in ves ti g a tion on r a di a tion shield ing p a r ... ves ti g a tion on r a di a tion shield ing...

8
INVESTIGA TION ON RADIA TION SHIELDING PARAMETERS OF ORDINARY, HEAVY AND SUPER HEAVY CONCRETES by Vishwaanath P. SINGH * and Nagappa M. BADIGER Department of Physics, Karnatak University, Dharwad, India Technical paper DOI: 10.2298/NTRP1402149S Shielding of a reactor is required for protection of people and environment during normal op- eration and accidental situations. In the present paper we investigated the shielding parame- ters viz. mass attenuation coefficients, linear attenuation coefficients, tenth-value layer, effec- tive atomic numbers, kerma relative to air and exposure buildup factors for gamma-ray for ordinary, heavy, and super heavy concretes. Macroscopic effective removal cross-sections for fast neutron had also been calculated. Ordinary concrete is economically suitable for mixture high energy gamma-ray and neutron as it has large weight fraction of low-Z as compared with super heavy concretes to slow down the neutron. Super heavy concretes are superior shielding for both reactor operation and accident situations. The study is useful for optimizing for shielding design and radiation protection in the reactors. Key words: buildup factor, super heavy concrete, containment, biological shielding INTRODUCTION Radiation protection of people and environment around nuclear reactor installation is ensured by source control during design, operation and maintenance, and assured by monitoring the radiation. Radioactivity re- leased during any accident is controlled inside the con- tainment. The gamma-ray and neutron radiations are high range, which require adequate shielded during de- sign stage. The biological shielding is used around the reactor core. Shielding of gamma-ray and neutron is achieved by various types of the materials or combina- tion of the compounds. Radiations emitted during fis- sion are called primary radiation whereas those which produce as a result of interaction of primary radiation with reflectors, coolant and shielding materials, etc. are called secondary radiation. During reactor operation, gamma photons are emitted from fission products (prompt and delayed) and activation products. The prompt fission gamma-rays have continuous energy spectrum in range 0.5 to 10 MeV but the intensity of radiation is negligible for ener gies in excess of 7 MeV [1]. Most of elements exhibits capture gamma ray energy ranging up to about 8 MeV and decay gamma-ray having energies over 2 MeV, up to 5.4 MeV [1]. The capture gamma-rays (0-10 MeV) are produced by thermal neutrons with construction materials such as fuel elements (aluminum, beryllium, iron, zirconium, uranium), sodium, deuterium, and shielding materials, etc. [1, 2]. The list of typical radio-nuclides produced in a reactor during operation is given in literature [3]. In a re- actor, photon emission probability of energy range 0.5 to 4.5 MeV is very large compared with ~5 to 10 MeV [4-6]. During nuclear accident, a mixture of short and long lived radio-nuclides is being released. These ra- dio-nuclides are halogen, telluride, alkali metal, noble metals, refractory oxides, alkaline earth metals, rare earth metals, transuranics, and inert gases. The noble gases are more prone to escape from reactor building during initial phase of the accident. Therefore reactor accident man- agement requires temporary storage of radioactivity to decay in the containment. The radiation shielding ef ficiency of a composite material is evaluated by means of mass attenuation coef- ficients, linear attenuation coefficients, half-value layer or tenth-value layer, effective atomic numbers, kerma relative to air and the exposure buildup factors. The inter- action of gamma-ray with material degrades its original energy and buildup in the medium giving rise the second- ary gamma radiations. The buildup of gamma photon is estimated by the buildup factor which corrects the re- sponse of un-collided photon beam. The buildup is de- fined as the ratio of total value of specified radiation quantity at any point to the contribution to that value from radiation reaching to the point without having un- dergone a collision. The exposure buildup factor in V. P. Singh, et al.: Investigation on Radiation Shielding Parameters of ... Nuclear Technology & Radiation Protection: Year 2014, Vol. 29, No. 2, pp. 149-156 149 * Corresponding author; e-mail: kudphyvps@rediffmail.com ...Permanent address: Health Physics Section, Kaiga Atomic ...Power Station-3&4, NPCIL, Karwar, 581400, Karnatak, India

Upload: vandat

Post on 18-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

IN VES TI GA TION ON RA DI A TION SHIELD ING PA RAM E TERSOF OR DI NARY, HEAVY AND SUPER HEAVY CON CRETES

by

Vishwaanath P. SINGH * and Nagappa M. BADIGER

De part ment of Phys ics, Karnatak Uni ver sity, Dharwad, In dia

Tech ni cal pa perDOI: 10.2298/NTRP1402149S

Shield ing of a re ac tor is re quired for pro tec tion of peo ple and en vi ron ment dur ing nor mal op -er a tion and ac ci den tal sit u a tions. In the pres ent pa per we in ves ti gated the shield ing pa ram e -ters viz. mass at ten u a tion co ef fi cients, lin ear at ten u a tion co ef fi cients, tenth-value layer, ef fec -tive atomic num bers, kerma rel a tive to air and ex po sure buildup fac tors for gamma-ray foror di nary, heavy, and super heavy con cretes. Mac ro scopic ef fec tive re moval cross-sec tions forfast neu tron had also been cal cu lated. Or di nary con crete is eco nom i cally suit able for mix turehigh en ergy gamma-ray and neu tron as it has large weight frac tion of low-Z as com pared withsuper heavy con cretes to slow down the neu tron. Super heavy con cretes are su pe rior shield ing for both re ac tor op er a tion and ac ci dent sit u a tions. The study is use ful for op ti miz ing forshield ing de sign and ra di a tion pro tec tion in the re ac tors.

