in-depth study of the intra-stark spectroscopy in the x-ray range … · 2luli - upmc univ paris...

12
In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range under Relativistic Laser-Plasma Interaction E. Oks, 1 E. Dalimier, 2 A.Ya. Faenov, 3,4 P. Angelo, 2 S.A. Pikuz, 4,5 T.A. Pikuz, 4,6 , I.Yu. Skobelev 4,5 , S.N. Ryazanzev 4,7 , P. Durey 8 , L. Doehl 8 , D. Farley 8 , C. Baird 8 , K.L. Lancaster 8 , C.D. Murphy 8 , N. Booth, 9 C. Spindloe 9 , P. Mckenna 10 , N. Neumann 11 , M. Roth 11 , R. Kodama 3,6 and N. Woolsey 8 1 Physics Department, 206 Allison Lab, Auburn University, Auburn, AL 36849, USA 2 LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay - F-75252 Paris cedex 05, France 3 Open and Transdisciplinary Research Iniative, Osaka University, Suita, Osaka, 565-0871, Japan 4 Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia 5 National Research Nuclear University MEPhI, Moscow 115409, Russia. 6 PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565- 0871, Japan 7 Moscow State University, Moscow, 119991, Russia 8 York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK 9 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK 10 Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK 11 Institut fur Kernphysik, Technische Univesitat Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt, Germany Corresponding authors emails: [email protected], [email protected] Abstract Intra-Stark Spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral line. In the ISS some local depressions (“dips”) occur at certain locations of the quasistatic Stark profile of a spectral line. This phenomenon arises when radiating atoms/ions are subjected simultaneously to a quasistatic field F and to a quasimonochromatic electric field E(t) at the characteristic frequency ω. The present paper advances the study of the relativistic laser-plasma interaction from our previous paper (Oks et al, Optics Express 25 (2017) 1958). First, by improving the experimental conditions and the diagnostics, it provides a systematic spectroscopic study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the Langmuir-wave-caused dips at the same locations in the experimental profiles of Si XIV Ly-beta line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic turbulence in different laser shots. Second, this study employs for the first time the most rigorous condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all previous studies in all kinds of plasmas in a wide range of electron densities. It shows how different interplays the Langmuir wave field with the field of the ion acoustic turbulence lead to different manifestations in spectral line profiles, including the disappearance of the Langmuir- wave-caused dips.

Upload: others

Post on 19-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay

In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range under

Relativistic Laser-Plasma Interaction

E. Oks,1 E. Dalimier,2 A.Ya. Faenov,3,4 P. Angelo,2 S.A. Pikuz,4,5 T.A. Pikuz,4,6 , I.Yu.

Skobelev4,5, S.N. Ryazanzev4,7, P. Durey8, L. Doehl8, D. Farley8, C. Baird8, K.L. Lancaster8,

C.D. Murphy8, N. Booth,9 C. Spindloe9, P. Mckenna10, N. Neumann11, M. Roth11, R.

Kodama3,6 and N. Woolsey8

1Physics Department, 206 Allison Lab, Auburn University, Auburn, AL 36849, USA 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA:

Université Paris-Saclay - F-75252 Paris cedex 05, France 3Open and Transdisciplinary Research Iniative, Osaka University, Suita, Osaka, 565-0871, Japan 4Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia 5National Research Nuclear University MEPhI, Moscow 115409, Russia. 6PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-

0871, Japan 7Moscow State University, Moscow, 119991, Russia 8York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK 9Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK 10Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

11Institut fur Kernphysik, Technische Univesitat Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt,

Germany

Corresponding authors emails: [email protected],

[email protected]

Abstract

Intra-Stark Spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral

line. In the ISS some local depressions (“dips”) occur at certain locations of the quasistatic Stark

profile of a spectral line. This phenomenon arises when radiating atoms/ions are subjected

simultaneously to a quasistatic field F and to a quasimonochromatic electric field E(t) at the

characteristic frequency ω. The present paper advances the study of the relativistic laser-plasma

interaction from our previous paper (Oks et al, Optics Express 25 (2017) 1958). First, by

improving the experimental conditions and the diagnostics, it provides a systematic spectroscopic

study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at

the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the

Langmuir-wave-caused dips at the same locations in the experimental profiles of Si XIV Ly-beta

line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic

turbulence in different laser shots. Second, this study employs for the first time the most rigorous

condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all

previous studies in all kinds of plasmas in a wide range of electron densities. It shows how

different interplays the Langmuir wave field with the field of the ion acoustic turbulence lead to

different manifestations in spectral line profiles, including the disappearance of the Langmuir-

wave-caused dips.

