image reconstruction technique via ...eprints.utm.my/id/eprint/78089/1/...pvc sebagai bahan paip....

45
IMAGE RECONSTRUCTION TECHNIQUE VIA ULTRASONIC TOMOGRAPHY SYSTEM FOR METAL PIPE JAVAD ABBASZADEH BARGOSHADI A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering) Faculty of Electrical Engineering Universiti Teknologi Malaysia AUGUST 2014

Upload: others

Post on 28-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

IMAGE RECONSTRUCTION TECHNIQUE VIA ULTRASONIC

TOMOGRAPHY SYSTEM FOR METAL PIPE

JAVAD ABBASZADEH BARGOSHADI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

AUGUST 2014

Page 2: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

iii

DEDICATION

To my beloved wife and family

Page 3: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

iv

ACKNOWLEDGEMENT

My deep appreciation and gratitude goes to my supervisors Dr. Herlina Binti

Abdul Rahim and Prof. Dr. Ruzairi Bin Abdul Rahim for their kindness, constant

endeavor, guidance and the numerous moments of attention they devoted throughout

this work.

My heartfelt gratitude goes to Mr. Nor Muzakkir Bin Nor Ayob, Mr.

Jaysuman and Mr. Mahdi Faramarzi for the helpful suggestions, endless supports

and encouragement that have greatly helped me in finishing this research. They spent

a lot of their precious time to guide, advice and support me.

I would like to express my deepest gratitude to my dearest family especially

both to my understanding and beloved wife for her love and her endless support in

any possible way. This research would have never reached to this point if not

because of her support and patience. My success will always be her success too.

Last but not least, thanks to those who have helped me in one way or another

throughout the whole duration of my research development. For other researchers or

students who wish to contact me, please do so via my email,

[email protected].

Page 4: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

v

ABSTRACT

Detection of concentration of the gas/liquid mixture inside the pipe with

Ultrasonic Tomography (UT) has been investigated seriously with various

researchers in the recent decade. To date, most of the researches of ut focus on

Acrylic or PVC as pipe material. This research investigates the usage of metal pipe

for ut application. The attenuation problem of metal pipe is due to high acoustic

impedance mismatch between liquid and metal pipe. Based on the problems of metal

pipe for application in the UT system, various alternatives are presented in this

research. Modelling of the UT using COMSOL software is studied to visualize the

real UT system. Various frequencies are tested to determine the optimum frequency

of the UT system. The hardware of UT system is developed after selection of the

suitable transceiver. The structures of the transmitter and receiver circuits are

developed in order to improve the Signal to Noise Ratio (SNR) and functionality of

circuits. The sampled signals are preceded to the computer via Data Acquisition

(DAQ) system. Various algorithms are investigated to produce the best image

reconstruction of the UT system. As the basic and convenient algorithm, Linear

Back Projection (LBP) is used for reconstructing the primary image. Median Filter

Back Projection (MFBP) and Disk Filter Back Projection (DFBP) are applied to

improve the image quality of LBP algorithm. Additionally, the Circular

Thresholding Segmentation (CTS) algorithm is applied to produce the segmented

thresholding images. Based on the simulation results, 40 kHz is determined as the

optimum frequency of UT system. The designed UT system for the metal pipe is

experimentally tested and cross-sectional images are extracted from metal pipe.

Additionally, this thesis presents the static and dynamic results of UT system from

metal pipe. Based on the comparison between the performances of applied

algorithms, the CTS algorithm has the best results due the minimum errors between

original images and reconstructed images. The obtained results corroborate the

Page 5: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

vi

ABSTRAK

Pengesanan kepekatan campuran gas / cecair di dalam paip dengan

tomografi ultrasonik (UT) telah dikaji secara serius oleh pelbagai penyelidik dalam

dekad baru-baru ini. Setakat ini, kebanyakan kajian ut tertumpu kepada akrilik atau

PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi

UT. Masalah pengecilan paip logam terjadi disebabkan impedans akustik yang tinggi

tidak berpadanan antara cecair dan paip logam. Berdasarkan kepada masalah paip

logam untuk diaplikasikan dalam sistem UT, pelbagai alternatif dibentangkan di

dalam kajian ini. Permodelan UT dengan menggunakan perisian COMSOL dikaji

bagi menggambarkan sistem UT yang sebenar. Pelbagai frekuensi telah diuji untuk

menentukan frekuensi yang optimum bagi sistem UT itu. Perkakasan sistem UT

dibangunkan selepas pemilihan peralatan pemancar penerima yang sesuai. Struktur

pemancar dan penerima litar dibangunkan bagi meningkatkan isyarat kepada nisbah

bunyi (SNR) dan fungsi litar. Isyarat sampel didahului ke komputer melalui Sistem

Perolehan Data (DAQ). Pelbagai algoritma dikaji untuk menghasilkan pembinaan

semula imej terbaik bagi sistem UT itu. Sebagai algoritma asas dan mudah, Unjuran

Belakang Linear (LBP) digunakan untuk membina semula imej utama. Penapis

Median (MFBP) dan Penapis Cakera (DFBP) digunakan untuk meningkatkan

perbezaan kesan kabur LBP. Selain itu, algoritma Segmentasi Ambang Bulat (CTS)

digunakan untuk menghasilkan imej ambang bersegmen. Berdasarkan kepada

keputusan simulasi, 40 kHz ditentukan sebagai frekuensi optimum bagi sistem UT.

Sistem UT yang dibangunkan untuk paip logam diuji dan imej seksyen silang

dikeluarkan dari paip logam. Selain itu, tesis ini mempersembahkan hasil statik dan

dinamik bagi sistem UT daripada paip logam. Berdasarkan perbandingan antara

prestasi algoritma yang diguna, algoritma CTS mempunyai keputusan yang terbaik

kerana mempunyai kesilapan yang minimum antara imej asal dan imej yang dibina

semula. Keputusan yang diperolehi menyokong kebolehgunaan sistem UT yang

Page 6: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATION xviii

LIST OF SYMBOLS xx

LIST OF APPENDICES xxiii

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Research Objectives 4

1.4 Research Methodology 5

1.5 Research Scope and Limitations 7

1.6 Thesis Organization 9

2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Introduction to process tomography 12

Page 7: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

viii

2.3 X-Ray Tomography 15

2.4 Electrical Capacitance Tomography 16

2.5 Electrical Impedance Tomography 18

2.6 Optical Tomography 19

2.7 Electrodynamic Tomography 20

2.8 Nuclear Magnetic Resonance Tomography 20

2.9 Ultrasonic Tomography 21

2.9.1 Limitations of Ultrasonic Technique 24

2.9.2 Recent Work Related to Ultrasonic Tomography 26

2.10 Summary 33

3 THEORETICAL BACKGROUND 34

3.1 Introduction 34

3.2 Ultrasonic Tomography System 34

3.3 Fundamental Principles of Ultrasonic Wave Propagation 37

3.3.1 Acoustic Impedance 37

3.3.2 Ultrasonic Attenuation Model 42

3.3.3 Ultrasonic Wave Propagation 43

3.3.4 Ultrasonic Transmission Mode 46

3.4 Theory of Simulation 47

3.5 Image Reconstructing Algorithms 49

3.5.1 Linear Back Propagation 51

3.5.2 Filter Back propagation 51

3.6 Image Reconstruction Error Measurement 53

3.7 Summary 54

4 METHODOLOGY 55

4.1 Introduction 55

Page 8: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

ix

4.2 Hardware Development 55

4.2.1 Metal Pipe Conveyor 55

4.2.2 Sensor Selection 57

4.2.3 Sensor Fixture Design 64

4.2.4 Electronic Circuitry and Embedded System 66

4.2.5 Data Acquisition 88

4.3 Software Development 90

4.3.1 Projection Geometry 90

4.3.2 Geometry Gridding 92

4.3.3 Sensitivity Map 93

4.3.4 Ultrasonic Tomography System Calibration 95

4.3.5 Measurement Process 96

4.3.6 Investigated Image Reconstruction Algorithms 103

4.4 Summary 108

5 RESULTS AND ANALYSIS 110

5.1 Introduction 110

5.2 Simulation Results 110

5.3 Forward Model Simulation Results 121

5.3.1 Simulation of the Single Gas Bubble 122

5.3.2 Simulation of the Double Gas Bubbles 125

5.4 The Experimental Results 132

5.4.1 Static Results 132

5.4.2 Dynamic Results 137

5.5 Measurement Error Analysis 145

5.6 Summary 152

6 CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 153

Page 9: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

x

6.1 Conclusion 153

6.2 Contributions towards Process Tomography 155

6.3 Recommendation for Future Works 156

REFERENCES 158

Appendices A - F 170 - 196

Page 10: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparison of various kinds of tomography 15