Key words: buildup fac tor, super heavy con crete, con tain ment, bi o log i cal shield ing

IN TRO DUC TION

Ra di a tion pro tec tion of peo ple and en vi ron mentaround nu clear re ac tor in stal la tion is en sured by sourcecon trol dur ing de sign, op er a tion and main te nance, andas sured by mon i tor ing the ra di a tion. Ra dio ac tiv ity re -leased dur ing any ac ci dent is con trolled in side the con -tain ment. The gamma-ray and neu tron ra di a tions arehigh range, which re quire ad e quate shielded dur ing de -sign stage. The bi o log i cal shield ing is used around there ac tor core. Shield ing of gamma-ray and neu tron isachieved by var i ous types of the ma te ri als or com bi na -tion of the com pounds. Ra di a tions emit ted dur ing fis -sion are called pri mary ra di a tion whereas those whichpro duce as a re sult of in ter ac tion of pri mary ra di a tionwith re flec tors, cool ant and shield ing ma te ri als, etc. arecalled sec ond ary ra di a tion.

Dur ing re ac tor op er a tion, gamma pho tons areemit ted from fis sion prod ucts (prompt and de layed) andac ti va tion prod ucts. The prompt fis sion gamma-rayshave con tin u ous en ergy spec trum in range 0.5 to 10 MeV but the in ten sity of ra di a tion is neg li gi ble for en er gies inex cess of 7 MeV [1]. Most of el e ments ex hib its cap turegamma ray en ergy rang ing up to about 8 MeV and de caygamma-ray hav ing en er gies over 2 MeV, up to 5.4 MeV[1]. The cap ture gamma-rays (0-10 MeV) are pro duced

by ther mal neu trons with con struc tion ma te ri als such asfuel el e ments (alu mi num, be ryl lium, iron, zir co nium,ura nium), so dium, deu te rium, and shield ing ma te ri als,etc. [1, 2]. The list of typ i cal ra dio-nuclides pro duced in are ac tor dur ing op er a tion is given in lit er a ture [3]. In a re -ac tor, pho ton emis sion prob a bil ity of en ergy range 0.5 to4.5 MeV is very large com pared with ~5 to 10 MeV[4-6]. Dur ing nu clear ac ci dent, a mix ture of short andlong lived ra dio-nuclides is be ing re leased. These ra -dio-nuclides are halo gen, tel lu ride, al kali metal, no blemet als, re frac tory ox ides, al ka line earth metals, rare earth metals, transuranics, and in ert gases. The no ble gases aremore prone to es cape from re ac tor build ing dur ing ini tialphase of the ac ci dent. There fore re ac tor ac ci dent man -age ment re quires tem po rary stor age of ra dio ac tiv ity tode cay in the con tain ment.

The ra di a tion shield ing ef fi ciency of a com pos itema te rial is eval u ated by means of mass at ten u a tion co ef -fi cients, lin ear at ten u a tion co ef fi cients, half-value layeror tenth-value layer, ef fec tive atomic num bers, kermarel a tive to air and the ex po sure buildup fac tors. The in ter -ac tion of gamma-ray with ma te rial de grades its orig i nalen ergy and buildup in the me dium giv ing rise the sec ond -ary gamma ra di a tions. The buildup of gamma pho ton ises ti mated by the buildup fac tor which cor rects the re -sponse of un-col lided pho ton beam. The buildup is de -fined as the ra tio of to tal value of spec i fied ra di a tionquan tity at any point to the con tri bu tion to that valuefrom ra di a tion reach ing to the point with out hav ing un -der gone a col li sion. The ex po sure buildup fac tor in

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156 149

* Cor re spond ing au thor; e-mail: [email protected] ...Per ma nent ad dress: Health Phys ics Sec tion, Kaiga Atomic...Power Sta tion-3&4, NPCIL, Karwar, 581400, Karnatak, In dia

which qual ity of in ter est is the ex po sure and en ergy re -sponse func tion is that of ab sorp tion in air [7]. There aresev eral stud ies re lated to gamma-ray buildup fac tors indif fer ent com pos ites, gas eous mix ture, fly-ash brick, al -loys, boro sili cate glasses, and ox ide dis per sion strength -ened steels [8-12] us ing the GP fit ting pa ram e ters. Thegeo met ri cal pro gres sion (GP) fit ting has been stan dard -ized with ANS, 1991 and MCNP [9, 12].

