image processing for color facsimile

43
HP Laboratories 10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96 0 Image Processing For Color Facsimile © 1996 Hewlett-Packard Company. All rights reserved. Giordano Beretta Hewlett-Packard Laboratories Imaging Technology Department 1501 Page Mill Road Palo Alto, CA 94304–1126 http://www.hpl.hp.com/personal/Giordano_Beretta

Upload: giordano-beretta

Post on 07-Sep-2014

1.860 views

Category:

Technology


1 download

DESCRIPTION

A presentation given at the World Techno Fair Chiba '96, September 1996, Chiba (Japan)

TRANSCRIPT

Page 1: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

0

Image Processing For Color Facsimile

© 1996 Hewlett-Packard Company. All rights reserved.

Giordano Beretta

Hewlett-Packard LaboratoriesImaging Technology Department1501 Page Mill RoadPalo Alto, CA 94304–1126http://www.hpl.hp.com/personal/Giordano_Beretta

Page 2: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

1

Joint Work With

• Vasudev Bhaskaran

• Konstantinos Konstantinides

• Daniel T. Lee

• Ho John Lee

• Andrew H. Mutz

• Balas K. Natarajan

Page 3: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

2

Outline

• Background for the standard

• Discrete nature of visual perception

• JPEG data compression

• Optimizing the JPEG compression

• Perceptually lossy compression

• Text sharpening

• Conclusions

Page 4: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

3

Three Breakthroughs

• Digital imaging — compression algorithms

• Hardware cost / performance — SOHO market

• International standard — ITU-T T.42 Addendum

SOHO: Small Office — Home Office

Page 5: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

4

Project Goal

Achieve same transmission time for full color

as for binary black & white

in the case of the 4CP01 test chart

Page 6: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

5

The Color Facsimile Pipeline

✆A size, 200dpi11.22M bytes24 bits/pixel

RGB to CIELABJPEG coding

G3 encapsulation

G3 decoding

JPEG decompression

CMYK from CIELAB

4:1:15.6M bytes

12 bits/pixel

~226K bytes(default DQT)0.48 bits/pixel

Page 7: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

6

Time Phases for T.30 Fax Transmission

Calling fax Called faxCNG beep

CEDDIS

Phase

DCSTraining, TCF

CFR

Training

Message

RTCEOP

MCF

DCN

A

B

C

D

E

(call setup)

(pre-message)

(message)

(post-message)

(call release)

Page 8: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

7

New G3 Entries to DCS Frames

Bit No. DCS

68 JPEG coding

69 Full color mode

70 Preferred Huffman tables

71 12 bits/pel/component

72 Extend field

73 No subsampling (1:1:1)

74 Custom illuminant (not used)

75 Custom gamut range

Page 9: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

8

Four Categories of Business Images

1. Full color (pictorial, color photographs)

2. Multi-color (color charts & graphs)

3. Bi-color (documents marked up with red ink)

4. Mixed color (combination of 1–3, such as color pages of magazines)

Source: NTT

Page 10: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

9

Color Space Selection

17 spaces considered (Munsell, CMYK, YIQ,CIE colorimetric spaces)

Evaluation criteria (source: Fuji-Xerox):

• ability to represent all colors

• numerical complexity

• device independence

• quantization error under compression

• compatibility with compression algorithms

• color stability with white point change

• …

Page 11: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

10

Perception is Discrete

• When a stimulus is changed just by a small amount, an observer will not notice a difference

• Psychophysical experiments: threshold value of where an observer can detect a difference in stimuli

• jnd — just noticeable difference

Page 12: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

11

Model for Perception Discretization

quantity

intensity

nature,continuum

human visual system

jnd

availableinformation

Page 13: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

12

Digital System: Sampling

nature,continuum

sampledinformation

Page 14: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

13

Poor Sampling

human visual system

jnd

availableinformation

digital,sampled

Page 15: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

14

Good Sampling

digital,sampled

human visual system

jnd

availableinformation

Page 16: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

15

Result of the Color Space Evaluation

• 1931 Standard Colorimetric Observer

• CIE Standard Illuminant D

50

• CIELAB color space

Page 17: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

16

The CIELAB Color Space

• Based on the CIE 1931 Standard Colorimetric Observer: device independent

• Based on Munsell color tree, von Kries adaptation, CIE XYZ color space, and power law compression (

n

= 1/3): good perceptual uniformity

• Easy to compute compared to other uniform spaces

• Widely used in printing industry

• Can be read directly with measurement instruments

• Design issue: choice of the best range for the chromatic channels

a*

and

b*

Page 18: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

17

Data Compression

ISO/IEC IS 10918–1 (a.k.a. JPEG)

raster toblock

translationquantization

quantization

tables

Huffman

tables

DCTentropy

coding

compressedstreamimage

“Critical knob”