3.1 Various ultrasonic propagation modes in solids 44

3.2 Various types of filter masks 52

4.1 The transducer characteristic 63

4.2 Truth table 76

4.3 Observation timings (µs) logged for all scanning geometries 86

4.4 GUI-generated callbacks for software operations 97

5.1 The calculated value of ME for the different diameters of

hollow pipes

151

Page 11: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 An example of x-ray tomography system 16

2.2

ECT measurement circuits a) Block diagram of a

charge/discharge circuit b) Block diagram of an AC-

based circuit

17

2.3 Electrical Impedance Tomography Cross sectional structure 18

2.4 Typical structure of optical tomography system 19

2.5 The basic concept of NMRT 21

2.6 Ultrasonic wave propagation inside the pipe 24

3.1 General block diagram of ultrasonic tomography system 35

3.2 The shadowing effect of objects on propagation of ultrasonic

wave by the fan beamed ultrasonic transducer

36

3.3 The correct method of mounting an ultrasonic transducer 38

3.4 Ultrasonic wave propagation from pipe-section (metal layer)

to liquid media

39

3.5 Propagation of the ultrasonic wave from liquid to gas bubble 40

3.6 The ultrasonic attenuation model 42

3.7 The attenuation model for ultrasonic transmitter 42

3.8 Longitudinal and shear waves of ultrasonic wave

propagation modes

43

3.9 Two most modes of vibration of particles 45

3.10 The back projection method [8] 49

3.11 The fan-shaped beam back projection [58] 50

4.1 Prototype vertical column design (dimension in mm) 56

4.2 Base holder design 57

Page 12: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xiii

4.3 Basic structure of the ultrasonic sensor 58

4.4 Piezoelectric crystal vibration concept 58

4.5 Propagation of longitudinal wave and lamb wave from Tx1

to Tx8

59

4.6 3D view of metal pipe with sensor holder ring 60

4.7 Implementation of sensors on the surface of metal pipe 61

4.8 Cross section view of metal with mounted sensors 61

4.9 The transducer dimension 62

4.10 Impedance characteristic of the ultrasonic sensor 62

4.11 The divergent and narrow focused ultrasound beam 63

4.12 Sensor fixture design 64

4.13 The experimental sensors fixture with applied sensors 65

4.14 Block diagram of ultrasonic tomography (UT) system 66

4.15 Block diagram of the power supply 67

4.16 Schematic of the power supply circuit for producing ±35 V 69

4.17 Schematic of the power supply circuit for generating a) ±15

V b) +5 V

70

4.18 Generated applied pulse for actuation of ultrasonic sensors 70

4.19 Schematic of isolator and amplifier 73

4.20 The schematic of switching part 73

4.21 Electromechanical relay: Current through the coil creates a

magnetic field that moves the armature between the contacts

74

4.22 Block diagram of receiver circuit 77

4.23 Circuit schematic of the applied LNA in receiver circuit 77

4.24 The effect of Q on the shape of band pass filter 78

4.25 Band pass filter topology 79

4.26 Schematic for signal amplifier circuit 80

4.27 Manner of sample and hold from receiving signal 81

4.28 Typical sample and hold circuit 82

4.29 Sample and hold circuit and signal response 83

4.30 Receiving signals by the ultrasonic receiver sensor 84

4.31 Receiving signals by the ultrasonic receiver sensor in the

case of object existence inside the pipe

85

Page 13: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xiv

4.32 Determining the peak amplitude and its observation time

information

86

4.33 PCB of the a) power supply b) transmitter and receiver

circuit

87

4.34 Prototype of final designed ultrasonic tomography system

with metal pipe conveyor

88

4.35 The data acquisition system (NI USB-6210) 89

4.36 The measurement section configuration 90

4.37 Single scanning geometry 91

4.38 Sixteen scanning geometry 91

4.39 Image plane model for 64 x 64 pixels tomogram 92

4.40 Nodes representing transducer arc on the image plane model 93

4.41 The virtual projection for Tx1 to Tx8 94

4.42 Graphical user interface for measurement process 96

4.43 Operation structure for the application software 99

4.44 Data acquisition flow 100

4.45 Flowchart of image reconstruction structure 101

4.46 Calculating the median value of a pixel neighbourhood 104

4.47 A disk filter with the diameter of 3 pixel 105

4.48 Calculating the circular average value of a pixel

neighbourhood

105

4.49 Flow chart of CTS algorithm 107

5.1 Ultrasonic wave propagation in 40 kHz 111

5.2 Distribution of ultrasonic wave on the wall of the metal pipe

in 40 kHz

111

5.3 Distribution of ultrasonic wave inside the metal pipe in

40kHz

111

5.4 Ultrasonic wave propagation in 250 kHz 112

5.5 Distribution of ultrasonic wave on the wall of the metal pipe

in 250 kHz

113

5.6 Distribution of ultrasonic wave inside the metal pipe in

250kHz

113

5.7 Distribution of ultrasonic wave on the boundary of the metal

Page 14: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xv

pipe in 40 kHz 114

5.8 Distribution of ultrasonic wave inside the metal pipe in

40kHz

114

5.9 Transient time analyzing of inside the pipe in various times

(a) t=22μs (b) t=35μs (c) t=56μs (d) t=78μs

115

5.10 3D view of transient time analyzing of inside the pipe in

various times (a) t=22μs (b) t=35μs (c) t=56μs (d) t=78μs

116

5.11 Transient time analyzing of boundary of the metal pipe in

various times (a) t=3μs (b) t=8μs (c) t=23μs (d) t=32μs

117

5.12 Manner of ultrasonic wave propagation in different

frequencies a) 40 kHz b) 80 kHz c)120 kHz

118

5.13 Receiving pressure wave form in opposite side of transmitter

a) 40 kHz b) 80 kHz c)120 kHz

119

5.14 a) Scattered ultrasonic pressure wave inside the steel pipe

with a gas bubble in 40 kHz b) the effect of gas bubble in

received pressure wave form

121

5.15 2-D simulation of the metal pipe with 22 implemented

sensor

123

5.16 Projections of 5 channels (TX5, TX4, TX3, TX2 and TX1)

for the case of single gas bubble

124

5.17 Forward model simulated images for the case of single gas

bubble a)LBP b)MFBP c)DFBP d)CTS

125

5.18 2-D simulation of the metal pipe with double gas bubble 126

5.19 Projections of 5 channels (TX5, TX4, TX3, TX2 and TX1)

for the case of double gas bubble

127

5.20 Forward model simulated images for the case of double gas

bubble a)LBP b)MFBP c)DFBP d)CTS

128

5.21 Forward model simulated images for the case of quarter flow

a)LBP b)MFBP c)DFBP d)CTS

129

5.22 Forward model simulated images for the case of half flow

a)LBP b)MFBP

130

5.23 Forward model simulated images for the case of three

quarter flow a)LBP b)MFBP c)DFBP d)CTS

131

Page 15: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xvi

5.24 The experimental setup 133

5.25 Reconstructed cross-sectional images from experimental UT

system - Single hollow pipe (d1 = 32 mm) a)LBP b)MFBP

c)DFBP d)CTS

134

5.26 The experimental setup (Dual hollow PVC pipe) 135

5.27 Reconstructed cross-sectional images from experimental UT

system - Double hollow pipes (d1 = 20 mm and d2 = 32

mm) a)LBP b)MFBP c)DFBP d)CTS

136

5.28 The experimental setup with air pump for dynamic study 137

5.29 Experimental dynamic results from bubbly flow inside the

metal pipe – LBP algorithm

138

5.30 Experimental dynamic results from bubbly flow inside the

metal pipe – MFBP algorithm

139

5.31 Experimental dynamic results from bubbly flow inside the

metal pipe – DFBP algorithm

140

5.32 Experimental dynamic results from bubbly flow inside the

metal pipe – CTS algorithm

141