The hard cap ture sec ond ary gamma pho tons andfast neu trons are re moved by uti li za tion of the heavycon cretes [13, 14]. Dur ing re ac tor ac ci dent com par a -tively low en ergy gamma pho ton are emit ted. Thusshield ing of re ac tor dur ing op er a tion as well as ac ci -dent is very im por tant to main tain the am bi ent ra di a -tion level. In the pres ent pa per we have in ves ti gatedthe shield ing pa ram e ters of some or di nary, heavy andsuper heavy con cretes to as sess the shield ing ef fi cien -cies for var i ous ap pli ca tions in re ac tor and ac cel er a torde sign.

MA TE RI ALS AND METH ODS

The con cretes whose el e men tal com po si tion de -pends on the mix pro por tions, chem i cal el e ment andden si ties rang ing from 2.3-5.11 g/m3 are given in tab.1 [15, 16]. These con cretes are cat e go rized based onden si ties as or di nary con cretes (r = 2.3-3.05 g/cm3);heavy con cretes (r = 3.5-4 g/cm3), and super heavycon cretes (r = 4.5-5.11 g/cm3). The con cretes con tainlow- and high-Z el e ments hy dro gen to iron with dif fer -ent weight frac tions.

Mass at ten u a tion co ef fi cients

The mass at ten u a tion co ef fi cients of the dif fer enttypes of con cretes were de ter mined us ing the trans mis -

sion method ac cord ing to Lam bert-Beer's law (I I t= -

0e mm ), where I0 and I are the in ci dent and at ten -u ated pho ton in ten sity with en ergy, E, re spec tively,µm = m/r [cm2g–1] is the mass at ten u a tion co ef fi cientand t [g/cm2] is the mass thick ness of the con crete (themass per unit area). The to tal mm val ues for con cretesare eval u ated by the mix ture rule, m m rm = å w ii

ni ( / ) ,

where wi is the pro por tion by weight and (m/r)i is themass at ten u a tion co ef fi cient of the ith el e ment us ingWinXcom [17]. The quan tity wi is given by w n A n Aj

ni i i j j= å/ with con di tion wi

ni =å 1, where

Ai is the atomic weight of the ith el e ment and ni – thenum ber of for mula units. The lin ear at ten u a tion co ef fi -cient, m of a con crete is de rived by mul ti pli ca tion of m/rand den sity of the con crete.

Tenth-value layer

Tenth-value layer (TVL) (in cm) is the thick nessof the con crete shield ing ma te rial to re duce the in ten -sity of gamma-ray to 1/10th of the in ci dent upon it andcal cu lated us ing for mula TVL = 2.303/m, where µ islin ear at ten u a tion co ef fi cient.

Ef fec tive atomic num bers

The to tal atomic cross-sec tions (st) for the con -cretes is ob tained from the mea sured mm val ues us ingthe fol low ing re la tion

sm

tm

A

=M

N(1)

where M n Ain= å i i is the mo lec u lar weight of the

con crete and NA is the Avo ga dro's num ber. The ef fec -tive atomic cross-sec tion (sa) is cal cu lated us ing theequa tion

sm

ra

A

èçç

ö

ø÷÷å

1

Nf Ai i

i

(2)

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...150 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156

Ta ble 1. El e men tal com po si tion of or di nary, heavy, and super heavy con cretes

Con cretes Code Den sity [gcm–3] Z: com po si tion [%]

Or di nary Ordy 2.301: 0.94, 6: 0.09, 8: 53.66, 11: 0.46, 12: 0.12, 13: 1.32, 14: 36.74,16: 0.08, 19: 0.31, 20: 5.65, and 26: 0.63

He ma tite-Ser pen tine HeSt 2.501: 1.29, 8: 43.51, 12: 6.64, 13: 1.67, 14: 10.53, 16: 0.09, 20: 5.97, and26: 30.31

Il men ite-li mo nite Ilmn 2.901: 0.66, 8: 36.45, 12: 0.15, 13: 0.80, 14: 3.06, 16: 0.08, 20: 5.83,22: 16.03, and 26: 36.93

Ba salt-Mag ne tite BaMg 3.051: 0.83, 8: 42.30, 11: 1.06, 12: 2.20, 13: 4.22, 14: 13.20, 15: 0.20,16: 0.09, 19: 0.29, 20: 8.88, 22: 0.60, 25: 0.12, and 26: 26.01

Il men ite Ilmt 3.501: 0.57, 8: 35.93, 11: 0.06, 12: 1.31, 13: 0.61, 14: 2.40, 16: 0.07,17: 0.02, 19: 0.03, 20: 3.88, 22: 19.64 and, 26: 34.78

Steel-Scrap StSc 4.001: 0.70, 6: 0.09, 8: 21.09, 11: 0.45, 12: 0.09, 13: 1.20, 14: 10.49,16: 0.06, 19: 0.30, 20: 4.28, and 26: 61.25

Steel-Mag ne tite StMg 5.111: 0.51, 8: 15.70, 12: 0.58, 13: 0.66, 14: 2.68, 15: 0.08, 16: 0.06,20: 3.95, 25: 0.07, and 26: 75.73

Port land Ptld 2.30 1: 1, 6: 0.1, 8: 53, 11 :1.6, 13 :3.6, 14 :33.67, 20: 5.64, and 26: 1.39

