image stitching -...

85
Image Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher

Upload: others

Post on 05-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image Stitching

Ali Farhadi CSE 576

Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher

Page 2: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

• Combine two or more overlapping images to make one larger image

Add example

Slide credit: Vaibhav Vaish

Page 3: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

How to do it?

• Basic Procedure 1. Take a sequence of images from the same

position 1. Rotate the camera about its optical center

2. Compute transformation between second image and first

3. Shift the second image to overlap with the first

4. Blend the two together to create a mosaic 5. If there are more images, repeat

Page 4: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

1. Take a sequence of images from the same position

• Rotate the camera about its optical center

Page 5: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

2. Compute transformation between images

• Extract interest points • Find Matches • Compute transformation?

Page 6: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

3. Shift the images to overlap

Page 7: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

4. Blend the two together to create a mosaic

Page 8: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

5. Repeat for all images

Page 9: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

How to do it?

• Basic Procedure 1. Take a sequence of images from the same

position 1. Rotate the camera about its optical center

2. Compute transformation between second image and first

3. Shift the second image to overlap with the first

4. Blend the two together to create a mosaic 5. If there are more images, repeat

Page 10: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Compute Transformations

• Extract interest points • Find good matches • Compute transformation

Let’s assume we are given a set of good matching interest points

Page 11: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

mosaic PP

Image reprojection

• The mosaic has a natural interpretation in 3D – The images are reprojected onto a common plane – The mosaic is formed on this plane

Page 12: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Example

Camera Center

Page 13: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image reprojection

• Observation – Rather than thinking of this as a 3D reprojection,

think of it as a 2D image warp from one image to another

Page 14: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Motion models

• What happens when we take two images with a camera and try to align them?

• translation? • rotation? • scale? • affine? • Perspective?

Page 15: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recall: Projective transformations

• (aka homographies)

Page 16: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affineperspective

Page 17: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

2D coordinate transformations

• translation: x’ = x + t x = (x,y) • rotation: x’ = R x + t • similarity: x’ = s R x + t • affine: x’ = A x + t • perspective: x’ ≅ H x x = (x,y,1)

(x is a homogeneous coordinate)

Page 18: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image Warping

• Given a coordinate transform x’ = h(x) and a source image f(x), how do we compute a transformed image g(x’) = f(h(x))?

f(x) g(x’)x x’

h(x)

Page 19: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Forward Warping

• Send each pixel f(x) to its corresponding location x’ = h(x) in g(x’)

f(x) g(x’)x x’

h(x)

• What if pixel lands “between” two pixels?

Page 20: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Forward Warping

• Send each pixel f(x) to its corresponding location x’ = h(x) in g(x’)

f(x) g(x’)x x’

h(x)

• What if pixel lands “between” two pixels?• Answer: add “contribution” to several pixels,

normalize later (splatting)

Page 21: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 21

Inverse Warping

• Get each pixel g(x’) from its corresponding location x’ = h(x) in f(x)

f(x) g(x’)x x’

h-1(x)

• What if pixel comes from “between” two pixels?

Page 22: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 22

Inverse Warping

• Get each pixel g(x’) from its corresponding location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?• Answer: resample color value from interpolated source image

f(x) g(x’)x x’

h-1(x)

Page 23: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Interpolation

• Possible interpolation filters: – nearest neighbor – bilinear – bicubic (interpolating)

Page 24: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

Page 25: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Finding the transformation

• Translation = 2 degrees of freedom • Similarity = 4 degrees of freedom • Affine = 6 degrees of freedom • Homography = 8 degrees of freedom

• How many corresponding points do we need to solve?

Page 26: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Simple case: translations

How do we solve for ?

Page 27: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Mean displacement =

Simple case: translations

Displacement of match i =

Page 28: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Simple case: translations

• System of linear equations – What are the knowns? Unknowns? – How many unknowns? How many equations (per match)?

