in this chapter you will: use newton’s laws and your knowledge of vectors to analyze motion in...

12
In this chapter you will: Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions. Solve problems dealing with projectile and circular motion. Solve relative velocity.

Upload: vivian-sparks

Post on 03-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

 In this chapter you will: 

 Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.Solve problems dealing with projectile and circular motion.Solve relative velocity.

Page 2: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

CHAPTER 6 SECTIONSSection 6.1: Projectile MotionSection 6.2: Circular MotionSection 6.3: Relative Velocity

Page 3: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

SECTION 6.1 PROJECTILE MOTIONObjectives

Recognize that the vertical and horizontal motions of a projectile are independent.

Relate the height, time in the air, and initial vertical velocity of a projectile using its vertical motion, and then determine the range using the horizontal motion.

Explain how the trajectory of a projectile depends upon the frame of reference from which it is observed.

Page 4: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

INTROParabola – set of all points equidistant from a fixed

line called the directix, and a fixed point not on the line called the focus. Will be a U shaped graph.

 Projectile – an object shot through the air, such as

a football, that has Independent Vertical and Horizontal motions and after receiving an initial thrust travels through the air only under the force of gravity. From Old Book, motion of objects given an initial velocity that then move only under the force of gravity.

Trajectory – the path of a projectile through space.

Page 5: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

INDEPENDENCE OF MOTION IN TWO DIMENSIONSExample of dropping a softball and launching one horizontally at

2 m/s. In both cases the horizontal acceleration is ZERO. (Dropped ball does not move horizontally and launched ball had a constant velocity thus no acceleration. (See Figure 6-1)

Also in this example you see that the dropped and launched balls have the same vertical motion. Both balls are accelerated downward by the force of gravity. Both balls would hit the ground at the same time. Similar to the boat taking the same time to get across the river if there were no flow downstream and if there was a current downstream.

 The horizontal motion of the thrown ball does not affect its

vertical motion at all. The horizontal and vertical components are Independent of each other.

Page 6: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

INDEPENDENCE OF MOTION IN TWO DIMENSIONSThe combination of a Constant Horizontal

Velocity and Uniform Vertical Acceleration (Gravity) produces a Trajectory that has a Parabolic Shape.

 Since Horizontal and Vertical parts are

Independent of each other if you find the time of one the other is the same, similar to the boat across the river problems.

The shape of the trajectory and the horizontal motion depend on the viewpoint or frame of reference of the observer, But the Vertical Motion does not.

Page 7: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

INDEPENDENCE OF MOTION IN TWO DIMENSIONSx = vxt where x is the horizontal displacement, vx is

the initial horizontal velocity, and t is the time vxf = vi where vxf is the final horizontal velocity and vi

is the initial velocity  y = vyt + ½ gt2 where y is the vertical displacement, vy

is the initial vertical velocity, t is time, and g is gravity vyf = vy + gt where vyf is the final vertical velocity

and vy is initial vertical velocity

Do Practice Problems p. 150 # 1-3

Page 8: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

PROJECTILES LAUNCHED AT AN ANGLE When a projectile is launched at an angle the initial

velocity has a vertical and horizontal component.

Max Height – the height of the projectile when the vertical velocity is zero. The max height occurs when the time is HALF of the entire flight time (Example if time is 5 seconds then the time for the max height is 2.5 seconds).

 Range – denoted by R; the horizontal distance between the

launch point of the projectile and where it returns to launch height; or the horizontal distance from the point of bounce until the projectile returns to the surface height.

 Range is the horizontal distance traveled during the

entire flight time.

Page 9: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

PROJECTILES LAUNCHED AT AN ANGLE vx = vi cos or Ax = Ai cos vy = vi sin or Ay = Ai sin

Page 10: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

PROJECTILES LAUNCHED AT AN ANGLE Do Example 1 p. 151vx = vi cos = 4.5(cos 66) = 4.5(.407) = 1.83 m/s

vy = vi sin = 4.5(sin 66) = 4.5(.914) = 4.11 m/s

A) Time b) Max Heighty = vyt + ½ gt2 Since the trajectory is symmetric

0 = vyt + ½ gt2 the max height occurred at .4165 s

-4.11t = ½ (-9.8)t2 So y = vyt + ½ gt2

t t y = 4.11(.4195) + ½ (-9.8)(.4195)2 -4.11 = -4.9t y = 1.724 + (-4.9)(.176)-4.11 / -4.9 = t y = 1.724 - .862.839 s = t y = .862 m

C) On next slide 

Page 11: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

PROJECTILES LAUNCHED AT AN ANGLE

c) Range is the horizontal distance traveled during the entire flight time.

So R = vxt

R = 1.83(.839) R = 1.535 m

Do Practice Problems p. 152 # 4-6

Page 12: In this chapter you will:  Use Newton’s laws and your knowledge of vectors to analyze motion in two dimensions.  Solve problems dealing with projectile

TRAJECTORIES DEPEND UPON THE VIEWER

Remember that the force due to air resistance exists and it can be important but for now we are ignoring it.

 Do 6.1 Section Review p. 152 # 7-11