HCON (Cr) HoCr 4.506: 0.06, 8: 36.7, 11: 0.88, 12: 5.93, 13: 5.35, 14: 4.43, 16: 0.61,20: 3.64, 24: 34.23, and 26: 8.04

HCON (Fe) HoFe 3.70 1: 0.4, 8: 34.5, 12: 1.9, 13: 1, 14: 6.9, 20: 4.8, and 26: 50.5

The to tal elec tronic cross-sec tion (se) for the in -di vid ual el e ment is cal cu lated us ing the fol low ingequa tion

sm

r

se

A

a

eff

èçç

ö

ø÷÷å =

1

N

f A

Z Zi i

i i

(3)

where f n ni ii= å/ de notes the frac tional abun danceof the el e ment i with re spect to the num ber of at omssuch that fi

ni =å 1, Zi is the atomic num ber of i th el e -

ment. The st and se are re lated to the ef fec tive atomicnum ber, Zeff of a com pos ite ma te rial through the fol -low ing re la tion

Zeffa

e

=s

s(4)

The ef fec tive atomic num bers for the con creteswere also cal cu lated us ing prac ti cal for mula [18] andAuto-Zeff soft ware [19].

Kerma rel a tive to air

Kerma of the con cretes rel a tive to air is de fined as

KK

Ka

concrete

air

en

concrete

en

a

= =

æ

èçç

ö

ø÷÷

æ

èçç

ö

ø÷÷

m

r

m

rir

(5)

The mass en ergy-ab sorp tion co ef fi cient, µen/r arecal cu lated us ing [( / ) ( / ) ]m r m ren en= å wi

ni i where wi

and (men/r)i are the weight frac tion and the mass en -ergy-ab sorp tion co ef fi cient of the ith con stit u ent el e ments pres ent in the con cretes. The val ues of (men/r)i have beentaken from the NIST [20].

Mac ro scopic ef fec tive re movalcross-sec tion of fast neu tron

The ef fec tive re moval cross-sec tion for com -pounds and ho mog e nous mix tures is be cal cu latedfrom the value of SR [cm–1] or SR/r [cm2g–1] for var i -ous el e ments in the com pounds or mix tures us ing for -mula SR = Siri (SR/r)i where rt is par tial den sity. Theval ues ob tained for ef fec tive neu tron re movalcross-sec tion of this equa tion are ac cu rate within 10%of the ex per i men tal val ues in ves ti gated for alu mi num,be ryl lium, graph ite, hy dro gen, iron, lead, ox y gen, bo -ron car bide, etc. [1]. The SR/r val ues of el e ments aregiven in the lit er a tures [21, 22].

Ex po sure buildup fac tors

The com pi la tion for buildup fac tors by var i ouscodes is re ported in ANSI/ANS-6.4.3-1991 [23]. Thedata in the re port cover en ergy range 0.015-15 MeV up

to pen e tra tion depth of 40 mean free path (mfp).Harima [24] de vel oped a fit ting for mula, called GPwhich gives buildup fac tors of the good agree mentwith the ANS, 1991. Harima had ex ten sive his tor i calre view and re ported the gamma pho ton buildup fac -tors [7].

The GP fit ting pa ram e ters are cal cu lated by log a -rith mic in ter po la tion from the equiv a lent atomic num ber, Zeq of the con cretes. The buildup of pho tons in the me -dium is mainly due to mul ti ple scat ter ing events byCompton scat ter ing. So that Zeq is de rived from theCompton scat ter ing. First of all, the Zeq for the con cretesare es ti mated by the ra tio of (µ/r)compton/(µ/r)to tal. TheCompton par tial mass at ten u a tion co ef fi cients were ob -tained us ing WinXCom pro gram. The log a rith mic in ter -po la tion of Zeq is em ployed us ing for mula as fol low ing[25, 26]

ZZ R R Z R R

R Req =

- + -

-1 2 2 1

2 1

(log log ) (log log )

log log(6)

where Z1 and Z2 are the atomic num bers of the el e -ments cor re spond ing to the ra tios R1 and R2 re spec -tively. R is the ra tio, (µ/r)compton /(µ/r)to tal and the ra tio(µ/r)compton/(µ/r)to tal for Zeq lies be tween two suc ces -sive ra tios of the el e ments. Sec ondly the GP fit ting pa -ram e ters were also cal cu lated in a sim i lar fash ion oflog a rith mic in ter po la tion method for the Zeq.

The buildup fac tors are es ti mated by GP fit tingpa ram e ters (b, c, a, Xk, and d) in the en ergy range of0.015-15 MeV up to a 40 mfp by eqs. [24, 25] as

B E xb K

KK

b x K

x

( , )( )( )

,

( ) ,

= +- -

+ - =

ì

íï

îï

11 1

11

1 1 1

for

for

(7)

K E x cx d

x

Xa K( , )

tanh tanh( )

tanh( ),= +

èçç

ö

ø÷÷ - -

- -

2 2

1 2

for penetration depth mfpx £ 40

(8)

where x is the dis tance from source (in mfp) and b, thevalue of the buildup fac tor at 1 mfp and K (E, x) – thedose multi pli ca tive fac tor. The vari a tion of K (E, x)with pen e tra tion rep re sents the change in the shape ofthe spec trum from that at 1 mfp which de ter mined thevalue of b.