5.33 Reconstructed cross-sectional images from experimental

dynamic UT system – for single gas bubble a)LBP b)MFBP

c)DFBP d)CTS

142

5.34 Reconstructed cross-sectional images from experimental

dynamic UT system – for Dual gas bubbles a)LBP b)MFBP

c)DFBP d)CTS

144

5.35 Estimated area of gas bubble (d = 22mm) with LBP

algorithm for different thresholding

146

5.36 Estimated area of gas bubble (d = 22mm) with MFBP

algorithm for different thresholding

1

146

5.37 Estimated area of gas bubble (d = 22mm) with DFBP

algorithm for different thresholding

1

147

5.38 Estimated area of gas bubble (d = 22mm) with CTS

algorithm for different thresholding

1

147

5.39 Measurement error of the reconstructed image with different

thresholding for the LBP algorithm

1

148

Page 16: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xvii

5.40 Measurement error of the reconstructed image with different

thresholding for the MFBP algorithm

1

149

5.41 Measurement error of the reconstructed image with different

thresholding for the DFBP algorithm

1

149

5.42 Measurement error of the reconstructed image with different

thresholding for the CTS algorithm

1

150

5.43 The comparison of the estimated area of gas module with the

actual area for the different sizes of hollow pipes

1

151

Page 17: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xviii

LIST OF ABBREVIATION

AC - Alternating Current

ADC - Analogue-to-Digital Converter

CAT - Computerised Axial Tomography

CPU - Central Processing Unit

CS - Control Signal

CT - Computerised Tomography

CTS - Circular Thresholding Segmentation

DA - Dielectric Absorption

DAQ - Data Acquisition System

DC - Direct Current

DCU - Digital Controller Unit

DFBP - Disk Filtering Back Projection

ECT - Electrical Capacitance Tomography

EIT - Electrical Impedance Tomography

EMT - Electromagnetic Tomography

ERT - Electrical Resistance Tomography

GUI - Graphical User Interface

IC - Integrated Circuit

ICSP™ - In-Circuit Serial Programming™

IPT - Industrial Process Tomography

LBP - Linear Back Projection

MATLAB - Matrix Laboratory

MCU - Microcontroller Unit

MFBP - Median Filtering Back Projection

MIPS - Million Instruction Per Second

MRI - Magnetic Resonance Imaging

Page 18: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xix

NMR - Nuclear Magnetic Resonance

Op - Amp - Operational Amplifier

PC - Personal Computer

PCB - Printed Circuit Board

PCI - Peripheral Component Interconnect

PET - Positron Emission Tomography

PT - Process Tomography

RISC - Reduced Instruction Set Computer

RS232 - Recommended Standard 232

SHA - Sample and Hold Amplifier

SnH - Sample-and-Hold

TI - Texas Instruments

USB - Universal Serial Bus

UT - Ultrasonic Tomography

UTT - Ultrasonic Transmission Tomography

Page 19: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xx

LIST OF SYMBOLS

- Average Mean of Matrix A

- Average Mean of Matrix B

- Percentage of Gas Area

- Measured Gas Area

- Percentage of Liquid Area

- Measured Liquid Area

- EPR Marking Matrix

- Velocity of Sound

- Capacitor

- Maximum Concentration

- Concentration Threshold

- Diameter

- Decibel

- Estimated Gas Area

- Center Frequency

- Frames per second

- Simulated Gas Bubble (Downstream)

- Simulated Gas Bubble (Upstream)

- Simulated Gas Bubble

- Kilohertz

- Distance

Ma - Measured Gas Area

xy

Page 20: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xxi

ME - Measurement Error

MHz - Megahertz

MP - Maximum Total Pixels

MTx,Rx (x, y) - Normalized Sensitivity Matrices

Ndelay - Number of Delayed Frames

nF - Nanofarad

Pgas - Gas Component Percentage

Pliquid - Liquid Component Percentage

Pr - Reflection Coefficient

Pt - Transmissions Coefficient

R - Resistor

Rx - Receiver

SimMap - Simulated Phantom Matrix

Simx - Simulation Profile

SnH - Sample-and-Hold

STxRx - Sensor Loss Voltage

ts - Observation Time

Tx - Transmitter

V - Flow Velocity

V- - Inverting Input

V (x,y) - Concentration Profile

V+ - Non-inverting Input

VEPR (x,y) - Concentration Profile using LBP

VLBP (x,y) - Concentration Profile using LBP

Vp-p - Voltage Peak-to-Peak

Vref - Voltage Reference

Vref TxRx - Reference Sensor Voltage

Page 21: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xxii

VSupply - Voltage Supply

VTxRx - Measured Sensor Voltage

Z - Acoustic Impedance

ρ - Density

- Transit Time

f - Frequency

α - Attenuation Coefficient

λ - Ultrasound Wavelength

° - Degree

µF - Microfarad

2D - Two Dimensional

3D - Three Dimensional

Page 22: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

xxiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A

Acoustic properties of materials

170

B Sensitivity maps for projection of Tx5 171

C The sensor values 182

D Program matlab codes for selected important functions 183

E Publications related to the thesis 194

F Research awards and expositions 196

Page 23: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

CHAPTER 1

INTRODUCTION

1.1 Introduction

The root of tomography word belongs to the Greek language. It consists of

“Tomov” and “Graph” which mean “to slice” and “picture”. The concept of “to

slice” relates to the cross section of any object. In other word, the definition of

tomography word can be stated as a process for obtaining the cross sectional images

from an object [1].

For the first time in 1950’s, the development of process tomography started

and has a wide application in medicine especially for body scanning in that time.

However, it still is used as the efficient instrument in medicine for scanning

application in various proposes [1]. Evaluation of process tomography carried out

during the mid-1980. Various imaging equipments for tomography processes was

presented in the 1970’s, but it involved using ionization in x-rays, etc. The present

progress on process tomography systems are achieved due to the accomplished

researches in mid- 1980’s. Generally, process tomography is a technique used to

determine the internal behaviours of flowing materials in a pipeline [2]. It used to

demonstrate the internal composition of pipes or mixing vessels in the images form.

There are many different types of tomographic methods which are used to obtain

different kinds of readings. For example, the significant part of the tomography

system which leads to the creation the different types of tomography system would

be the applied sensors. The applied sensors mount around a cylindrical vessel or

Page 24: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

2

object for obtaining different measurement readings through the device under test

[2].

According to the potentiality of process tomography for improvement of

efficiency and safety in process industries with changing the material of the

container of fluid, it is still investigated by the researchers which results to the design

of new circuit structure for transmitting and receiving signals or new reconstruction

algorithms to improve the quality of images. Both qualitative and quantitative data

needed in modelling a multi-phase flow system can be achieved by use of this

system. In tomography, multiple projections with the use of various sensors are used

to obtain sets of data from various views across the process vessel. These data are

used to provide tomographic cross sectional images representing the contents of the

pipeline or vessel. The plane image of objects provides an opportunity to reveal the

complexities of structure without invading the object [3].

