figure E)

    Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, TJ = 175C,VCE = 400V, VGE = 0/15V, IC = 75A,Dynamic test circuit in Figure E)

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    25C 50C 75C 100C 125C 150C0.0mJ

    1.0mJ

    2.0mJ

    3.0mJ

    4.0mJ

    5.0mJEts*

    Eoff

    *) Eon and Ets include lossesdue to diode recovery

    Eon*

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    300V 350V 400V 450V 500V 550V0mJ

    2mJ

    4mJ

    6mJ

    8mJ

    E ts*

    Eon*

    *) E on and E ts include losses

    due to diode recovery

    Eoff

    TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGEFigure 15. Typical switching energy losses

    as a function of junctiontemperature(inductive load, VCE = 400V,VGE = 0/15V, IC = 75A, rG = 5, Dynamic test circuit in Figure E)

    Figure 16. Typical switching energy lossesas a function of collector emittervoltage(inductive load, TJ = 175C,VGE = 0/15V, IC = 75A, rG = 5, Dynamic test circuit in Figure E)

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 8 Rev. 2.8 2013-12-05

    VG

    E,G

    ATE

    -EM

    ITTE

    RV

    OLT

    AG

    E

    0nC 100nC 200nC 300nC 400nC0V

    5V

    10V

    15V

    480V

    120V

    c,C

    AP

    AC

    ITA

    NC

    E

    0V 10V 20V

    100pF

    1nF

    C rss

    C oss

    C iss

    QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGEFigure 17. Typical gate charge

    (IC=75 A)Figure 18. Typical capacitance as a function

    of collector-emitter voltage(VGE=0V, f = 1 MHz)

    I C(s

    c),s

    hort

    circ

    uitC

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0

    250

    500

    750

    1000

    12 13 14 15 16 17 18 19 20

    t SC,S

    HO

    RT

    CIR

    CU

    ITW

    ITH

    STA

    ND

    TIM

    E

    10V 11V 12V 13V 14V0s

    2s

    4s

    6s

    8s

    10s

    12s

    VGE, GATE-EMITTER VOLTAGE VGE, GATE- EMITTER VOLTAGEFigure 19. Typical short circuit collector

    current as a function of gate-emitter voltage(VCE 400V, Tj 150C)

    Figure 20. Short circuit withstand time as afunction of gate-emitter voltage(VCE=400V, start at TJ=25C,TJmax

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 9 Rev. 2.8 2013-12-05

    Z thJ

    C,T

    RA

    NS

    IEN

    TTH

    ER

    MA

    LIM

    PE

    DA

    NC

    E

    1s 10s 100s 1ms 10ms 100ms10 -3K/W

    10 -2K/W

    10 -1K/W

    single pulse

    0.010.02

    0.05

    0.1

    0.2

    D=0.5

    Z thJ

    C,T

    RA

    NS

    IEN

    TTH

    ER

    MA

    LIM

    PE

    DA

    NC

    E

    100ns 1s 10s 100s 1ms 10ms100ms

    10 -2K/W

    10 -1K/W

    single pulse

    0.01

    0.02

    0.05

    0.1

    0.2

    D=0.5

    tP, PULSE WIDTH tP, PULSE WIDTHFigure 21. IGBT transient thermal

    impedance(D = tp / T)

    Figure 22. Diode transient thermalimpedance as a function of pulsewidth(D=tP/T)

    t rr,R

    EV

    ER

    SER

    EC

    OVE

    RY

    TIM

    E

    1000A/s 1500A/s0ns

    50ns

    100ns

    150ns

    200ns

    TJ=25C

    TJ=175C

    Qrr,R

    EV

    ER

    SE

    RE

    CO

    VE

    RY

    CH

    ARG

    E

    1000A/s 1500A/s0C

    1C

    2C

    3C

    4C

    5C

    TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPEFigure 23. Typical reverse recovery time as

    a function of diode current slope(VR=400V, IF=75A,Dynamic test circuit in Figure E)

    Figure 24. Typical reverse recovery chargeas a function of diode currentslope(VR = 400V, IF =75A,Dynamic test circuit in Figure E)

    R , ( K / W ) , ( s ) 0.1968 0.1155040.0733 0.0093400.0509 0.0008230.0290 0.000119

    C 1=1 /R 1

    R 1 R2

    C 2=2 /R 2

    R , ( K / W ) , ( s ) 0.1846 0.1103730.1681 0.0155430.1261 0.0012390.0818 0.0001200.04 0.000008

    C1=1/R1

    R1 R2

    C2=2/R2

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 10 Rev. 2.8 2013-12-05

    I rr,R

    EV

    ER

    SE

    RE

    CO

    VE

    RY

    CU

    RR

    EN

    T

    1000A/s 1500A/s0A

    10A

    20A

    30A

    40A

    50A

    60A

    T J=25C

    TJ=175C

    dirr/d

    t,D

    IOD

    EP

    EAK

    RAT

    EO

    FFA

    LLO

    FR

    EVE

    RS

    ER

    EC

    OV

    ER

    YC

    UR

    RE

    NT

    1000A/s 1500A/s0A/s

    -200A/s

    -400A/s

    -600A/s

    -800A/s

    -1000A/s

    -1200A/s

    TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPEFigure 25. Typical reverse recovery current

    as a function of diode currentslope(VR = 400V, IF = 75A,Dynamic test circuit in Figure E)

    Figure 26. Typical diode peak rate of fall ofreverse recovery current as afunction of diode current slope(VR=400V, IF=75A,Dynamic test circuit in Figure E)

    I F,F

    OR

    WA

    RD

    CU

    RR

    EN

    T

    0V 1V 2V0A

    50A

    100A

    150A

    200A

    175C

    TJ=25C

    VF,

    FOR

    WA

    RD

    VO

    LTAG

    E

    0C 50C 100C 150C0.0V

    0.5V

    1.0V

    1.5V

    2.0V

    75A

    IF=150A

    37.5A

    VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATUREFigure 27. Typical diode forward current as

    a function of forward voltageFigure 28. Typical diode forward voltage as a

    function of junction temperature

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 11 Rev. 2.8 2013-12-05

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 12 Rev. 2.8 2013-12-05

    Ir r m

    90% Ir r m

    10% Ir r m

    di /dtF

    tr r

    IF

    i,v

    tQS QF

    tS

    tF

    VR

    di /dtr r

    Q =Q Qr r S F

    +t =t tr r S F

    +

    Figure C. Definition of diodesswitching characteristics

    p(t)1 2 n

    T (t)j

    11

    22

    nn

    TC

    r r

    r

    r

    rr

    Figure D. Thermal equivalentcircuit

    Figure A. Definition of switching times

    Figure B. Definition of switching losses

  • IKW75N60TTRENCHSTOP Series q

    IFAG IPC TD VLS 13 Rev. 2.8 2013-12-05

    Published byInfineon Technologies AG81726 Munich, Germany 2013 Infineon Technologies AGAll Rights Reserved.

    Legal Disclaimer

    The information given in this document shall in no event be regarded as a guarantee of conditions orcharacteristics. With respect to any examples or hints given herein, any typical values stated herein and/orany information regarding the application of the device, Infineon Technologies hereby disclaims any and allwarranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectualproperty rights of any third party.

    InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

    Warnings

    Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.