RE SULTS AND DIS CUS SION

The vari a tion of mass at ten u a tion co ef fi cients,lin ear at ten u a tion co ef fi cients, tenth-value layer, ef -fec tive atomic num bers and kerma rel a tive to air withgamma-ray en ergy are shown in figs. 1-5, re spec -tively. The vari a tion of the ex po sure buildup fac tors

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156 151

with the en ergy is shown in fig. 6 and mix ture de pend -ency is shown in fig. 7. The mac ro scopic ef fec tive fastneu tron re moval cross-sec tions of the con cretes areshown in fig. 8.

Mass at ten u a tion co ef fi cientsand lin ear at ten u a tion co ef fi cients

The vari a tion of mass at ten u a tion co ef fi cients,m/r and lin ear at ten u a tion co ef fi cients, m for the con -cretes with pho ton en ergy (1 keV-100 GeV) are shown in figs. 1 and 2, re spec tively. It can be found that them/r and m val ues are high est in pho to elec tric ab sorp -tion re gion and con stant in pair pro duc tion re gion be -yond 100 MeV. How ever a slow vari a tion of m/r and mval ues is ob served in Compton scat ter ing re gion. Thisvari a tion of m/r and m can be ex plained by the de pend -

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...152 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156

Fig ure 3. Tenth-value layer of or di nary, heavy, and super heavy con cretes vs. pho ton en ergy

Fig ure 4. Ef fec tive atomic num bers of or di nary, heavy,and super heavy con cretes vs. pho ton en ergy

Fig ure 5. Kerma elative to air for of or di nary, heavy, andsuper heavy con cretes vs. pho ton en ergy

Fig ure 1. Mass at ten u a tion co ef fi cients of or di nary, heavy, and super heavy con cretes vs. pho ton en ergy

Fig ure 2. Lin ear at ten u a tion co ef fi cients of or di nary,heavy, and super heavy con cretes vs. pho ton en ergy

ency of at ten u a tion cross-sec tion on atomic num ber ofthe con stit u ent el e ments of the con cretes and the en -ergy. Ex per i men tal val ues of m at 1.5, 2-5, and 6 MeV[15] have been com pared with the the o ret i cal data (asshown in fig. 2) and found in good agree ment. The mval ues of the super heavy con cretes (Steel-Mag ne titeand HCON (Cr)) are found larg est among all the se -lected con cretes. There fore super heavy con cretes aresu pe rior shield ing ma te ri als.

Tenth-value layer

The vari a tion of tenth-value layer, TVL withpho ton en ergy (1 keV-100 GeV) of all the con cretes isshown in fig. 3. The TVL val ues of lead are also be ingplot ted in fig. 3. It is ob served that the TVL val ues ofthe con cretes are small in low-and high-en er gies witha peak near 10 MeV en ergy. The TVL val ues of leadare low est at all the en er gies. We found that TVL val -ues of super heavy con cretes such as steel-mag ne tite(StMg) and HCON (Cr) (HoCr) are low est when com -pared with the or di nary and heavy con cretes.

Ef fec tive atomic num bers

The ef fec tive atomic num bers, Zeff sig ni fies theshield ing ef fi ciency against gamma-ray and neu tron.The vari a tion of Zeff for all the con cretes with en ergy isshown in fig. 4. From fig. 4, it can be con cluded that

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156 153

Fig ure 7(a-c). Ra tio of ex po sure buildup fac tor of iron toor di nary, heavy, and super heavy con cretes vs. pho tonen ergy at 5, 10, 20, 25, 30, and 40 mfp pen e tra tion depths

Fig ure 6(a-b). Ex po sure buildup fac tors of or di nary,heavy, and super heavy con cretes vs. pho ton en ergy at 5and 35 mfp pen e tra tion depths

the super heavy con cretes (StMg, HoCr) are the su pe -rior gamma-ray shield ing ma te ri als due to high est Zeff

val ues. In ad di tion, we have com pared ef fec tiveatomic num bers us ing prac ti cal for mula and Auto-Zeff

soft ware as given in tab. 2. A slight vari a tion in ef fec -tive atomic num bers is to be noted.

Kerma rel a tive to air

The vari a tion kerma rel a tive to air, Ka, with pho -ton en ergy for all the con cretes is shown in fig. 5. It isfound that the Ka val ues of all the con cretes reach unity at around 200 keV en ergy. How ever be low 200 keV

en ergy, there is a peak at 30 keV. High est peak of Ka isfound for StMg con crete in di cates that the ki netic en -ergy re leased per unit mass is the larg est. Sim i larly,gamma-ray en ergy loss in Ordy con crete and Ptld arethe low est. There fore pho ton re moval ca pac i ties ofsuper heavy con cretes are the larg est.