The efficiency of tomography systems increases with an increment of the

quantity and quality of data due to many earlier measurement techniques [4]. In this

research ultrasonic sensor array is selected to mount on the periphery of the pipe for

collecting the data from inside the pipe. According to designed and manufactured

tomography systems to date, most of the systems have been implemented on acrylic

pipes or polyvinyl chloride (PVC) pipes but metal pipes are not used for the

container of multi fluid flow. It is because of the various difficulties in ultrasonic

wave propagation and the point is that longitudinal mode of wave propagation is our

desired mode and the other modes of propagation make problems in sensing process.

Additionally, due to the large difference between acoustic impedance of metal layer

and liquid layer, a few percentage of ultrasonic energy can penetrate on the inside of

the pipe and consequently the received energy by the receiver sensors is very low

percentage of transmitted energy. In this research ultrasonic sensor array will be

mounted on the surface of metal pipe.

The first non-invasive of ultrasonic tomography (UT) fabrication technique

was introduced by Gai [5]. Improvement on the mentioned research work is not

longer investigated. Development on UT has focused more to liquid/gas two-phase

flow [6 and 7] where the Perspex pipe has been used as conveyor. However, the

Page 25: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

3

latter system has been implemented in the invasive mode which is not supported

mostly by the industries. Three transmitters have been implemented in non-invasive

system and for exciting the mentioned transmitters; a signal with 200V amplitude

was applied to the transmitters [7].

1.2 Problem Statement

Various investigations on process tomography with different kinds of sensors

are carried out. For instance, adopting ultrasonic sensors in process tomography was

introduced by Gai [5] when they presented their research on the non-invasive UT

fabrication technique. The history of UT pursuit with the carried out developments

on measurement of liquid/gas flow [6 and 7]. The latter system which implements

invasive technique of sensing is mostly not favored by the industries. Additionally,

the proposed technique by Xu et al. [7] utilized high excitation voltage (around

200V) for the excitation of ultrasonic transmitters. This is however troublesome and

the electrocution danger or technical breakdown would be dangerous if any fault

accidentally appeared to be in the system. Nevertheless, the high excitation voltage

has put a restriction on the system and also the application [8].

The latest development on UT by Rahiman [8] however have solved the

earlier problems described. The implemented system have successfully developed an

UT system using low operating voltage transducers (20V) which has been proved to

be sufficient for liquid/gas flow imaging as long as the acoustic energy could pass

through the process vessel [8]. More importantly, the developed system has

successfully implement 16-pairs of ultrasonic transducers for non-invasive ultrasonic

measurement system. The non-invasive transducer fabrication techniques were

realised by using silicon grease as the acoustic coupling to ensure ultrasonic waves

to be able to penetrate the process vessel.

In the pursuit of continuing the previous research done specifically in UT,

this research is motivated by the opportunity to increase the capability of an UT

system and widen the range of application where it can be utilized. Compared to

Page 26: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

4

conventional measurement techniques, process tomography measurement technique

is essential to give an insight into phase interactions and help in providing better

understanding of the operation process, which such information is useful for system

design and control.

In light of this issue, the main limitations of the previous development on UT

systems are as:

i. Application of metal pipe in UT system. To date majority of

investigations in UT system are restricted to the pipes with material of

Acrylic or PVC [9-25].

ii. Improving the spatial resolution of generated images with UT system.

It is still a challenge between researchers to develop a new image

reconstruction algorithm in order to increase the spatial resolution of

images [13, 23, 26-40].

These limitations are considered in this study. Awareness on some of the

deficiency or opportunity for enhancing the advantage of such system for industrial

environment where metal pipes apply for the transfer of the materials, new design

and more others can be implemented and exploited which is discussed in upcoming

chapters.

1.3 Research Objectives

The main objective of this research is generating cross-sectional images from

metal pipe with UT system. Based on the main objective, other objectives of this

research are listed as follow:

1. To simulate and model the tomography system to find the optimum sensor

for metal pipe.

Page 27: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

5

2. To implement ultrasonic transducers non-invasively on the periphery of the

metal pipe and designing the suitable electronic circuit as the transmitter and

receiver circuit for supporting the 16 applied ultrasonic sensors.

3. To implement suitable algorithm for the image reconstruction.

1.4 Research Methodology

The approach that will be used in this research is a non-invasive technique

where 16 ultrasonic transceivers will be mounted on the surface of a metal pipe. By

the considering the method of non-invasive technique and developing the systems

for an industrial applications [31] cause to arise the ideas which listed as follows:

i. Acoustic impedance plays a main role in transmitting the ultrasonic energy

from one layer to another layer. Due to the impedance mismatch between air

and the surface of the pipe so using the ultrasonic method in air is very

inefficient and large amount of ultrasonic energy is attenuated [31]. When

ultrasonic transducers mount on the surface of the pipe, air gap may be

trapped between the surface of the transducer and surface of the pipe that it

cause to large amount of ultrasonic energy is reflected and cannot transmit

on the wall of the pipe. To solve of the mentioned problem, an acoustic

coupling should be equipped between the sensors and the outer pipe surface

so that the ultrasonic wave could transmit on the pipe.

ii. The high difference of acoustic impedance between metal pipe and liquid

inside the pipe results to the high value reflection of ultrasonic wave at the

interface of liquid and metal pipe. Due to the high reflection property of

metal pipe for the ultrasonic wave, low amount of ultrasonic energy can

penetrate inside the metal pipe. In order to solve this problem, high

amplitude of ultrasonic wave should be applied on the metal pipe.

iii. Ultrasonic transducers must be suitable to the application design where the

transducers projection should be in a wide angle and they can support high

Page 28: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

6

amplitude voltages. Wide beam angle is because of the straight-line

propagation of ultrasonic waves has been used in this system. High

amplitude voltage supporting of sensors is because of the high attenuation of

ultrasonic wave along the transmission path from transmitter to receiver.

iv. Since the metal pipe has been applied as the conveyor of tomography

system, the manner of ultrasonic wave propagation is notable. In this

tomography system straight line propagation of wave (longitudinal mode) is

our favorite mode. When ultrasonic wave transmitted on the wall of metal

pipe, other modes of propagation such as shear mode, surface mode and

lamb wave are also resulted. Lamb wave propagation on the wall of the pipe

is parallel with shear wave and it can make a problem in sensing procedure.

Lamb wave is proportional with the ultrasonic frequency so it is important

an optimum frequency is determined for the exciting frequency of ultrasonic

transducers.

v. Two types of signal can be used as the exciting signal of transducer:

Continues and pulse signals. Since continues signals make the standing

waves so pulse signal is generated. The pulse signal should ideally be

software controlled so that the timing of the pulses can be easily varied and

the synchronization is ensured. Additionally, the pulse signal should be long

enough for the transient response and it is short enough to avoid multiple

reflection and overlapping receiver signals. The mentioned terms achieve

by the use of microcontroller.

vi. At the receiving part of the system, very low percentage of transmitting

energy can be achieved at the other side of the pipe and due to the lamb

wave problem that it is assumed as a noise of system cause to disappear the

low voltage signal which is transmitted in straight line. A low-noise signal

conditioning circuit is required to increase signal to noise ratio and amplify

the ultrasound receiving signal.