Page 29: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Simple case: translations

• Problem: more equations than unknowns – “Overdetermined” system of equations – We will find the least squares solution

Page 30: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Least squares formulation

• For each point

• we define the residuals as

Page 31: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution

• For translations, is equal to mean displacement

Page 32: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Least squares

• Find t that minimizes

• To solve, form the normal equations

Page 33: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Solving for translations

• Using least squares

2n x 2 2 x 1 2n x 1

Page 34: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Affine transformations

• How many unknowns? • How many equations per match? • How many matches do we need?

Page 35: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Affine transformations

• Residuals:

• Cost function:

Page 36: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1

Page 37: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Solving for homographies

Page 38: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Solving for homographies

Page 39: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Direct Linear Transforms

Defines a least squares problem:

• Since is only defined up to scale, solve for unit vector • Solution: = eigenvector of with smallest

eigenvalue • Works with 4 or more points

2n × 9 9 2n

Page 40: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 40

Matching features

What do we do about the “bad” matches?

Page 41: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 41

RAndom SAmple Consensus

Select one match, count inliers

Page 42: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 42

RAndom SAmple Consensus

Select one match, count inliers

Page 43: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image StitchingRichard Szeliski 43

Least squares fit

Find “average” translation vector

Page 44: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,
Page 45: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Structure from Motion

RANSAC for estimating homography

• RANSAC loop: 1. Select four feature pairs (at random) 2. Compute homography H (exact) 3. Compute inliers where ||pi’, H pi|| < ε • Keep largest set of inliers • Re-compute least-squares H estimate

using all of the inliers

CSE 576, Spring 2008 45

Page 46: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

46

Simple example: fit a line

• Rather than homography H (8 numbers) fit y=ax+b (2 numbers a, b) to 2D pairs

47

Page 47: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

47

Simple example: fit a line

• Pick 2 points • Fit line • Count inliers

48

3 inliers

Page 48: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

48

Simple example: fit a line

• Pick 2 points • Fit line • Count inliers

49

4 inliers

Page 49: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

49

Simple example: fit a line

• Pick 2 points • Fit line • Count inliers

50

9 inliers

Page 50: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

50

Simple example: fit a line

• Pick 2 points • Fit line • Count inliers

51

8 inliers

Page 51: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

51

Simple example: fit a line

• Use biggest set of inliers • Do least-square fit

52

Page 52: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

RANSAC

Red: rejected by 2nd nearest neighbor criterion Blue: Ransac outliers Yellow: inliers

Page 53: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Computing homography

• Assume we have four matched points: How do we compute homography H?

Normalized DLT 1. Normalize coordinates for each image

a) Translate for zero mean b) Scale so that average distance to origin is ~sqrt(2)

– This makes problem better behaved numerically

2. Compute using DLT in normalized coordinates 3. Unnormalize:

Txx =~ xTx !!=!~

THTH ~1−"=

ii Hxx =!

H~

Page 54: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Computing homography• Assume we have matched points with outliers: How

do we compute homography H?

Automatic Homography Estimation with RANSAC 1. Choose number of samples N 2. Choose 4 random potential matches 3. Compute H using normalized DLT 4. Project points from x to x’ for each potentially

matching pair: 5. Count points with projected distance < t

– E.g., t = 3 pixels 6. Repeat steps 2-5 N times

– Choose H with most inliers

HZ Tutorial ‘99

ii Hxx =!

Page 55: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Automatic Image Stitching

1. Compute interest points on each image

2. Find candidate matches

3. Estimate homography H using matched points and RANSAC with normalized DLT

4. Project each image onto the same surface and blend

Page 56: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

RANSAC for Homography

Initial Matched Points

Page 57: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

RANSAC for Homography

Final Matched Points

Page 58: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

RANSAC for Homography

Page 59: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Image Blending

Page 60: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Feathering

01

01

+

=

Page 61: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Effect of window (ramp-width) size

0

1 left

right0

1

Page 62: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Effect of window size

0

1

0

1

Page 63: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Good window size

0

1

“Optimal” window: smooth but not ghosted • Doesn’t always work...