Page 2: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 3: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 4: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 5: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 6: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 7: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 8: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 9: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 10: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
Page 11: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay

References

1. E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields, Springer

Series on Atoms and Plasmas, vol. 9 (Springer, New York) 1995

2. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge)

1997

3. D. Salzman, Atomic Physics in Hot Plasmas (Oxford University Press, Oxford) 1998

4. T. Fujimoto, Plasma Spectroscopy(Clarendon Press, Oxford, UK) 2004

5. I.H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press,

Cambridge) 2005

6. E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The

Physical Insight (Alpha Science International, Oxford, UK) 2006.

7. H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Berlin) 2009.

8. E. Oks, Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lines of

One-, Two-, and Three-Electron Systems (World Scientific, New Jersey) 2017

9. V.P. Gavrilenko and E. Oks, Sov. Phys. J. Plasma Phys. 13 (1987) 22

10. E. Oks, St. Böddeker, and H.-J. Kunze, Phys. Rev. A 44 (1991) 8338

11. V.P. Gavrilenko and E. Oks, Sov. Phys. JETP 53 (1981) 1122

12. E. Dalimier, E. Oks, and O. Renner, Atoms 2 (2014) 178

13. E. Dalimier, A. Ya Faenov, E. Oks, P. Angelo, T.A. Pikuz, Y. Fukuda, A. Andreev, J.

Koga, H. Sakaki, H. Kotaki, A. Pirozhkov, Y. Hayashi, I.Yu. Skobelev, S.A. Pikuz, T.

Kawachi, M. Kando, K. Kondo, A. Zhidkov, E. Tubman, N.M.H. Butler, R.J. Dance, M.A.

Alkhimova, N. Booth, J. Green, C. Gregory, P. McKenna, N. Woolsey, and R. Kodama, J.

Phys. Conf. Ser. 810 (2017) 012004

14. E. Dalimier, E. Oks, and O. Renner, AIP Conference Proceedings 1811 (2017) 190003

15. L. Jian, X. Shali, Y. Qingguo, L. Lifeng, and W. Yufen, J. Quant. Spectr. Rad. Transfer

116 (2013) 41

16. O. Renner, E. Dalimier, E. Oks, F. Krasniqi, E. Dufour, R. Schott, and E. Foerster, J.

Quant. Spectr. Rad. Transfer 99 (2006) 439

17. E. Oks, E. Dalimier, A.Ya. Faenov, T. Pikuz, Y. Fukuda, S. Jinno, H. Sakaki, H. Kotaki,

A. Pirozhkov, Y. Hayashi, I. Skobelev, T. Kawachi, M. Kando, and K. Kondo, J. Phys.

B: At. Mol. Opt. Phys. 47 (2014) 221001

18. E. Oks, E. Dalimier, A.Ya. Faenov, P. Angelo, S.A. Pikuz, E. Tubman, N.M.H. Butler,

R.J. Dance, T.A. Pikuz, I.Yu. Skobelev, M.A. Alkhimova, N. Booth, J. Green, C.

Gregory, A. Andreev, A. Zhidkov, R. Kodama, P. McKenna, and N. Woolsey, Optics

Express 25 (2017) 1958

19. S. Depierreux, J. Fuchs, C. Labaune, A. Michard, H. A. Baldis, D. Pesme, S. Hüller, and

G. Laval. Phys. Rev. Lett. 84, 2869 (2000)

20. C.N. Danson, P.A. Brummitt, R.J. Clarke, J.L. Collier, B. Fell, A.J. Frackiewicz, S.

Hawkes, C. Hernandez-Gomez, P. Holligan, M.H.R. Hutchinson, A. Kidd, W.J. Lester,

I.O. Musgrave, D. Neely, D.R. Neville, P.A. Norreys, D.A. Pepler, C.J. Reason, W.

