in-medium cluster binding energies and mott points in low density nuclear matter k. hagel ssnhic...

20
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects in Low Density Nuclear Matter

Upload: alannah-oconnor

Post on 17-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

In-Medium Cluster Binding Energies and Mott Points in Low Density

Nuclear Matter

K. HagelSSNHIC 2014Trento, Italy8-Apr-2014

Clustering and Medium Effects in

Low Density Nuclear Matter

Page 2: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Outline

• Experimental Setup• Clusterization and observables in low

density nuclear matter.• Clusterization of alpha conjugate

nuclei• Summary

Page 3: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

3

Cyclotron Institute, Texas A & M University

Beam Energy: 47 MeV/uReactions:40Ar + 112,124Sn

35 MeV/u40Ca + 181Ta, Ca, C

35 MeV/u28Si + 28Si

Page 4: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

35 MeV/u40Ca + 181Ta, Ca, C

35 MeV/u28Si + 28Si

4

• 14 Concentric Rings• 3.6-167 degrees• Silicon Coverage• Neutron Ball

S. Wuenschel et al., Nucl. Instrum. Methods. A604, 578–583 (2009).

Beam Energy: 47 MeV/uReactions: 40Ar + 112,124Sn

NIMROD

beam

Page 5: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Low Density Nuclear Matter• Systems studied

– 47 MeV/u 40Ar + 112,124Sn– 35 MeV/u 40Ca + 181Ta (preliminary

data)

• Use NIMROD as a violence filter– Take 30% most violent collisions

• Use spectra from 40o ring– Most of yield from intermediate

velocity source

• Coalescence analysis to extract densities and temperatures– Equilibrium constants– Mott points– Symmetry energy

Page 6: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Coalescence Parameters

𝒅𝟑𝑵 (𝒁 ,𝑵 ,𝑬𝑨 )𝒅 𝑬𝑨𝒅 𝜴

=𝑹𝒏𝒑𝑵 𝑨−𝟏

𝑵 !𝒁 ! { 𝟒𝝅𝟑

𝑷𝟎𝟑

[𝟐𝒎𝟑 (𝑬−𝑬𝒄 ) ]𝟏/𝟐 }𝑨−𝟏

[ 𝒅𝟑𝑵 (𝟏 ,𝟎 ,𝑬 )𝒅 𝑬𝒅𝜴 ]

𝑨

𝒅𝟑𝑵 (𝒁 ,𝑵 )𝒅𝒑𝟑 =𝑹𝒏𝒑

𝑵 𝑨𝟑 (𝟐 𝒔+𝟏 )𝒆 (𝑬𝟎 /𝑻 )

𝟐𝑨 (𝒉𝟑

𝑽 )𝑨−𝟏[ 𝒅𝟑𝑵 (𝟏 ,𝟎)

𝒅𝒑𝟑 ]𝑨

𝑉=[( 𝑍 !𝑁 ! 𝐴32𝐴 ) (2𝑠+1 )𝑒(𝐸 0/𝑇 )]1

𝐴−1 3h3

4𝜋 𝑃03

𝒅𝟑𝑵 (𝒁 ,𝑵 )𝒅𝒑𝟑 ∝𝑹𝒏𝒑

𝑵 𝒇 (𝑷𝟎)[ 𝒅𝟑𝑵 (𝟏 ,𝟎)𝒅𝒑𝟑 ]

𝑨

PRC 72 (2005) 024603

vsurf, cm/ns

t avg,

fm/c

Page 7: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Temperatures and Densities• Recall vsurf vs time calculation

• System starts hot• As it cools, it expands

47 MeV/u 40Ar + 112Sn

Page 8: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Equilibrium constants from α-particles model predictions

• Many tests of EOS are done using mass fractions and various calculations include various different competing species.

• If any relevant species are not included, mass fractions are not accurate.

• Equilibrium constants should be independent of proton fraction and choice of competing species.