Page 64: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Pyramid blending

Create a Laplacian pyramid, blend each level • Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on

Graphics, 42(4), October 1983, 217-236.

Page 65: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Gaussian Pyramid Laplacian Pyramid

The Laplacian Pyramid

0G

1G

2GnG

- =

0L

- = 1L

- = 2Lnn GL =

)expand( 1+−= iii GGL)expand( 1++= iii GLG

Page 66: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Laplacian level

4

Laplacian level

2

Laplacian level

0

left pyramid right pyramid blended pyramid

Page 67: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Laplacian image blend

1. Compute Laplacian pyramid 2. Compute Gaussian pyramid on weight

image 3. Blend Laplacians using Gaussian blurred

weights 4. Reconstruct the final image

Page 68: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Multiband Blending with Laplacian Pyramid

0

1

0

1

0

1

Left pyramid Right pyramidblend

• At low frequencies, blend slowly • At high frequencies, blend quickly

Page 69: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Multiband blending

1.Compute Laplacian pyramid of images and mask

2.Create blended image at each level of pyramid

3.Reconstruct complete image

Laplacian pyramids

Page 70: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Blending comparison (IJCV 2007)

Page 71: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Poisson Image Editing

• For more info: Perez et al, SIGGRAPH 2003 – http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Page 72: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Encoding blend weights: I(x,y) = (αR, αG, αB, α)

color at p =

Implement this in two steps: 1. accumulate: add up the (α premultiplied) RGBα values at each pixel

2. normalize: divide each pixel’s accumulated RGB by its α value

Alpha Blending

Optional: see Blinn (CGA, 1994) for details: http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn%2C+J.F.

I1

I2

I3

p

Page 73: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Choosing seams

Image 1

Image 2

x x

im1 im2

• Easy method – Assign each pixel to image with nearest

center

Page 74: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Choosing seams

• Easy method – Assign each pixel to image with nearest center – Create a mask: – Smooth boundaries ( “feathering”): – Composite

Image 1

Image 2

x x

im1 im2

Page 75: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Choosing seams

• Better method: dynamic program to find seam along well-matched regions

Illustration: http://en.wikipedia.org/wiki/File:Rochester_NY.jpg

Page 76: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Gain compensation• Simple gain adjustment

– Compute average RGB intensity of each image in overlapping region

– Normalize intensities by ratio of averages

Page 77: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Blending Comparison

Page 78: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recognizing Panoramas

Brown and Lowe 2003, 2007Some of following material from Brown and Lowe 2003 talk

Page 79: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recognizing Panoramas

Input: N images 1. Extract SIFT points, descriptors from all

images 2. Find K-nearest neighbors for each point

(K=4) 3. For each image

a) Select M candidate matching images by counting matched keypoints (m=6)

b) Solve homography Hij for each matched image

Page 80: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recognizing Panoramas

Input: N images 1. Extract SIFT points, descriptors from all

images 2. Find K-nearest neighbors for each point (K=4) 3. For each image

a) Select M candidate matching images by counting matched keypoints (m=6)

b) Solve homography Hij for each matched image c) Decide if match is valid (ni > 8 + 0.3 nf )

# inliers # keypoints in overlapping area

Page 81: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recognizing Panoramas (cont.)

(now we have matched pairs of images) 4. Find connected components

Page 82: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Finding the panoramas

Page 83: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Finding the panoramas

Page 84: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Finding the panoramas

Page 85: Image Stitching - courses.cs.washington.educourses.cs.washington.edu/courses/cse576/16sp/Slides/10_ImageStitching.pdfImage Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski,

Recognizing Panoramas (cont.)

(now we have matched pairs of images) 4. Find connected components 5. For each connected component

a) Solve for rotation and f b) Project to a surface (plane, cylinder, or

sphere) c) Render with multiband blending