inas hemts: the path to thz electronics?

41
InAs HEMTs: the path to THz electronics? J. A. del Alamo Microsystems Technology Laboratories, MIT Short Course on: High-Performance narrow-bandgap HEMT technology for advanced microwave front-ends: Towards the end of the roadmap? Acknowledgements: Dae-Hyun Kim, Tae-Woo Kim, Niamh Waldron Sponsors: FCRP-MSD, Intel Corp., SRC Labs at MIT: MTL, SEBL, NSL

Upload: others

Post on 01-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

InAs HEMTs: the path to THz electronics?

J. A. del AlamoMicrosystems Technology Laboratories, MIT

Short Course on: High-Performance narrow-bandgap HEMT technology for advanced microwave front-ends: Towards the end of the roadmap?

Acknowledgements: Dae-Hyun Kim, Tae-Woo Kim, Niamh WaldronSponsors: FCRP-MSD, Intel Corp., SRCLabs at MIT: MTL, SEBL, NSL

III-V HEMT: record fT vs. time

2

Current record:ft=660 GHzLeuther IPRM 2011 (Fraunhofer Inst.)

(and MHEMT)

For >20 years, record fT obtained on InGaAs-channel HEMTs

III-V HEMT: record fT vs. time

3

Well balanced devices:ft=644 GHz, fmax=680 GHz at same bias pointKim EDL 2010(MIT)

(and MHEMT)

InGaAs-channel HEMTs offer record balanced fT and fmax

Record fT III-V HEMTs: megatrends

4

Over time: Lg↓, InxGa1-xAs channel xInAs↑

InP lattice constant

GaAs latt. const.

Record fT III-V HEMTs: megatrends

5

Over time: tch↓, tins↓ 

Quantum-well channel

Bulkchannel

6

Outline

1. Example of high-frequency InAs HEMT2. fT measurements3. fT analysis4. How to improve fT5. Limits to HEMT scaling and future prospects

S D

Etch stopper

Barrier

Channel

Buffer

tins

Oxide

tch

Gate

Cap

77

1. Example of high-frequency InAs HEMT

77

- QW channel (tch = 10 nm):• InAs core (tInAs = 5 nm)• InGaAs cladding

n,Hall = 13,200 cm2/V-sec- InAlAs barrier (tins = 4 nm)- Ti/Pt/Au Schottky gate- Lg=30 nm- Lside=150 nmKim, EDL 2010

Lg=30 nm InAs HEMT

-0.6 -0.4 -0.2 0.0 0.20.0

0.5

1.0

1.5

2.0

g m [m

S/m

]VGS [V]

VDS = 0.5 V

88

Lg=30 nm InAs HEMT

8

• Large current drive: ION>0.5 mA/µm at VDD=0.5 V• VT = -0.15 V, RS=190 Ohm.μm• High transconductance: gmpk= 1.9 mS/μm at VDD=0.5 V

8

Kim, EDL 2010

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

0.2 V

0.4 V

0 V

I D [m

A/

m]

VDS [V]

VGS =

109 1010 1011 10120

10

20

30

40

Frequency [Hz]

Gai

ns [d

B]

-1

0

1

2

3

K

H21

K

MSG/MAG

Ug

Lg=30 nm InAs HEMT

999

• Only transistor of any kind with both fT and fmax > 640 GHz at same bias point

• Subthreshold characteristics: – S = 74 mV/dec, DIBL = 80 mV/V, Ion/Ioff ~ 5x103

9

Kim, EDL 2010

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 VfT=644 GHzfmax=686 GHz

VDS=0.5 V, VGS=0.2 V

2. fT measurements

10101010

• Extraordinary claims demand extraordinary evidence!