Page 29: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

7

1.5 Research Scope and Limitations

The research scopes are divided into six main parts. They are the designing

of transducer fixture, suitable ultrasonic transducer and coupling material, suitable

frequency for the resonance frequency of transducers, the electronic transmitter

circuit, the electronic measurement circuit, the digital controller and the data

acquisition system. The details are explained as following:

i. Designing of transducer fixture

The design of fixture of holding the ultrasonic transducers includes the

mechanical structure of the fixture, the geometry of the transducers, the angle of

transducer’s projection beam, and the cost effective to the design.

ii. Suitable ultrasonic transducer and coupling material

The design includes the selection of suitable ultrasonic transducer that it

can support the high voltage amplitude and it has wide angle beam projection

profile. The couplant is also should be suitable with the experimental

environment and the handling feasibility.

iii. Suitable frequency for the resonance frequency of transducers

The selection of a proper frequency as an exciting frequency includes the

consideration of the straight line propagation of wave and decrease the length

propagation of the lamb wave. Lamb wave has the noise role in this kind of

measuring and it makes a problem due to the time of flight Lamb wave is more

quick than straight line wave and due to the low amplitude of the received

straight line signal, Lamb wave cause to disappear the affection of straight line

signal and it can be control by the exciting frequency.

iv. The electronic transmitter circuit

The design includes the ultrasound signal generator, designing a

switching high power amplifier, isolator for isolating the high power part from

Page 30: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

8

low power, transformer for impedance matching of the system. Finally they are

implemented in printed circuit board (PCB) for reduce the noise affection.

v. The electronic measurement circuit

The design of the measuring circuit in receiving part of the system

include the selection of effective low noise amplifier integrated circuit (IC) and

using an appropriate amplifying technique, the signal processing circuit using the

sample and hold technique to convert the analog signal to digital. The printed

circuit board (PCB) layout and implementing the components properly is needed

to reduce the noise within the circuits.

vi. The digital controller and the data acquisition system

The design includes the microcontroller programming, the ultrasound

projection sequence, delay estimation between pulses for preventing the

overlapping problem, the determination of observation time (ts) for estimation of

the time of flight of each sensor, the sample and hold triggering signal to convert

the analog signal to digital and finally the synchronization of data acquisition by

implying the controlling pulse signal to start and stop the operation.

The limitations of UT system due to the physical property of ultrasonic wave

are as follow:

i. The main affection of ultrasound wave frequency is the sizes of the

particles or bubbles being comparable with the wavelength of the

ultrasound, therefore in practice unpredictable scattering, reflection

and mode changing can be occurred in real work. The size of gas

bubbles in the sensing zone should be greater than at least half

wavelength of the ultrasonic wave in order to block the ultrasonic

wave from reaching to the receiver sensors during the measurement

process [41 and 42]. Due to the application of the 40 kHz ultrasonic

sensors in this system, the minimum detectable size of bubbles is 19

mm.

Page 31: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

9

ii. Since ultrasound travels too slowly, so it is not proper to give high-

resolution images of fast moving flows in large pipes. The speed of

ultrasound in water is about 1500 m/s or 1.5 mm/μs [43]. Based on

the configuration of hardware of UT system, the total time for

generating the cross-sectional image due to the one complete scan of

metal pipe is equal to 1.4 seconds.

iii. The presented UT system in this research can only be used in the

sparse bubbly flows. When so many gas bubbles exists inside the pipe

in the sensing area, and the distribution area of the gas bubbles in the

cross section of the pipe is larger than the axial aperture of the used

pipe; then ultrasonic wave cannot pass through and reach the receiver

sensor along a straight line [3]. Only 20% of total holdups such as gas

bubbles or solid particles would be reliable limit for the monitoring of

the flow with UT systems.

1.6 Thesis Organization

Chapter 1 as have been gone through describes the definition of tomography

and its brief history, along with an overview of this research. This chapter also states

the research’s background problems, the problem statements, and the importance of

the study, the research methodology, the research's principal aims and objectives

which is believed to benefit wide range of differential applications. Additionally, the

limitations of current UT system are presented.

Chapter 2 presents an introduction to the process tomography, including the

lists of the most common tomography techniques summarizing their working

principles, advantages and disadvantages. Fundamentals on the use of ultrasonic

sensing for imaging instrument are compiled specifically for understanding the key

aspects.

Page 32: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

10

Chapter 3 is about the basic and fundamental governed theories in UT

systems. Due to the complex behaviour of ultrasonic wave when propagate within

the metal pipe, theory of ultrasonic wave is utilized for estimating the ultrasonic

wave behaviour in metal pipes. In this chapter, the essential theory of the simulation

with COMSOL software will be presented. In this research COMSOL software is

used in order to determine the suitable sensor for the UT system with metal pipe

conveyor. The basic and conventional image reconstruction algorithms also will be

presented at the end of this chapter.

Chapter 4 is divided to two main parts: Hardware development and Software

development of UT system. It starts with the production of the experimental setup

which includes the metal pipe and base holder design and also the rapid prototyping

mechanical works for producing the sensors fixture. The main step in this research is

finding the proper sensor for the case of metal pipe. For this purpose, various

simulations with COMSOL software are carried out to find the optimum frequency

as the resonance frequency of the applied sensor. Detailed explanation on each parts

and its importance to the whole system is presented including various other sub-

systems such as the ultrasonic sensor, electronic circuitry, embedded system, PCB

design and finally the data acquisition module. Programming structures are charted

to illustrate all software-wise mechanisms. Additionally, this chapter is focused on

explaining the software development. Virtual projection of the ultrasound

propagation is mapped and used by the proposed algorithms for image reconstruction

where composition determination and error measurement are calculated. The

structure for constructing the application software providing the graphical user

interface are given in details in associated flow chart. Additionally, several types of

functions that are designed for operating the measurement process are also

discussed.

Chapter 5 exposed all the achieved results from simulation with COMSOL

regards to the finding the optimum frequency and identification of the sampling

method form received signals, results from forward modeling of UT system and

resultant cross-sectional images form experimental static UT system by inserting

hollow PVC pipe inside the metal pipe. The dynamic results of UT system with

metal pipe for bubbly flow are illustrated in this chapter. The results are analysed on

Page 33: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

11

its imaging capabilities specifically in a metal pipe configuration, the recorded

measurement of liquid and gas component distributions inside the metal pipe and

error measurement from the actual value.

Chapter 6 concludes the research findings throughout the dissertation

including discussing significant contributions towards process tomography

community particularly on the subject of ultrasonic tomography. Recommendations

for future works are also addressed to assist other researchers in pursuing the works

for further development and improvement.

Page 34: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

158

REFERENCES

1. Beck, M.S. and R.A. Williams, Process tomography: principles, techniques,

and applications. 1995: Butterworth-Heinemann.

2. Hammer, B.a., Process Tomography-A Strategy for Industrial Exploitation.

preconference, ECAPT. 1994: p. pp. 25-32.

3. Dyakowski, T., Tomography in a process system. In R. A. Williams, Process

Tomography: Principles, Techniques and Applications 1995: p. pp. 13-37.

4. Abdul Rahim, R., A Tomographic Imaging System for Pneumatic Conveyors

Using Optical Fibres. 1996, Sheffield Hallam University:.

5. Gai, H., M.S. Beck, and R. Flemons, An integral transducer/pipe structure

for flow imaging, in IEEE 3rd International Ultrasonic Symposium 1989,

IEEE.: Montreal : . p. pp. 1077-1082.

6. Xu, L. and Z. Chen. Investigation of transmission-mode UCT system for

bubbly gas/liquid fluid distribution monitoring. in Proc. 2nd ECAPT

Conf.(Karlsruhe, 1993). 1993.

7. Xu, L., et al., Application of ultrasonic tomography to monitoring gas/liquid

flow. Chemical Engineering Science, 1997. 52(13): p. 2171-2183.

8. Rahiman, M.H.F., Non-invasive imaging of liquid/gas flow using ultrasonic

transmission-mode tomography. 2005, Universiti Teknologi Malaysia,

Faculty of Electrical Engineering.

9. Moshfeghi, M., Ultrasound reflection-mode tomography using fan-shaped-

beam insonification. IEEE Transactions on Ultrasonics Ferroelectrics and

Frequency Control, 1986. 33: p. 299-314.

10. Beller, L.S., Ultrasonic tomography for in-process measurements of

temperature in a multi-phase medium. 1993, Google Patents.

11. Schlaberg, H.I., M. Yang, and B.S. Hoyle, Real-time ultrasonic process

tomography for two-component flows. Electronics Letters, 1996. 32(17): p.

1571-1572.

Page 35: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

159

12. Leighton, T.G., et al., Acoustic detection of gas bubbles in a pipe. Acta

Acustica united with Acustica, 1998. 84(5): p. 801-814.