❸❷

Page 19: Image Processing For Color Facsimile

HP Laboratories

10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

18

The DCT and its Kernels

The 64 kernels of thediscrete cosine transform:

Y k l,( ) 14---C k( )C l( ) S x y,( ) 2x 1+( )kπ

16----------------------------cos 2 y 1+( )lπ

16---------------------------cos

y 0=

7

∑x 0=

7

∑=

C8[ ] mn km

m n 12---+

π

8----------------------------cos=

Page 20: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

19The JPEG Compression

Quantization tables (DQT) are the key parameter

• Do not quantize where it can be seen

• Default parameters are for images on CRT displays• spatial information in text is different

• printers have a much higher resolutions than CRTs

• The three worlds of spatial information:

1. Physical: energy in the signal

2. Perceptual: sensitivity of the visual system

3. Semantic: cognitive mechanisms

Last step: design the Huffman tables

Page 21: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

20Physical World

DCT transforms 2-dimensional data to a 64-dimensional space

• Each dimension represents a spatial pattern

• For a number of typical images:• measure the energy in each of the 64 dimensions

• popular estimator for energy: statistical variance

• average over the images in the test set

• allocate bandwidth in proportion to the average energy

• For text documents with images, a much better compression rate is achieved for a given image quality, than with the default tables

Page 22: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

21L* Energy in Text vs. Pictorial Images

0 8 16 24 32 40 48 56 6410-2

100

102

104

106

Average textAverage pictureText on fancy backFax test imageTopographic map

Page 23: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

22L* Energy in Text vs. Pictorial Images

0 1 2 3 4 5 6 7 8 9 10100

10000

1000000

Average textAverage pictureText on fancy backFax test imageTopographic map

Page 24: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

23Traditional Bit Allocation

• Bit allocation based on variance

To improve bits-per-pixel rate:

1. Brute force: uniform q-factor

2. Perceptual: increase DQT elements based on HVS

Nk l,12---

V y k l,[ ]D

---------------------log⋅=

V y k l,[ ] var Y k l,[ ]( ) 1B---- Yi k l,[ ] M y k l[ , ]–( )2

i 1=

B

∑= =

0.03 0.1 0.3 1 3 10 30 1001

3

10

30

100

300

Spatial frequency (cycles/degree)

Con

tras

t sen

sitiv

ity red–green (chromatic)

green (monochromatic)

Page 25: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

24Perceptual World — Simple Method

Image quality depends on the contrast visible at a given spatial resolution: contrast sensitivity function (CSF)

• Discard spatial information above the CSF: it cannot be seen anyway

• Standard method: weigh the DQT elements by the CSF

• Printer resolution is 600 dpi, same as visual system• improved compression of images

• for text pattern recognition may be more important than CSF

• Not necessarily a good model for what happens in the visual system

Page 26: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

25Compression Ratio

Image (10.7M B) Default DQT Custom DQT

Real estate flier with photo 52:1 (211K B) 82:1 (134K B)

Book page with photos and text 53:1 (207K B) 63:1 (174K B)

4CP01 test chart 47:1 (233K B) 63:1 (174K B)

Page 27: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

26Perceptual World — Complex Method

When two structures (textures) are present in an image, one structure may hide the other

• Principle of visual masking

• When a new structure is added to an existing structure, the new structure may mask the old structure or vice-versa

• Quantization noise is a structure that is added to the image

• Noise that is masked by the image is perfectly acceptable; this allows for higher compression ratios

• This method is used mostly for image-dependent compression (adaptive)

Page 28: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

27Results

1. If the method is applied to several images of the same type, there is little variation in the obtained DQTs

• Hence, in the case of color facsimile we can use one DQT for all images

2. Adjust each DQT element to reach the threshold

3. The iterative method converges faster when the previous steps are performed

4. Lossy compression: any jnd value can be targetted

Page 29: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

28Semantic World

Reading performance of text is the speed at which text can be read without errors

• When compressing, discard information that does not impact reading performance

• Identify the parts of characters in fonts that affect reading performance

• Discard prevalently spatial information not related to these character parts

Page 30: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

29Visual Impact of Quantization Depends on Image and Sub-Space

< fine

coarse >

< mixed

Page 31: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

30Some Typeface Parts in Times Roman

7 point 9 point 11 point 12 point 16 point

1.12 mm 1.44 mm 1.76 mm 1.95 mm 2.58 mm

X-Height in the Times New Roman typeface

i t a gterminal

stemstress

earbar

serif

Page 32: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

31Critical Feature Sizes in Color Facsimile

Red: Limit for visual acuity in the luminance channelGreen: Limit for visual acuity in the chrominance channelsBlue: Peak contrast sensitivity in the luminance channelPink: typical character part sizes (11 point Times New Roman)

Number of pixels 200 dpi 300 dpi 400 dpi

1 0.127 mm 0.085 mm 0.063 mm

2 0.254 mm 0.169 mm 0.127 mm

3 0.381 mm 0.254 mm 0.191 mm

4 0.508 mm 0.339 mm 0.254 mm

5 0.635 mm 0.423 mm 0.318 mm

6 0.762 mm 0.508 mm 0.381 mm

7 0.889 mm 0.593 mm 0.445 mm

8 1.016 mm 0.677 mm 0.508 mm

Page 33: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

32Modified Bit Allocation Equation

• Weight w based on visual quality:

• Separate provisions for text, graphics, and pictorial images (smoothing)

• Detail of spatial frequency in image data, ind. of phase angle, resides almost

totally within 3 coefficients in the transform domain when a DCT is applied.