• Verification of fT and fmax measurements:1. Gummel technique

2. Small-signal equivalent circuit model

3. Measurements on multiple devices

4. Measurements on multiple test benches

Gummel technique for fT extraction

11111111

In one-pole system:

Then:

Slope gives fT

Gummel, Proc IEEE 1969Kim, EDL 2008

Lg=30 nmInAs HEMT

109 1010 1011 10120

10

20

30

40

Frequency [Hz]

Gai

ns [d

B]

-1

0

1

2

3

K

H21

K

MSG/MAG

Ug

fT extraction from equivalent-circuit model

12

Small-signal equivalent circuit model in linear and saturation regimes at VGS of peak fT: Kim, EDL 2010

109 1010 1011 10120

10

20

30

40

Frequency [Hz]

Gai

ns [d

B]

-1

0

1

2

3

K

MSG/MAG

Ug

K

H21

VGS=0.2 V, VDS=0.5 VVGS=0.2 V, VDS=0.1 V

fT=644 GHzfmax=686 GHz

Extrapolation from small-signal model yields: fT=648 GHz fmax=686 GHz

Also model S parameters (see below)

Measurements on multiple devices and systems

13131313

Measurements of one device in three different test benches:

Measurement of three devices on one test bench:

fT=645, 644, 644 GHz.

All measurements at same bias point: VGS=0.2 V, VDS=0.5 V

8510C@MIT

8510C@TSC

PNA@UCSB Avg. STD

fT [GHz]

From H21 645 645 643 644.3 0.9

From Gummel’s

approach644 644 645 644.3 0.5

fmax [GHz] 681 686 677 681.3 3.7

Kim, EDL 2010

14

3. ft analysis

• First-order fT expression for HEMT:

14

gmivgs

goi

RDRS

Cgs Cgd

S D

G

15

Break out parasitic capacitances

• Capacitance components:

15

S

G

D

16

Delay time analysis

• Delay time:

• Components of delay time:

16

Intrinsic delay (transit time)

Extrinsic delay Parasitic

delay

Extraction of parasitic capacitances

17

• Need devices with different Lg• Bias them at same VGS overdrive around peak fT point• Extract small-signal equivalent circuit models• Study Lg scaling behavior of Cgs and Cgd

0 50 100 150 200 2500

500

1000

1500

2000

Cgdext = 112 fF/mm

Cgsext = 255 fF/mm

Cgdi = 0.27 fF/um2

Cgs

& C

gd [f

F/m

m]

Lg [nm]

Cgsi = 5.87 fF/um2

VDS = 0.5 V

Cgsi/Lg=5.87 fF/m2

Cgdi/Lg=0.27 fF/m2

Cgsext=255 fF/mm

Cgdext=112 fF/mmInAs HEMTs

(ft=601 GHz, fmax=609 GHz at Lg=30 nm)

Kim, IEDM 2008

18

Delay components of Lg=30 nm InAs HEMT

18

Delay time from ft: ~265 fs• Intrinsic delay: ~59 fs• Extrinsic delay: ~117 fs• Parasitic delay: ~80 fs• Unaccounted: ~9 fs

least significant, yields ve=5.1x107 cm/s

30 %

4 %

22 %

44 %unaccounted

Lg = 30 nm

t

ext par

InAs HEMTs

(ft=601 GHz, fmax=609 GHz at Lg=30 nm)

Kim, IEDM 2008

most significant

19

Scaling of delay components

19

ext and par do not scale, become dominant for Lg< 60 nm

0 100 200 3000

400

800

1200

par

ext

Del

ays

[fs]

Lg [nm]

t

InAs HEMTs

(ft=601 GHz, fmax=609 GHz at Lg=30 nm)

Kim, IEDM 2008

• Intrinsic delay:

Lg ↓ (without degrading gmi) ve ↑ channel engineering

• Extrinsic delay:

Cgsext, Cgdext ↓ gate engineering gmi ↑ harmonious scaling

20

4. How to improve fT

20

21

How to improve fT

21

• Parasitic delay:

RS+RD ↓ increase electrostatic integrity: goi/gmi↓

22

How far can we expect to go?