13. Yang, M., et al., Real-time ultrasound process tomography for two-phase

flow imaging using a reduced number of transducers. Ultrasonics,

Ferroelectrics and Frequency Control, IEEE Transactions on, 1999. 46(3): p.

492-501.

14. Miyashita, T. and A. Honda, An experimental study of ultrasonic diffraction

tomography with circular scanning. Japanese Journal of Applied Physics,

2000. 39(5S): p. 3101.

15. Hoyle, B.S., et al., Design and application of a multi-modal process

tomography system. Measurement Science and Technology, 2001. 12(8): p.

1157.

16. Steiner, G., H. Wegleiter, and D. Watzenig. A Dual Mode Ultrasound and

Electrical Capacitance Process Tomography Sensor. in Sensors, 2005 IEEE.

2005: IEEE.

17. Kurniadi, D. and A. Trisnobudi, A Multy path ultrasonic transit time flow

meter using a tomography method for gas flow velocity profile measurement.

Particle & Particle Systems Characterization, 2006. 23(4): p. 330-338.

18. Rahiman, M.H.F., R. Abdul Rahim, and M. Tajjudin, Ultrasonic

transmission-mode tomography imaging for liquid/gas two-phase flow.

Sensors Journal, IEEE, 2006. 6(6): p. 1706-1715.

19. Carvalho, R.D.M.d., et al., Application of the ultrasonic technique and high-

speed filming for the study of the structure of air–water bubbly flows.

Experimental Thermal and Fluid Science, 2009. 33(7): p. 1065-1086.

20. Pusppanathan, M.J., Application of ultrasonic tomography in non-invasive

imaging of liquid - gas flow. 2009, University Teknologi Malaysia.

21. Chun, S., B.-R. Yoon, and K.-B. Lee, Diagnostic flow metering using

ultrasound tomography. Journal of mechanical science and technology, 2011.

25(6): p. 1475-1482.

22. Wackel, S., U. Hempel, and J.r. Auge, Acousto-capacitive tomography of

liquid multiphase systems. Sensors and Actuators A: Physical. 172(1): p.

322-329.

23. Ayob, N.M.N., Development of ultrasonic tomography system for liquid/gas

flow measurement in a vertical column. 2011, Universiti Malaysia Perlis.

Page 36: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

160

24. Muhamad, I.R., Y.A. Wahab, and S. Saat. Identification of water/solid flow

regime using ultrasonic tomography. in System Engineering and Technology

(ICSET), 2012 International Conference on. 2012.

25. Fenster, A., et al., Three-dimensional ultrasound imaging. Handbook of 3D

Machine Vision: Optical Metrology and Imaging, 2013. 16: p. 285.

26. Hauck, A., Ultrasonic time-of-flight tomography for the non-intrusive

measurement of flow velocity fields, in Acoustical imaging. 1990, Springer. p.

317-325.

27. Seiraffi, M.A., Two-Phase Flow Measurement in Pipelines Using Ultrasonic-

Tomography, in Acoustical Imaging. 1992, Springer. p. 933-937.

28. Komiya, K.-I. and S. Teerawatanachai, Ultrasonic tomography for

visualizing the velocity profile of air flow. Flow Measurement and

Instrumentation, 1993. 4(2): p. 61-65.

29. Hoyle, B.S. and S.P. Luke, Ultrasound in the process industries. Engineering

Science & Education Journal, 1994. 3(3): p. 119-122.

30. Dyakowski, T., Process tomography applied to multi-phase flow

measurement. Measurement Science and Technology, 1996. 7(3): p. 343.

31. Abdul Rahim, R., Ultrasonic Transmission-Mode Tomography in

Water/Particles Flow in Malaysian Science and Technology Congress 2003.

2003: Kuala Lumpur, Malaysia.

32. Kannath, A. and R. Dewhurst, Real-time measurement of acoustic field

displacements using ultrasonic interferometry. Measurement Science and

Technology, 2004. 15(12): p. N59.

33. Zhao, X., J.L. Rose, and H. Gao, Determination of density distribution in

powder compacts using ultrasonic tomography. Ultrasonics, Ferroelectrics

and Frequency Control, IEEE Transactions on, 2006. 53(2): p. 360-369.

34. Raiajutis, R., et al., Application of the ultrasonic transmission tomography

for inspection of the petroleum tank floor. Ultragarsas, 2007. 62(3): p. 26-32.

35. Raut, S., et al. Image Segmentation–A State-Of-Art Survey for Prediction. in

Advanced Computer Control, 2009. ICACC'09. International Conference on.

2009: IEEE.

36. Rahiman, M.H.F., et al., Ultrasonic tomography imaging simulation of two-

phase homogeneous flow. Sensor Review, 2009. 29(3): p. 266-276.

Page 37: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

161

37. Abdul Wahab, Y., et al. Application of transmission-mode ultrasonic

tomography to identify multiphase flow regime. in Electrical, Control and

Computer Engineering (INECCE), 2011 International Conference on. 2011.

38. Kun, W., et al., An imaging model incorporating ultrasonic transducer

properties for three-dimensional optoacoustic tomography. Medical Imaging,

IEEE Transactions on, 2011. 30(2): p. 203-214.

39. Liu, Y., et al., Ultrasonic Tomographic Image Reconstruction Based on

TTLS Regularization. Dianshi Jishu (Video Engineering), 2013. 37(7): p.

114-116.

40. Yang, L., et al. Immersion ultrasonic reflection tomography by annular array

system. in Nondestructive Evaluation/Testing: New Technology &

Application (FENDT), 2013 Far East Forum on. 2013.

41. Ng, W.N., Development of ultrasonic tomography for composition

determination of water and oil flow. 2005, Universiti Teknologi Malaysia,

Faculty of Electrical Engineering.

42. Ayob, N.M.N., et al. Simulation on using cross-correlation technique for

two-phase liquid/gas flow measurement for Ultrasonic Transmission

Tomography. in Signal Processing and Its Applications (CSPA), 2010 6th

International Colloquium on. 2010.

43. Beck, R.W., Process tomography: Principles, techniques and applications.

1995, London: : Butterworth-Heinemann Ltd.

44. Patrick, D.R. and S.W. Fardo, Industrial process control systems. Lilburn,

GA: The Fairmont Press Inc, 2009.

45. Falcone, G., G.F. Hewitt, and C. Alimonti, Multiphase flow metering:

principles and applications. Vol. 54. 2009: Elsevier.

46. Nielsen, B.D. and R.L. Mokwa, Non-destructive soil testing using x-ray

computed tomography. 2004, Montana State University--Bozeman.

47. DOE/EM-0579, Waste Inspection Tomography (WIT), Demonstrated at Idaho

National Engineering and Environmental Laboratory, U.S.A: Department of

Energy., 2001.

48. Wang, Q., et al., Two-phase flow regime identification based on cross-

entropy and information extension methods for computerized tomography.

Instrumentation and Measurement, IEEE Transactions on, 2011. 60(2): p.

488-495.

Page 38: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

162

49. Yang, W. and L. Peng, Image reconstruction algorithms for electrical

capacitance tomography. Measurement Science and Technology, 2003. 14(1)

50. Tajjudin, M.B., Fan beam optical tomography. Faculty of Electrical

Engineering. 2005, Universiti Teknologi Malaysia.

51. Vandenberghe, S., et al., Fast reconstruction of 3D time-of-flight PET data

by axial rebinning and transverse mashing. Physics in medicine and biology,

2006. 51(6): p. 1603.

52. Kuzuoglu, M., K. Leblebicioglu, and Y. Ider, A fast image reconstruction

algorithm for electrical impedance tomography. Physiological Measurement,

1994. 15(2A): p. A115.

53. Gao, N.Z., Estimation of electrical conductivity distribution within the

human head from magnetic flux density measurement. Phys. Med. Biol.

Journal. , 2005. Vol.50.: p. pp.2675-2687.

54. Otten, D.M. and B. Rubinsky, Front-tracking image reconstruction

algorithm for EIT-monitored cryosurgery using the boundary element

method. Physiological Measurement, 2005. 26(4): p. 503.