Shaikh, T.B. Winstone, R.W.W. Wyatt, and B.E. Wyborn., Laser and Particle Beams, 23,

87 (2005)

21. NP Dover, CAJ Palmer, MJV Streeter, H. Ahmed, B. Albertazzi, M Borghesi,DC Carroll,

J Fuchs, R. Heathcote, P Hilz, KF Kakolee, S Kar, R.Kodama, A. Kon, DA MacLellan, P

McKenna, SR Nagel, D.Neely, MM Notley, M Nakatsutsumi ,R Prasad,G.Scott, M.

Tampo, M. Zepf, J. Schreiber and Z Najmudin. New J. Phys. 18, 013038 (2016)

22. A.Ya. Faenov S.A.Pikuz, A.I.Erko, B.A.Bryunetkin, V.M.Dyakin, G.V.Ivanenkov,

A.R.Mingaleev, T.A.Pikuz, V.M.Romanova, T.A.Shelkovenko. Physica Scripta 50, 333-

338 (1994),

Page 12: In-depth Study of the Intra-Stark Spectroscopy in the X-Ray Range … · 2LULI - UPMC Univ Paris 06: Sorbonne Universités ; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay

23. Ya.S. Lavrinenko, I.V. Morozov, S.A. Pikuz, I.Yu. Skobelev. J. Phys. CS 653, 012027

(2015),

24. M.A. Alkhimova, S.A. Pikuz, A.Ya. Faenov, I.Yu. Skobelev J. Phys. CS 774, 012115

(2016))

25. J. Colgan, A.Ya. Faenov, S.A. Pikuz E. Tubman, N. M. H. Butler, J. Abdallah jr., R. J.

Dance, T. A. Pikuz, I. Yu. Skobelev, M. A. Alkhimova, N. Booth, J. Green, C. Gregory,

A. Andreev, R. Lӧtz, I. Uschmann, A. Zhidkov, R. Kodama, P. McKenna and N. Woolsey.

Europhys. Letters 114 (2016) 35001

26. V.S. Lisitsa, Sov. Phys. Uspekhi 122 (1977) 603

27. W. L. Kruer, The Physics of Laser Plasma Interactions (Westview Press) 2003

28. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron.

QE-24 (1988) 398

29. A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP 3 (1956) 696

30. W. Lünow, Plasma Phys. 10 (1968) 879

31. S. Guerin, P. Mora, J. C. Adam, A. Heron, and G. Laval, Phys. Plasmas 3 (1996) 2693

32. J. Fuchs, J.C. Adam, F. Amiranoff, S.D. Baton, P. Gallant, L. Gremillet, A. Heron, J.C.

Kieffer, G. Laval, G. Malka, J.L. Miquel, P. Mora, N. Pepin, and C. Rousseaux, Phys.

Rev. Lett. 80 (1998) 2326

33. A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev.Lett. 79 (1997) 2686

34 A. Pukhov, Rep. Prog. Phys. 66 (2003) 47

35. G.A. Mourou, T. Tajima, and S.V. Bulanov, Rev. Modern Phys. 78 (2006) 309

36. P. Sauvan, E. Dalimier, E. Oks, O. Renner, S. Weber, and C. Riconda, J. Phys. B 42

(2009) 195001

37 E. Oks and G. V. Sholin, Sov. Phys. Tech. Phys. 21 (1976) 144

38. C. A. Iglesias, H. E. Dewitt, J. L. Lebowitz, D. MacGowan, and W.B. Hubbard, Phys.

Rev. A 31 (1985) 1698

39. E. Dalimier and E. Oks, J.Phys. B: At. Mol. Opt. Phys. 50 (2017) 025701

40. S. Djurovic, M. Ćirišan, A.V. Demura, G.V. Demchenko, D. Nikolić, M.A. Gigosos,

and M.A. González, Phys. Rev. E 79 (2009) 046402

41. A.V. Demura, G.V. Demchenko, and D. Nikolic, Europ. Phys. J. D 46 (2008) 111