in vivo applications of near-infrared quantum dots john v. frangioni, m.d., ph.d. assistant...

26
In Vivo Applications of Near- Infrared Quantum Dots John V. Frangioni, M.D., Ph.D. Assistant Professor of Medicine Assistant Professor of Radiology Harvard Medical School Moungi G. Bawendi, Ph.D. Professor of Chemistry Massachusetts Institute of Technology

Upload: kristian-dalton

Post on 25-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

In Vivo Applications of Near-Infrared Quantum Dots

John V. Frangioni, M.D., Ph.D.Assistant Professor of MedicineAssistant Professor of Radiology

Harvard Medical School

Moungi G. Bawendi, Ph.D.Professor of Chemistry

Massachusetts Institute of Technology

Outline

I. The Clinical Problem

II. The Nanotechnology Solution

III. The Regulatory Conundrum

I. The Clinical Problem

Outline

II. The Nanotechnology Solution

III. The Regulatory Conundrum

The Cancer Detection Problem

Time

CellNumber

1012

109 Threshold forDetection

Death of Patient1 kg

1 g

2X = 1000X = 10

Cell Divisions“Remission”

Cancer Fates in the United States

CuredBy

Surgery

NotCured

Cured by Chemotherapy and/orRadiotherapy

Approximately 1.3 x 106 Non-Skin Cancers DiagnosedEach Year in the U.S.

Cancer Fates in the United States

CuredBy

Surgery

NotCured

Cured by Chemotherapy and/orRadiotherapy

Chemistry (Molecular Targeting)Engineering (Instrumentation)

I. The Clinical Problem

III. The Regulatory Conundrum

II. The Nanotechnology Solution

Outline

The Nanotechnology SolutionRequires the Synergy of:

Engineering: Intraoperative Near-Infrared Fluorescence Imaging System

Chemistry: Highly Sensitive, Properly-Sized, and Stable Near-Infrared Fluorescent Contrast Agents (Quantum Dots)

Near-Infrared Fluorescent Surgical Imaging System

† Nakayama et al., Mol. Imaging, 2002; 1(4): 365-377

SurgicalField

785 nmDichroicMirror

NIRCamera

VideoCamera

810 ± 20 nm NIR Emission Filter

400 nm - 700 nm Bandpass Filter

ZoomLens

771 nm, 250 mWLaser Diode System

NIR-Depleted150 W Halogen

White Light Source

= Visible Light Path

= NIR Fluorescence Light Path

3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 00

2 5

5 0

7 5

1 0 0

No rm al L ig ht

Ne ar D arkne s s

W av ele ng th (nm )

Computer &Electronics

Cart

Excitation/EmissionModule

ArticulatedArm

Mobile Large Animal Intraoperative Imaging System

† DeGrand & Frangioni, Submitted

A. B.

Deployment in the Surgical Suite

† DeGrand & Frangioni, Submitted

The Surgeon’s View

† DeGrand & Frangioni, Submitted

Fluorescent Semiconductor Nanocrystals (Quantum Dots)M.G. Bawendi and S.J. Kim (MIT)

Potential Advantages Potential DisadvantagesPeak emission tunable anywhere from UV to IR Potential toxicity of materialsHigh non-aqueous QYs Difficult to synthesizeBroadband absorption increasing to the blue Size/material limitations (?solved)High photostabilityConjugatable to tumor targeting ligands

Organic CoatingShell

Core

3 - 20 nm (Determines BioD)

Modeling of Near-Infrared and Infrared Photon Transmission

400 800 1200 1600 20000.00

0.25

0.50

0.75

1.00

0.25 cm1 cm

Band1

Band3

Band4

Band2

W avelength (nm)

400 800 1200 1600 20000.00

0.25

0.50

0.75

1.00

1 cm

0.25 cm

W avelength (nm)

Band1

Band3

Band4

Band2

Wavelength-Dependent Scatter

400 800 1200 1600 20000.00

0.25

0.50

0.75

1.00

0.25 cm1 cm

W avelength (nm)

Band1

Band3

Band4

Band2

400 800 1200 1600 20000.00

0.25

0.50

0.75

1.00

1 cm

0.25 cm

W avelength (nm)

Band1

Band3

Band4

Band2

High H2O to Hb Ratio High Hb to H2O Ratio

High H2O to Hb Ratio High Hb to H2O Ratio

Wavelength-Independent Scatter

† Lim et al., Mol. Imaging, 2003; 2(1): 50-64

0 10 20 30 40 50 600

5

10

15

100

101

102

103

104

Absolute Scatter at 630 nm0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

100

101

102

103

104

Tissue Thickness (cm)

0 10 20 30 40 50 6001234567

101

102

103

104

Absolute Scatter at 630 nm0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

100

101

102

103

104

105

106

Tissue Thickness (cm)