55. Pang, J., R. Rahim, and K. Chan. Infrared tomography sensor configuration

using 4 parallel beam projections. in Proceedings of 3rd International

Symposium on Process Tomography, 2004.

56. Chan, K.S., Tomographic imaging of pneumatic conveyor using optical

sensor, in World Engineering Congress 2002, Sarawak, Malaysia.

57. Long, G., H. Yan, and Y. Sun, Analysis of density matrix reconstruction in

NMR quantum computing. Journal of Optics B: Quantum and Semiclassical

Optics, 2001. 3(6): p. 376.

58. Abdul Rahim, R., Initial Results on Low Cost Microprocessor and Ethernet

Controller based Data Acquisition System Developing for Optical

Tomography System. Sensors & Transducers Journal, 2007. Vol.81( Issue 7):

pp. 1333-1340.

59. Abdul Rahim, R., et al., Modeling orthogonal and rectilinear mixed-modality

projection of optical tomography for solid-particles concentration

measurement. Sensors and Actuators A: Physical, 2010. 161(1): p. 53-61.

60. Rahiman, M.H.F., Real-time Velocity Profile Generation of Powder

Conveying using Electrical Charge Tomography. 2002, Universiti Teknologi

Malaysia.

Page 39: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

163

61. Bidin, A.G., Electrodynamic Sensors for Process Tomography. In R. a.

Williams, in Process Tomography - Principles, Techniques and Application.

1995, Jordan Hill: Butterworth Heinemann Ltd. pp. 101-117.

62. Hoyle, B., Process tomography using ultrasonic sensor. Meas. Sci.Technol.,

1996. Vol. 7: pp.272-280.

63. Warsito, W. and L.-S. Fan, Measurement of real-time flow structures in gas–

liquid and gas–liquid–solid flow systems using electrical capacitance

tomography (ECT). Chemical Engineering Science, 2001. 56(21): p. 6455-

6462.

64. Boyce, G.A., et al., Endoscopic ultrasound in the pre-operative staging of

rectal carcinoma. Gastrointestinal endoscopy, 1992. 38(4): p. 468-471.

65. Hoyle, B.S., Ultrasonic sensors. In R. A. Williams, in Process Tomography:

Principles, Techniques and Applications. 1995, Butterworth-Heinemann.:

Oxford: pp.119-149.

66. Brown, G.J., Development of an ultrasonic tomography system for

application in pneumatic conveying. Measurement Science Technology. 7:,

1996: pp. 396-405.

67. Hoyle, W.L., Ultrasonic process tomography using multiple active sensors

for maximum real time performance. Chemical Engineering Science, 1996.

Vol.52. pp.2161-2170.

68. Abdul Rahim, R., Monitoring Liquid/Gas Flow Using Ultrasonic

Tomography, in 3rd International Symposium on Process Tomography.

2004: Poland. Lodz, Poland. . pp. 130-133.

69. Müller, R., et al., Acoustic tomography on the basis of travel-time

measurement. Measurement Science and Technology, 2004. 15(7): p. 1420.

70. Stotzka, R., et al. Prototype of a new 3D ultrasound computer tomography

system: transducer design and data recording. in Medical Imaging 2004.

International Society for Optics and Photonics.

71. Gai, H., Ultrasonic techniques for flow imaging. 1990, University of

Manchester.

72. Li, W. and B. Hoyle, Ultrasonic process tomography using multiple active

sensors for maximum real-time performance. Chemical Engineering Science,

1997. 52(13): p. 2161-2170.

Page 40: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

164

73. Ohkawa, M., N. Kawata, and S. Uchida, Cross-sectional distributions of gas

and solid holdups in slurry bubble column investigated by ultrasonic

computed tomography. Chemical Engineering Science, 1999. 54(21): p.

4711-4728.

74. Wolf, J., Investigation of bubbly flow by ultrasonic tomography. Particle &

Particle Systems Characterization, 1988. 5(4): p. 170-173.

75. Wolf, J., Ultrasonic tomography in the field of flow measurement. The

Journal of the Acoustical Society of America, 1988. 83, p. S104.

76. Gai.H, B.M.S., and Flemons.R. , An Integral Transducer/Pipe Structure for

Flow Imaging, in IEEE 3rd International Ultrasonic Symposium 1989,

IEEE.: Montreal : pp. 1077-1082.

77. Flemons, R., Ultrasonic transducer and ultrasonic flow imaging method.

1988: U.K. Patent application 8815000.

78. Wiegand, F. and B.S. Hoyle, Simulations for parallel processing of

ultrasound reflection-mode tomography with applications to two-phase flow

measurement. Ultrasonics, Ferroelectrics and Frequency Control, IEEE

Transactions on, 1989. 36(6): p. 652-660.

79. Wiegand, F. and B. Hoyle, Development and implementation of real-time

ultrasound process tomography using a transputer network. Parallel

computing, 1991. 17(6): p. 791-807.

80. Schlaberg, H.I., M. Yang, and B.S. Hoyle, Ultrasound reflection tomography

for industrial processes. Ultrasonics, 1998. 36(1): p. 297-303.

81. Yang, M., et al., Parallel image reconstruction in real-time ultrasound

process tomography for two-phased flow measurements. Real-time imaging,

1997. 3(4): p. 295-303.

82. Steiner, G. and F. Podd, A non-invasive and non-intrusive ultrasonic

transducer array for process tomography. interaction, 2006. 99: p. 10.

83. Steiner, G., Sequential fusion of ultrasound and electrical capacitance

tomography. Int. J. Inf. Syst. Sci, 2006. 2(4): p. 484-497.

84. Saad, M. and S. Ibrahim, Concentration and velocity measurement of flowing

object using optical and ultrasonic tomography. 2007, Faculty of Electrical

Engineering, Universiti Teknologi Malaysia.

Page 41: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

165

85. Ayob, N.M.N., et al. Detection of small gas bubble using ultrasonic

transmission-mode tomography system. in Industrial Electronics &

Applications (ISIEA), 2010 IEEE Symposium on. 2010: IEEE.

86. Bello, P.D., J. Yuanwei, and L. Enyue. Abstract: GPU Accelerated

Ultrasonic Tomography Using Propagation and Backpropagation Method. in

High Performance Computing, Networking, Storage and Analysis (SCC),

2012 SC Companion:. 2012.

87. Gibbs, V., D. Cole, and A. Sassano, Ultrasound physics and technology:

how, why, and when. 2009: Elsevier Health Sciences.

88. Herman, G.T., Fundamentals of computerized tomography: image

reconstruction from projections. 2009: Springer.

89. Rahiman, M.H.F., R.A. Rahim, and N.M.N. Ayob, The Front-End Hardware

Design Issue in Ultrasonic Tomography. Sensors Journal, IEEE, 2010. 10(7):

p. 1276-1281.

90. Gill, R., The physics and technology of diagnostic ultrasound: a

practitioner's guide. 2012: Buy now from the author.

91. Azhari, H., Feasibility Study of Ultrasonic Computed Tomography–Guided

High-Intensity Focused Ultrasound. Ultrasound in Medicine & Biology,

2012. 38(4): p. 619-625.

92. Cheeke, J.D.N., Fundamentals and applications of ultrasonic waves. 2012:

CRC press.

93. Ensminger, D. and F.B. Stulen, Ultrasonics: data, equations and their

practical uses. 2010: CRC Press.

94. Rahiman, M.H.F., R. Abdul Rahim, and N.M.N. Ayob, The Front-End

Hardware Design Issue in Ultrasonic Tomography. Sensors Journal, IEEE,

2010. 10(7): p. 1276-1281.

95. Rose, J.L. and P.B. Nagy, Ultrasonic waves in solid media. The Journal of

the Acoustical Society of America, 2000. 107: p. 1807.

96. Zhang, H., et al. Ultrasonic guided wave tomography of pipes. in Audio

Language and Image Processing (ICALIP), 2010 International Conference

on. 2010.