Ex po sure buildup fac tors

The vari a tion of ex po sure buildup fac tors, EBFval ues of the se lected con cretes with pho ton en ergy at5 and 35 mfp pen e tra tion depth are shown in figs.6(a-b). It is to be noted that the EBF val ues of the con -cretes are min i mum in low- and high-en er gies whereas it is the high est in the in ter me di ate-en ergy. The EBFval ues in low-en ergy are small be cause the pho tons are com pletely ab sorbed by pho to elec tric ab sorp tion,grad u ally in creases with en ergy due to mul ti ple scat -ter ing by Compton scat ter ing and fi nally again re -duces in high-en ergy re gion due to pair-pro duc tion.The in ves ti ga tion shows that StMg is suit able forshield ing as it has low EBF val ues com pared with theother con cretes for small pen e tra tion depth (say 5 mfp) be low 3 MeV. How ever op po site pat tern is noted forlarge pen e tra tion depths (say 40 mfp) be yond 3 MeVen ergy.

The EBF val ues at 0.015 MeV en ergy areroughly con stant (~unity) and in crease with the pen e -tra tion depths. It can be seen that the EBF val ues in -crease with Zeq at 15 MeV as pen e tra tion depth in -creases. The rea son may be that be yond 3 MeV, the

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...154 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156

Fig ure 8. Mac ro scopic ef fec tive neu tron re movalcross-sec tion of or di nary, heavy, and super heavy con -

Ta ble 2. Ef fec tive atomic num bers of or di nary, heavy, and super heavy con cretes us ing prac ti cal for mula andAuto-Zeff soft ware

De scrip tion TypeE [MeV]

10–2 10–1 100 101 102 103

OrdyZeff, auto 11.63 10.51 9.91 10.16 10.39 10.43

ZPleff 11.87 5.33 4.54 5.17 6.25 6.34

HeStZeff, auto 14.86 12.42 9.19 10.27 11.23 11.31

ZPleff 20.89 8.32 5.16 6.74 9.64 9.93

IlmnZeff, auto 17.19 15.60 11.51 12.81 13.77 13.84

ZPleff 22.61 11.69 7.18 9.40 12.83 13.13

BaMgZeff, auto 15.04 13.00 10.00 10.97 11.77 11.85

ZPleff 20.33 8.80 5.72 7.26 9.91 10.16

IlmtZeff, auto 17.24 15.72 11.71 12.98 13.89 13.96

ZPleff 22.53 11.80 7.33 9.53 12.87 13.15

StScZeff, auto 19.02 17.90 13.18 14.75 15.78 15.82

ZPleff 24.09 15.40 10.29 12.93 16.60 16.91

StMgZeff, auto 20.86 20.16 15.50 17.13 18.09 18.11

ZPleff 25.01 18.30 12.93 15.83 19.38 19.65

PtldZeff, auto 11.26 9.36 8.59 9.04 9.50 9.55

ZPleff 12.17 4.83 4.05 4.74 6.07 6.21

HoCrZeff, auto 16.59 15.45 12.55 13.34 13.91 13.95

ZPleff 22.86 17.19 13.32 15.20 17.38 17.53

HoFeZeff, auto 17.81 16.55 12.35 13.60 14.47 14.53

ZPleff 23.31 12.87 7.96 10.23 13.52 13.79

pair-pro duc tion is dom i nant on the Compton scat ter -ing and pro duces the elec tron-pos i tron pairs. Thesepar ti cles may es cape from the con crete of smallerthick ness whereas mul ti ple scat ter ap pears in largethick ness due to sec ond ary pho tons. Anal y sis sig ni fies that the EBF val ues for Ordy con crete for a par tic u larthick ness are higher for same thick ness of StMg con -crete. There fore less thick ness of the StMg is suf fi cient to pro vide same de gree of pro tec tion com pared withthe Ordy con crete.

Fig ures 7(a-c) shows the vari a tion of ra tio ofEBF val ues of iron to dif fer ent types of con cretes withpho ton en ergy at 5, 10, 20, 25, 30, and 40 mfp pen e tra -tion depths. It is ob served that the ra tio is high at low as well as high-en er gies whereas min i mal in the in ter me -di ate en er gies. The ra tio in creases with the in crease ofiron con tents for pho to elec tric ab sorp tion andCompton scat ter ing re gions whereas de creases forpair-pro duc tion re gion. It is to be noted that the ra tioreaches to unity as the iron con tents in con cretes in -creases (re fer Fe com po si tion for Ordy, Ilmt and StMgin tab. 1). This clearly shows the mix ture de pend encyof EBF with pho ton en ergy.

The se lec tion of the con crete for bi o log i calshield ing and con tain ment is based on the shield ing ef -fi ciency of the con crete. The den sity of con crete mayde crease with the in crease in tem per a ture due to in ter -ac tion heat hence the bi o log i cal shield ing re quirescon tin u ous cool ing to main tain ef fec tive shield ing.Since dur ing re ac tor ac ci dent the en ergy of gammapho tons is smaller as com pared with the op er a tion, theshield ing against it may be achieved by us ing or di narycon cretes alone. Now a days the or di nary con creteswith steel patch ing or lin ing are be ing used for the re -ac tor build ing con tain ment in new re ac tors de sign.These steel lin ing in the con tain ment serve both thepur poses of im prove ment in ra di a tion shield ing andcon tain ment of ra dio ac tiv ity dur ing accident.