• Rudimentary example of a weight table:

1 1 1 3/4 1 3/4 1 11 3/4 1/2 1/4 1/2 1/4 1/2 1/21 1/2 1/4 1/8 1/4 1/8 1/4 1/4

3/4 1/4 1/8 1/8 1/8 1/8 1/8 1/81 1/2 1/4 1/8 1/8 1/8 1/8 1/8

3/4 1/4 1/8 1/8 1/8 1/8 1/8 1/81 1/2 1/4 1/8 1/8 1/8 1/8 1/81 1/2 1/4 1/8 1/8 1/8 1/8 1/8

Nk l,12--- w k l,[ ]

V y k l,[ ]D

--------------------- log⋅=

Page 34: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

33Preliminary Experimental Results

• Compress two typical 300 dpi images

• Comparable visual quality

• q factor 200; use K.2 for the chrominance channels

Text 4CP01

K.1 NEW K.1 NEW

Bitmap size 2550 × 3300

Compressed size (bytes)

338,776 277,617 707,819 258,765

Bits per pixel 0.32 0.26 0.67 0.25

Compression ratio 1 : 75 1 : 91 1 : 36 1 : 98

Page 35: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

34The Fuzzy Text Problem

Cost reduction introduces problems such as

• sensor misalignment

• optical blur and electric cross-talk

• halftoning at low resolution

Page 36: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

35Comparison of L* Energy in all Images

0 8 16 24 32 40 48 56 6410-2

100

102

104

106

4CP01 test imageAverage pictorialAverage textText on fancy back150 lpi brochureNewspaperGroup portraitRealtor flier10 pt sans text12 pt sans text10 pt serif text12 pt serif textSynthetic textTopographic map

Page 37: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

36Comparison of Low Frequency Energy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

102

104

106

4CP01 test imageAverage pictorialAverage textText on fancy back150 lpi brochureNewspaperGroup portraitRealtor flier10 pt sans text12 pt sans text10 pt serif text12 pt serif textSynthetic textTopographic map

Page 38: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

37L* Energy in Pictorial Images

0 8 16 24 32 40 48 56 640

1

100

10000

1000000

Average150 lpi brochureNewspaperGroup portraitRealtor flierAverage text

Text isdifferent

Page 39: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

38L* Energy in Text Images

0 8 16 24 32 40 48 56 6410-2

100

102

104

106

Average10 pt sans12 pt sans10 pt serif12 pt serif(synthetic)

Robustness vs. font

Page 40: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

39Enhancement of 10 Point Serif Text

0 8 16 24 32 40 48 56 64Basis

10-2

100

102

104

106V

aria

nce

UnprocessedConvolution FilterNew AlgorithmSynthetic

Page 41: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

40Sharpening an Image in the JPEG Domain During the Encoding

• Edge sharpening is achieved by using the original DQT for the encoding, while at the receiving fax machine the decoder uses the scaled DQT matrix

• The scaled matrix is the one included in the JPEG file

• Since only the scaled DQT is transmitted the original matrix and the actual factors can remain a trade secret

generatereference

image

scale

computeaverageenergy

typicalscannedimage

computeaverageenergy

quantizationtable

scaling matrix

Page 42: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

41Huffman Tables

• Example Huffman Table is for perceptually lossless compression

• Color facsimile based on CIELAB color space

• Start with test chart

• Ad hoc technique: all symbol probabilities less than 2–16 are set to 2–16

• Improvement: 8% to 14%

• Only 0.5% compression rate loss for other images

• Average improvement: 11%

Page 43: Image Processing For Color Facsimile

HP Laboratories10/17/96 Hiro:Documents:Giordano Beretta:Research:Chiba96:OHP:Chiba96

42Conclusions

• Digital images with text are not very robust with respect to quantization errors

• Sufficient information should be preserved in documents to preserve image quality when they are printed

• If the bandwidth is used judiciously, documents can be compressed to a higher degree, allowing the use of better resolutions or shorter transmission times

1. Encode color in a perceptually uniform color space such as CIELAB

2. Compress the spatial information using JPEG

3. Design custom DQT tables for your document type

4. Design custom Huffman tables