in plane bending

32
Chapter VII IN-PLANE BENDING 1

Upload: samiuddin-syed

Post on 21-May-2017

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: In Plane Bending

Chapter VII

IN-PLANE BENDING

1

Page 2: In Plane Bending

Beam axis

Cross‐section (  to the axis)Area A

DEFINITION OF A BEAM

CROSS‐SECTION DIMENSIONS < BEAM LENGTH / 10

G

G’

Other cross‐section (  to the axis)Area A’

2

Page 3: In Plane Bending

INTERNAL FORCES IN CROSS-SECTION

G

EXTERNAL FORCES AND REACTIONS CUT  stresses (equilibrium )INTERNAL FORCES

3

Page 4: In Plane Bending

AxisCross‐section (  to the axis)

DEXTORSUM SYSTEM OF AXES

INTERNAL FORCES IN CROSS-SECTION

4

Page 5: In Plane Bending

IN-PLANE BENDING5

ShorteningCompressive stresses

ElongationTensile stresses

= 0 somewherein between(neutral axis)

BEAM DEFORMATION UNDER CONSTANT MOMENT: CIRCLE

Page 6: In Plane Bending

BERNOUILLI’S PRINCIPLE6

Cross‐sections remain flat and perpendicular to the beam axis

Page 7: In Plane Bending

IN-PLANE BENDING7

• Slice of unit length

Page 8: In Plane Bending

IN-PLANE BENDING8

and so

Page 9: In Plane Bending

IN-PLANE BENDING9

• Linear distribution of  and 

y

• Linear distribution of deformations

• Hooke’s law

• Linear distribution of stresses 

y

E

yE E

ENA

Page 10: In Plane Bending

IN-PLANE BENDING10

• Determination of the neutral axis and 

• Longitudinal equilibrium (along the beam axis)

Neutral axis corresponds to the centre of gravity 

0 0A A

EdA ydA

Page 11: In Plane Bending

IN-PLANE BENDING11

• Determination of the neutral axis and 

• Equilibrium in rotation

as

2

A A

EydA y dA M

2

A

y dA I1 M

EI

Flexural rigidity

Page 12: In Plane Bending

IN-PLANE BENDING12

• Stress distribution

1 M yand EEI

: MyNavierI

yENA

Page 13: In Plane Bending

IN-PLANE BENDING13

• Navier applicable to symmetrical and non‐symmetrical cross‐sections as long as the plane of bending corresponds to one of the principal axes of the cross‐section  

y

z

Page 14: In Plane Bending

IN-PLANE BENDING14

• Navier not directly applicable to cross‐sections  subjected to bending not applied about the main axes 

Page 15: In Plane Bending

• Navier still assumed to be valid for beams subjected to non constant bending moments along the beam length

IN-PLANE BENDING15

Mmax = pL²/8T1 = PL/2

T2 = -PL/2

p

Page 16: In Plane Bending

• Limitations of the Navier linear distribution 

IN-PLANE BENDING16

b

h

Rectangularcross‐section

Page 17: In Plane Bending

• Navier still assumed to be valid for beams subjected to non constant bending moments along the beam length

IN-PLANE BENDING17

Mmax = Pa(L-a)/LT1 = P(L-a)/L

T2 = -Pa/L

P

Page 18: In Plane Bending

• Limitations of the Navier linear distribution 

IN-PLANE BENDING18

Page 19: In Plane Bending

• Limitations of the Navier linear distribution

– In practice:• Local effect (St‐Venant’s principle)

• Local yielding under the concentrated load

• Transverse stiffeners• Bearing plate plate

IN-PLANE BENDING19

Page 20: In Plane Bending

• Navier still assumed to be valid for tapered beams (smooth cross‐section variation)

IN-PLANE BENDING20

Page 21: In Plane Bending

• Limitations of the Navier linear distribution

IN-PLANE BENDING21

Page 22: In Plane Bending

• Limitations of the Navier linear distribution

IN-PLANE BENDING22

!Stress concentration

cfr. tension

Page 23: In Plane Bending

h

<y

<R =R

=(Mh/2)/I ≤R

=y

e=2y /h

IN-PLANE BENDING

y

R

• Beam cross‐section verification

Page 24: In Plane Bending

h

<y

<R =R

=(Mh/2)/I ≤R

=y

e=2y /h

IN-PLANE BENDING

• Beam cross‐section verification

MyI

max 2hR for y

max

2M hR

I

2IM R WR

h

Page 25: In Plane Bending

h1

IN-PLANE BENDING

• Beam cross‐section verification

11,max 1

1

22,max 2

2

Mh M RI WMh M R

I W

1 1 2 2min( ; )M W R W R

h2

G

Page 26: In Plane Bending

IN-PLANE BENDING

• Adapt cross‐section shape

Similar values of A and h:• I cross‐section: W=0,32 Ah• rect. cross‐section: W=0,167Ah

I section twice more resistant

max

Page 27: In Plane Bending

IN-PLANE BENDING

• Adapt cross‐section shape

Similar values of A and h:

• W=0,32Ah

• W=0,5Ah

Page 28: In Plane Bending

IN-PLANE BENDING

• Adapt cross‐section shape

Page 29: In Plane Bending

• Beams made of two different materials

IN-PLANE BENDING29

E0b modulus

Ea modulus Ea modulus

dy

Equal forces in the slice dy E0bbdy = Eab1dy

Page 30: In Plane Bending

• Beams made of two different materials

IN-PLANE BENDING30

E0b modulus

Ea modulus Ea modulus

0

1b

a

Eb bE

Page 31: In Plane Bending

• Beams made of two different materials

IN-PLANE BENDING31

b

a a=Eaa

int a,intEaintb,intE0b/Ea int

bE0b/Ea b,equ

EQUIVALENT SECTION ACTUAL SECTION

b,equEab

aEaa

intEaint

Page 32: In Plane Bending

• Beams made of two different materials

IN-PLANE BENDING32

0

1 ( tan. ) ( )b b

a a

E Eb b ins loading or b after creepE E