22

ft=1 THz feasible even at Lg=30 nm

10 100

200G

400G

600G

800G1T

f T [H

z]

Lg [nm]

Modeled iedm 08 + 50% Reduction in Rs and Rd

+ 50% Reduction in Cgext

VDS = 0.5 V

1m

RS ~ 200 Ohm.m

a) RS+RD↓

23

• In typical HEMTs: – large G-S, G-D gaps– barrier in extrinsic region– limited electron concentration in extrinsic channel

Kim, IEDM 2010

0 10 20 30 40 50 60-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Electron density [cm-3]

CB

Pro

file

[eV]

Vertical depth [nm]

Single delta doping

Zero bias

0

2

4

ns = 3 x 1012 /cm2

EC and n incross section

x 1018

1 10 100 10000

20

40

60

K

H21

, MA

G/M

SG a

nd U

g [dB

]Frequency [GHz]

VGS = 0.1 V, VDS = 0.7 VL

g = 40 nm

0.0

0.2

0.4

0.6

0.8

1.0

fmax = 445 GHz

MAG/MSG

UG

H21

K

fT = 530 GHz

Approaches to reducing barrier and ns,ext ↑

• InAs-rich InAlAs sub-barrier:

Kim, Electron Lett 2011 24

0 20 40 60-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Elec

tron

Den

sity

[eV]

CB

Pro

file

[eV]

Depth [nm]

Normal HEMT InAs-rich spacer HEMT

X 1018/cm3

0

2

4

6

ns = 2.9 x 1012 / cm2ns = 3 x 1012 / cm2

Lg=40 nm In0.7Ga0.3As HEMT:Rs ~ 170 Ohm.mfT=530 GHz at VDS=0.7 V

25

Approaches to reducing barrier and ns,ext ↑

• Dual delta-doping in barrier:

Kim, IEDM 2010

0 10 20 30 40 50 60-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Electron density [cm-3]

CB

Pro

file

[eV]

Vertical depth [nm]

Dual delta doping

Zero bias

0

2

4

ns = 3.8 x 1012 /cm2

0 10 20 30 40 50 60-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Electron density [cm-3]

CB

Pro

file

[eV]

Vertical depth [nm]

Single delta doping

Zero bias

0

2

4

ns = 3 x 1012 /cm2

x 1018 x 1018

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.2

0.4

0.6

0.8

1.0

0 V

0.1 V

0.2 V

0.3 V

0.4 V

I D [m

A/

m]

VDS [V]

VGS = 0.5 V

Approaches to reducing LGS and LGD

Self-aligned process:

26

• Heterostructure with dual delta doping in InAlAs• Dry-etched Mo contacts: Rc = 7 Ohm.μm, stable to 600 ◦C • LG=50 nm, RS=144 Ohm.μm, gm=2.2 mS/μm @ VDS=0.5 V

LGS=100 nm

Kim, IEDM 2010

Lg=50 nm

1 10 100 10000

20

40

K

MAG/MSG

Ug

Measured data Modeled data

H21

, MA

G/M

SG a

nd U

g [dB

]

Frequency [GHz]

K

VGS = 0.2 V, VDS = 0.6 VH21

0

1

2

3

4

freq (500.0MHz to 700.0GHz)

S(1

,1)

S(3

,3)

S(2

,2)

S(4

,4)

S(2

,1)/1

0S

(4,3

)/10

S(1

,2)

S(3

,4)

Lg=60 nm self-aligned In0.7Ga0.3As HEMT

27

• Good agreement between modeled and measured HF characteristics• Highest fT and fmax at Lg 60 nm of any FET

Kim, IEDM 2010

Lg=60 nm

VGS = 0.2 V, VDS = 0.6 V Wg = 2 x 20 μm

S21/10

S12

S22

S11

fT=595 GHzfmax=680 GHz

28

b) Increase electrostatic integrity: goi/gmi↓

28

Sources of output conductance in InAs HEMTs: – impact ionization: slow irrelevant at RF– drain-induced barrier lowering (DIBL)

Kim, IPRM 2009

VGS of peak fT

impact ionization

DIBL

29

Drain-Induced Barrier Lowering (DIBL)

29

• Negative shift of VT with VDS

• Due to reduction in channel barrier as VDS ↑

• DIBL Figure of Merit: 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 V

DIBL = 80 mV/V

30 nm InAs HEMTKim, EDL 2010

Efe

EC

EC

30

Drain-Induced Barrier Lowering (DIBL)