Mac ro scopic ef fec tive re movalcross-sec tion of fast neu tron

The mac ro scopic ef fec tive fast neu tron re movalcross-sec tion for the con cretes is shown in fig. 8. Fromfig. 8, it is found that the SR value is max i mum, 0.1421cm–1 for StMg fol lowed by 0.1409 cm–1 for HoFe con -crete. Our the o ret i cal anal y sis shows that SR for neu -tron emit ted from the re ac tors can ef fec tively beshielded by StMg con crete. Also HoFe may be otherchoice for fast neu tron shield ing.

CON CLU SION

In the pres ent work we stud ied ra di a tion shield -ing pa ram e ters of or di nary, heavy, and super heavycon cretes. At ten u a tion co ef fi cients of super heavy

con cretes are the larg est and TVL val ues are lesserthan the heavy and or di nary con cretes. The ef fec tiveatomic num bers of super heavy con cretes are the larg -est fol lowed by heavy con cretes. The ef fec tive fastneu tron re moval cross sec tion for steel-mag ne tite isthe high est fol lowed by HCON (Fe). Ex po surebuildup fac tors of super heavy con cretes are found thelow est whereas the larg est for or di nary and heavy con -cretes for en ergy up to 3 MeV. The super heavy con -cretes are su pe rior shield ing for re ac tor op er a tion aswell ac ci den tal sit u a tions.

AC KNOWL EDGE MENT

Au thor would like thanks Prof. L. Gerward, De -part ment of Phys ics, Tech ni cal Uni ver sity of Den mark for pro vid ing WinXcom program.

AU THOR CON TRI BU TIONS

The idea for in ves ti ga tion of the or di nary, heavy,and super heavy con cretes was put for ward by V. P.Singh for var i ous re ac tor ap pli ca tions, the cal cu la tions were done by V. P. Singh, and anal y sis and dis cus sionwas car ried out by V. P. Singh and N. M. Badiger. Themanu script and fig ures were pre pared by V. P. Singh.

REF ER ENCES

[1] Sam uel, G., Al ex an der, S., Nu clear Re ac tor En gi neer -ing, 4th ed, CBS Pub lish ers & Dis trib u tors, NewDelhi, In dia, 2004

[2] ***, En gi neer ing Com pen dium on Ra di a tion Shield -ing, Vol I, Springer, New York, USA, 1986

[3] ***, Health Phys ics and Ra dio log i cal Health Hand -book, Nu cleon Lec tern As so ci ates, Inc., Olney, Md.,USA, 1984

[4] Usha, P., Jagannathan, V., Radionuclide In ven to riesin the Dis charged Fu els of PHWR-220, BWR-160,VVER-1000 and the Con cep tual ATBR-600 Re ac tors– A Case Study, An nals of Nu clear En ergy, 35 (2008),10, pp. 1882-1891

[5] ***, Ra di a tion Pro tec tion As pects in De sign for Pres -sur ized Heavy Wa ter Re ac tor based Nu clear PowerPlants, AERB Safety Guide No. AERB/NPP-PHWR/SG/D-12, R3/Nov 03

[6] ***, Ra di a tion Pro tec tion As pects of De sign of Nu -clear Power Plant, In ter na tional Atomic En ergyAgency, Safety Stan dard, NS-G-1.13, 2005

[7] Harima, Y., An His tor i cal Re view and Cur rent Sta tusof Buildup Fac tor Cal cu la tions and Ap pli ca tion,Radiat. Phys. Chem., 41 (1993), 4/5, pp.631-672

[8] Singh, V. P., Badiger, N. M., Pho ton En ergy Ab sorp -tion Buildup Fac tors of Gas eous Mix tures used in Ra -di a tion De tec tors, J. Radioprotection, 48 (2013), 1,pp. 63-78

[9] Singh, V. P., Badiger, N. M., The Study on Gamma-Rayand Neu tron Shield ing Fac tors of Fly-Ash Bricks Ma te -ri als, J. Ra dio log i cal Pro tec tion, 34 (2014), 1, pp.89-101

[10] Singh, V. P., Badiger, N. M., Gamma Ray and Neu tron Shield ing Prop er ties of Some Al loy Ma te ri als, Ann.Nucl. En ergy, 64 (2014), pp. 301-310

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156 155

[11] Singh, V. P., et al., Eval u a tion of Gamma-Ray Ex po -sure Buildup Fac tors and Neu tron Shield ing for Bis -muth Boro sili cate Glasses, Radia. Phy. Chem., 98(2014), 3, pp. 14-21

[12] Singh, V. P., Badiger, N. M., Medhat, M. E., As sess -ment of Ex po sure Build-up Fac tors of Some Ox ideDis per sion Strength ened Steels Ap plied in Mod ernNu clear En gi neer ing and De signs, Nu clear En gi neer -ing and De sign, 270 (2014), 3, pp. 90-100