Scatter Thickness

Scatter Thickness

Wavelength-Dependent Scatter

Wavelength-Independent Scatter

High Hb to H2O Ratio

Infrared (1320 nm) QDs vs. NIR (840 nm) QDs

† Lim et al., Mol. Imaging, 2003; 2(1): 50-64

Near-Infrared Fluorescent (Quantum Dots)

IRDye78-CA NIR QDs

10 20 30 40 50 600

250

500

750

1000

1250

600 mW/cm2

400 mW/cm2

200 mW/cm2

100 mW/cm2

50 mW/cm2

30 mW/cm2

Time (Seconds)5 10 15 20

0

250

500

750

1000

600 mW/cm2

400 mW/cm2

200 mW/cm2

100 mW/cm2

50 mW/cm2

30 mW/cm2

Tme (Minutes)

CdTeCoreCdSe Shell

Thickness

600 700 800 900 10000.0

0.5

1.0

Wavelength (nm)

450 550 650 750 850

2.0x1006

4.0x1006

6.0x1006

8.0x1006

1.0x1007

1.2x1007

0.00

0.25

0.50

0.75

1.00

Wavelength (nm)

† Kim et al., Manuscript Submitted

Sentinel Lymph Node Mapping with 860 nm Quantum Dots(15-20 nm hydrodynamic diameter)

Pig Femoral Lymph Node Model

200 µL of 2 µM Solution (400 pmol) of CdTe(CdSe)QDs in PBS Injected Intradermally

Movie

Immediate Clinical Applications of NIR QDs

• Image guidance during sentinel lymphnode mapping

• Image guidance during cancer resection

• Image guidance for avoidance of critical structures (e.g., nerves and blood vessels) during general surgery

• High sensitivity tool for surgical pathologists

III. The Regulatory Conundrum

Outline

I. The Clinical Problem

II. The Nanotechnology Solution

We have the clinical need.

NIBIB has funded the science.

We now have the nanotechnology solution.

But, can NIR and IR Fluorescent Quantum Dots ever be Translated

to the Clinic?

Summary of Quantum Dots for In Vivo Applications

Emission HydrodynamicType Material Molar Ratio Range(nm) Diameter (nm)I CdSe Cd:Se=1:1 480-650 2.6-9.8I CdTe Cd:Te=1:1 580-740 4-12II CdTe(CdSe) Cd:Te:Se=1:x:(1-x) 700-1100 4-16I InAs In:As=1:1 800-1300 2-7I PbSe Pb:Se=1:1 1100-2200 2.5-10I InP In:P=1:1 600-730 2-5I HgS Hg:S=1:1 500-800 1-5I CdHgTe Cd:Hg:Se=x:(1-x):1 750-1100 6-12

Emission HydrodynamicType Material Molar Ratio Range(nm) Diameter (nm)I HgSe Hg:Se=1:1 660-1600 4-6I HgTe Hg:Te=1:1 660-1960 5-8I PbS Pb:S=1:1 950-2060 4-8I PbTe Pb:Te=1:1 780-2100 4-8I InSb In:Sb=1:1 650-1330 8-12I GaAs Ga:As=1:1 640-830 6-14I GaSb Ga:Sb=1:1 800-1390 6-12II ZnTe(CdS) Zn:Cd:Te:S=x:y:x:y 630-940 4-16II ZnTe(InAs) Zn:In:Te:As=x:y:x:y 660-1000 4-16

Rep

orte

d D

ata

The

oret

ical

Dat

a

Summary of QD PossibleSemiconductor Routes of

Materials AdministrationAntimonide Intravenous

Arsenide IntraperitonealCadmium SubcutaneousGallium SubdermalIndium IntravaginalLead PO

Mercury Per-rectumPhosphide IntravesicalSelenide AerosolSulfide

TellurideZinc

Unresolved Regulatory/Toxicity Issues

Will QDs be regulated as devices or drugs?

Will QDs be regulated based on theirchemical form (i.e., salts), or as individual metals?

Does route of administration matter or doindividual materials prevail?

Special design of toxicity studies?

Disposal of medical waste containing QDs

What We Need as Investigators

Guidance regarding “acceptable” materials orearly indication that translation to the clinic

is not possible

Assistance with the design and implementationof toxicity studies

Interagency cooperation regarding issues ofdrug delivery and disposal of QD-

containing biological material

Acknowledgements (Presented Data)

Frangioni Laboratory: Yong Taik LimJaihyoung LeeAlec M. DeGrand

Bawendi Laboratory: Sungjee KimNathan E. StottJonathan Steckel

Mihaljevic Laboratory: Edward G. SolteszRita LaurenceDelphine DorLawrence Cohn

Acknowledgements (Cont.)

Funding

NIBIB EB-00673

NIH R21/R33 CA88245NIH R21 CA88870

DOE DE-FG02-01ER63188Doris Duke Charitable Foundation

CaPCUREStewart Trust of Washington DC