30

Factors affecting DIBL:– Gate length: Lg

– Channel thickness: tch

– Barrier thickness: tins

– Side etch length: Lside

40 80 120 160 20040

80

120

160

InAs HEMTs: tch = 5 nm

InAs HEMTs: tch = 10 nm

DIB

L [m

V/V]

Lg [nm]

In0.7Ga0.3As HEMTs: tch = 13 nm

Kim, ISDRS 2007

Kim, TED 2008Kim, IPRM 2010

0 100 200 300 4000

200

400

600 Lside = 50 nm Lside = 150 nm Lside = 350 nm

DIB

L [m

V/V]

Lg [nm]

31

The role of Lside in fT

31

As Lside ↑ goi ↓  par ↓Cgsext, Cgd ext ↓ ext ↓RS, RD ↑ par ↑ Kim, JSTS 2006

Lg=60 nmSuemitsu, TED 2002

There is an optimum Lside which depends on rest of device design

32

The role of tins in fT

32

fT tends to improve as tins ↓Kim, TED 2008

Lg=60 nm

As tins ↓ goi ↓  par ↓ gmi ↑  par ↓, ext ↓RS, RD ↑ par ↑

InAs HEMT Lg=30 nm

Kim, IEDM 2008

33

The role of tch in fT

33

As tch ↓ goi ↓  par ↓ gmi ↑  par ↓, ext ↓RS, RD ↑ par ↑

40 60 80 100 120 140300

400

500

600

300

400

500

600

fmax

In0.7Ga0.3As PHEMTsf T,

f max

[GH

z]

Lg [nm]

InAs PHEMTs

VDS = 0.5 V

fT

tch=10 nm

tch=13 nm

Kim, IPRM 2009

fT tends to improve as tch ↓

34

c) Lg↓ without degrading gmi

34

Kim, TED 2008

In0.7Ga0.3As HEMTstch=13 nm, Lside=150 nm

40 80 120 160 2002

3

4

Lg [nm]

2

3

4 In0.7Ga0.3As HEMT: tch = 13 nm InAs HEMT: tch = 10 nm InAs HEMT: tch = 5 nm

g mi [m

S/m

]

VDS = 0.5 V tins = 5 nm, Lside = 80 nm

Kim, IPRM 2010

Harmonious scaling required: as Lg ↓  tch ↓, tins ↓

35

Aspect ratio of record ft devices

35

Our work: dimensions verified by XTEM

• Channel aspect ratio between 2 and 4• Insulator aspect ratio between 2 and 8 (2 likely an

underestimate)

Channel aspect ratio: Lg/tch Insulator aspect ratio: Lg/tins

36

5. Limits to HEMT scaling and future prospects

36

Barrier thickness scaling limited by IG

del Alamo, IPRM 2011

37

Alternative insulators

37

Radosavljevic, IEDM 2009

High-K dielectrics being pursued for III-V CMOS huge opportunity for THz HEMT electronics!

tox=4 nm

1000x reduction

E- mode

38

Limits to HEMT scaling

38

Deep channel thickness scaling degrades performance: RS ↑  fT ↓

Kim, IPRM 2010

InAs HEMT, Lside = 80 nm, tins = 5 nm

Noticeable mobility degradation: tch=10 nm e=13,500 cm2/V.stch=5 nm e=9,950 cm2/V.s

39

Channel strain engineering

39

InAs 300 K quantum-well mobility vs. lattice constant:

InP AlSbInAs InSb

Independent control of channel strain and composition: new possibilities for channel design

THz HEMTs: possible designs

40

n+n+

Regrown S/D QW-MOSFET

FinFET Gate-all-around nanowire FET

Etched S/D QW-MOSFET

41

Conclusion

41

• THz HEMTs just around the corner

• Expanding interest on III-V CMOS: huge opportunity for THz HEMT electronics fast technology progress new processes and tools fundamental research on transport, etc. Si as substrate for THz electronics