• Models converge at lowest densities, but are significantly below data

• Lattimer & Swesty with K=180, 220 show best agreement with data

• QSM with p-dependent in-medium binding energy shifts

PRL 108 (2012) 172701.

𝐾 𝑐 ( 𝐴 ,𝑍 )= 𝜌(𝐴 ,𝑍)𝜌𝑝𝑍 𝜌𝑛

(𝐴−𝑍 )

Page 9: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Density dependent binding energies

• From Albergo, recall that• Invert to calculate binding energies• Entropy mixing term

𝑙𝑛 [𝐾 𝑐 /𝐶 (𝑇 )]=𝐵𝑇−𝑍𝑙𝑛( 𝑍𝐴 )−𝑁𝑙𝑛 (𝑁

𝐴)

𝑲 𝒄(𝑨 ,𝒁 )=𝐂 (𝐓 )𝒆( 𝑩(𝑨 ,𝒁 )

𝑻 )

Δ 𝐹=𝑇 (𝑍𝑙𝑛( 𝑍𝐴 )+𝑁𝑙𝑛(𝑁𝐴 ))

PRL 108 (2012) 062702

Page 10: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Symmetry energy

• Symmetry Free Energy– T is changing as ρ increases– Isotherms of QS calculation that includes in-medium modifications to

cluster binding energies• Entropy calculation (QS approach)• Symmetry energy (Esym = Fsym + T S∙ sym)

– quasiparticle mean-field approach (RMF without clusters) does not agree with the data

S. Typel et al., Phys. Rev. C 81, 015803 (2010).

PRC 85, 064618 (2012).

Page 11: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Alpha clustering in nuclei• Ikeda diagram (K. Ikeda,

N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. Extra Number, 464, 1968.)

• Clusterization of low density nuclear matter in collisions of alpha conjugate nuclei

• Role of clusterization in dynamics and disassembly.

Estimated limit N = 10α for self-conjugate nuclei(Yamada PRC 69, 024309)

40Ca + 40Ca

28Si + 40Ca

40Ca + 28Si 28Si + 28Si40Ca + 12C 28Si + 12C40Ca + 180Ta

28Si + 180Ta

Data Taken

10, 25, 35 MeV/u

Page 12: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Alpha-like multiplicities

• Large number of events with significant alpha conjugate mass for all systems

Page 13: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Vparallel vs Amax

• Observe mostly PLF near beam velocity for low E*• More neck (4-7 cm/ns) emission of α-like fragments with

increasing E*

𝐸∗=∑𝑖=1

𝑀

𝐾 𝑐𝑝 (𝑖 )+𝑀𝑛 ⟨𝐾 𝑛⟩−𝑄

Page 14: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

• Heavy partner is near beam velocity

• alphas originate from neck emission

Origin of alpha conjugate clusters

Page 15: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Source Frame study of Origin of clusters

Page 16: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Origin of alpha conjugate clusters(continued)

Page 17: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Source Frame Origin of clusters(continued)

Page 18: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Summary

• Clusterization in low density nuclear matter– In medium effects important to describe data– Equilibrium constants

• EOS Implications

– Density dependence of Mott points– Symmetry Free energy -> Symmetry Energy

• Clusterization of alpha conjugate nuclei– Large production of α-like nuclei

• Ca + Ca• Ca + Ta• Ca + C

– Neck emission of alphas important

Page 19: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Outlook and near future

• Low density nuclear matter– We have a set of 35 MeV/u 40Ca+181Ta

and 28Si+181Ta

• Disassembly of alpha conjugate nuclei– Analysis on presented systems

continues– Have Si + C, Si + Ta (almost calibrated)

and Ca + Si

Page 20: In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects

Collaborators

J. B. Natowitz, K. Schmidt, K. Hagel, R. Wada, S. Wuenschel, E. J. Kim, M. Barbui, G. Giuliani, L. Qin, S. Shlomo, A. Bonasera, G. Röpke, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, M. R. D. Rodrigues, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, Z. Majka, and Y. G. Ma