97. Rahiman, M.H.F., et al., Modelling ultrasonic sensor for gas bubble profiles

characterization of chemical column. Sensors and Actuators B: Chemical,

2013. 184(0): p. 100-105.

Page 42: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

166

98. Fan, Y. and Y. Chu. Application and study on preconditioned conjugate

gradient method algorithm in concrete ultrasonic computerized tomography.

in Information Technology and Computer Science (ITCS), 2010 Second

International Conference on. 2010.

99. Bargoshadi, J.A. and E. Najafiaghdam. Ultrasonic dispersion system design

and optimization using multiple transducers. in Piezoelectricity, Acoustic

Waves, and Device Applications (SPAWDA) and 2009 China Symposium on

Frequency Control Technology, Joint Conference of the 2009 Symposium on.

2009: IEEE.

100. Hemzal, D., R. Jirik, and J. Jan. Analytic ray propagation in FEM modelling

of ultrasonic transmission tomography. in Systems, Signals and Image

Processing (IWSSIP), 2012 19th International Conference on. 2012.

101. Raman, V., A. Abbas, and S.C. Joshi. Mapping local cavitation events in

high intensity ultrasound fields. in Excerpt from the Proceeding of the

COMSOL Users Conference, Bangalore. 2006.

102. Harari, I. and T.J. Hughes, Finite element methods for the Helmholtz

equation in an exterior domain: model problems. Computer Methods in

Applied Mechanics and Engineering, 1991. 87(1): p. 59-96.

103. Ihlenburg, F. and I. Babuška, Finite element solution of the Helmholtz

equation with high wave number Part I: The h-version of the FEM.

Computers & Mathematics with Applications, 1995. 30(9): p. 9-37.

104. Garcia-Stewart, C., et al. Image reconstruction algorithms for high-speed

chemical species tomography. in Proceedings of 3rd World Conference on

Industrial Process Tomography (Virtual Centre for Industrial and Process

Tomography, 2003). 2003.

105. Hsieh, J. Computed tomography: principles, design, artifacts, and recent

advances. 2009: SPIE.

106. Plraskowski, A., Imaging industrial flows: Applications of electrical process

tomography. 1995: Institute of Physics Pub.(Bristol, UK and Philadelphia).

107. Rahiman, M.H.F., et al., Ultrasonic tomography–image reconstruction

algorithms. International Journal of Innovative Computing, Information and

Control, 2012. 8: p. 527-538.

Page 43: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

167

108. McKeen, T.R. and T.S. Pugsley, The influence of permittivity models on

phantom images obtained from electrical capacitance tomography.

Measurement Science and Technology, 2002. 13(12): p. 1822.

109. Isa, M.D., et al., Validation process for electrical charge tomography system

using digital imaging technique. Applied Physics Research, 2009. 1(2): p.

P11.

110. Qu, H., et al., SR-CT filter-back-projection algorithm and application in

detection of microstructure evolution. Procedia Engineering, 2010. 7: p. 63-

71.

111. Hakilo, A.S., Flow regime identification of conveying in peneumatic pipeline

using electric charge tomography and neural network techniques. 2006,

Universiti Teknologi Malaysia: Malaysia.

112. Pontana, F., et al., Chest computed tomography using iterative reconstruction

vs filtered back projection (Part 1): evaluation of image noise reduction in

32 patients. European radiology, 2011. 21(3): p. 627-635.

113. Lou, Y., et al., Image recovery via nonlocal operators. Journal of Scientific

Computing, 2010. 42(2): p. 185-197.

114. Ikeda, T., Fundamentals of piezoelectricity. Vol. 2. 1990: Oxford University

Press Oxford.

115. Safari, A. and E.K. Akdoğan, Piezoelectric and acoustic materials for

transducer applications. 2008: Springer.

116. Vijaya, M., Piezoelectric Materials and Devices: Applications in

Engineering and Medical Sciences. 2012: CRC Press.

117. Rose, J.L. and B.B. Goldberg, Basic physics in diagnostic ultrasound. 1979:

Wiley NY, DOI: 10.1002/jcu.1870080317.

118. Xu, L.-J. and L.-A. Xu, Ultrasound tomography system used for monitoring

bubbly gas/liquid two-phase flow. Ultrasonics, Ferroelectrics and Frequency

Control, IEEE Transactions on, 1997. 44(1): p. 67-76.

119. Sonehara, M. and Y. Kobayashi, Analog switch. 2011, Google Patents.

120. Zhou, Q.-H., Application of Karnaugh Map in Design of Relay Logic Control

Circuits. Qinggong Jixie/ Light Industry Machinery, 2011. 29(2): p. 83-86.

121. Deliyannis, T., Y. Sun, and J.K. Fidler, Continuous-time active filter design.

Vol. 12. 2010: CRC Press.

Page 44: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

168

122. Yang, H., et al., Design of an Active Adjustable Band-Pass Filter, in

Multimedia and Signal Processing. 2012, Springer. p. 601-608.

123. Lipták, B.G., Instrument Engineers' Handbook, Volume Two: Process

Control and Optimization. Vol. 2. 2010: CRC press.

124. Dorf, R.C., The electrical engineering handbook. 1997: CRC press.

125. Devices, A. and D.H. Sheingold, Nonlinear circuits handbook: designing

with analog function modules and IC's. 1976: Analog Devices, Incorporated.

126. Green, R., et al., Concentration profiles of dry powders in a gravity conveyor

using an electrodynamic tomography system. Measurement Science and

Technology, 1997. 8(2): p. 192.

127. Albrechtsen, R., Z. Yu, and A. Peyton, Towards an analytical approach for

determining sensitivity limits and sensitivity maps of mutual inductance

sensors. Proc. Process Tomography-95 Implementation for Industrial

Processes, 1995: p. 288-99.

128. Chan, K.S., Real time image reconstruction for fan beam optical tomography

system. M. Eng. Thesis, Universiti Teknologi Malaysia, 2002.

129. Alenius, S. and U. Ruotsalainen, Bayesian image reconstruction for emission

tomography based on median root prior. European journal of nuclear

medicine, 1997. 24(3): p. 258-265.

130. Ozcan, A., et al., Speckle reduction in optical coherence tomography images

using digital filtering. JOSA A, 2007. 24(7): p. 1901-1910.

131. Jago, J. and T. Whittingham, Experimental studies in transmission

ultrasound computed tomography. Physics in medicine and biology, 1991.

36(11): p. 1515.

132. Okumura, T., et al., Variable N-Quoit filter applied for automatic detection

of lung cancer by X-ray CT. Computer Assisted Radiology and Surgery

(CAR’98), 1998: p. 242-247.

133. Gupta, S. and S. Kumar, Variational level set formulation and filtering

techniques on CT images. International Journal of Engineering Science,

2012, 4.

134. Satange, D., et al., Study And Analysis Of Enhancement And Edge Detection

Method For Human Bone Fracture X-Ray Image. International Journal of

Engineering, 2013. 2(4).

Page 45: IMAGE RECONSTRUCTION TECHNIQUE VIA ...eprints.utm.my/id/eprint/78089/1/...PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi UT. Masalah pengecilan paip

169

135. Stevens, G.M., Volumetric tomographic imaging, Thesis (PhD). Stanford

University, Source DAI-B 62/01, p. 115, Jul 2001, 151 pages.

136. Han, J.-H., J. Lee, and J.U. Kang, Pixelation effect removal from fiber bundle

probe based optical coherence tomography imaging. Optics express, 2010.

18(7): p. 7427.

137. Stevens, G.M., R. Fahrig, and N.J. Pelc, Filtered backprojection for

modifying the impulse response of circular tomosynthesis. Medical physics,

2001. 28: p. 372.

138. Singh, K.K. and A. Singh, A study of image segmentation algorithms for

different types of images. IJCSI International Journal of Computer Science

Issues, 2010. 7(5): p. 1694-0814.