[13] Makarious, A. S., et al., On the Uti li za tion of HeavyCon crete for Ra di a tion Shield ing, Ann. Nucl. Eng., 23(1996), 3, pp. 195-206

[14] Mortazavi, S. M. J., et al., High-Per for mance HeavyCon crete as a Multi-Pur pose Shield, Radiat Prot Do -sim e try, 142 (2010), 2-4, pp. 120-124

[15] Bashter, I. I., Cal cu la tion of Ra di a tion At ten u a tionCo ef fi cients for Shield ing Con cretes, An nals of Nu -clear En ergy, 24 (1997), 17, pp.1389-1401

[16] Yoshihiro, A., Ap pli ca tion of Heavy Con cretes to theShield ing Ma te rial of Syn chro tron Ra di a tionBeamlines, 4th In ter na tional Work shop on Ra di a tionSafety at Syn chro tron Ra di a tion Sources, June 7-9,Sas katch e wan, Can ada, 2007

[17] Gelward, L., et al., WinXcom-a Pro gram for Cal cu -lat ing X-Ray At ten u a tion Co ef fi cients, J. Radi. Phys.And Chem., 71 (2004), pp. 653-654

[18] Manohara, S. R., et al., On the Ef fec tive AtomicNum ber and Elec tron Den sity: A Com pre hen sive Setof For mu las for All Types of Ma te ri als and En er giesabove 1 keV, Nu clear In stru ments and Meth ods inPhys ics Re search B, 266 (2008), 18, pp. 3906-3912

[19] Tay lor, M. L., et al., Ro bust Cal cu la tion of Ef fec tiveAtomic Num bers: The Auto-Zeff Soft ware Med. Phys.,39 (2012), 4, pp. 1769-1778

[20] Hubbell, J. H., Selt zer, S. M., Ta bles of X-Ray MassAt ten u a tion Co ef fi cients and Mass En ergy-Ab sorp -tion Co ef fi cients from 1 keV to 20 MeV for El e ments Z = 1 to 92 and 48 Ad di tional Sub stances ofDosimetric In ter est (1995), Avail able on http://www.nist.gov/pml/data/xraycoef

[21] Kaplan, M. F., Con crete Ra di a tion Shield ing,Longman Sci en tific and Tech nol ogy, LongmanGroup UK, Lim ited, Essex, Eng land, 1989

[22] Chilten, A. B., Shultis, J. K., Faw, R. E., Prin ci ple ofRa di a tion Shield ing, Prentice-Hall, EnglewoodCliffs, N. J., 1984

[23] ***, ANSI/ANS-6.4.3, Gamma Ray At ten u a tion Co -ef fi cient and Buildup Fac tors for En gi neer ing Ma te ri -als, Amer i can Nu clear So ci ety, La Grange Park, Ill.,USA, 1991

[24] Harima, Y., et al., Va lid ity of Geo met ric Pro gres sionFor mula in Ap prox i mat ing Gamma Ray Buildup Fac -tor, Nucl. Sci. Eng., 94 (1986), pp. 24-25

[25] Harima, Y., An Ap prox i ma tion of Gamma BuildupFac tors by Mod i fied Geo met ri cal Pro gres sion, Nucl.Sci. and Eng., 83 (1983), 2, pp. 299-309

[26] Maron, M. J., Nu mer i cal Anal y sis: A Prac ti cal Ap -proach, Macmillan, New York, USA, 2007

Re ceived on March 3, 2013Ac cepted on May 5, 2014

V. P. Singh, et al.: In ves ti ga tion on Ra di a tion Shield ing Pa ram e ters of ...156 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2014, Vol. 29, No. 2, pp. 149-156

Vi{vanat P. SING, Nagapa M. BADIGER

ISTRA@IVAWE PARAMETARA ZA[TITE ODZRA^EWA OBI^NOG, TE[KOG I SUPER TE[KOG BETONA

Reaktorski {tit potreban je radi za{tite qudi i `ivotne sredine tokom normalnograda reaktora kao i u slu~ajevima akcidenata. U ovom radu ispitani su za{titni parametriobi~nog, te{kog i super te{kog betona: maseni i linearni koeficijenti slabqewa, faktorislabqewa zra~ewa u sloju, efektivni atomski brojevi, kerma u odnosu na vazduh i faktorinagomilavawa usled izlagawa gama zra~ewu. Tako|e, izra~unat je i makroskopski efektivnipresek za uklawawe brzih neutrona. Obi~an beton ekonomski je pogodan za me{avinuvisokoenergetskog gama zra~ewa i neutrona jer ima veliku te`insku frakciju materijala saniskim atomskim brojem Z, u pore|ewu sa super te{kim betonima. Super te{ki betoni su uprednosti za za{titu tokom normalnog rada reaktora kao i u akcidentalnim slu~ajevima. Ovastudija korisna je za optimizaciju projektovawa za{tite reaktora.

Kqu~ne re~i: faktor nagomilavawa, te{ki beton, reaktorska zgrada, biolo{ki {tit