industrial tutorial 2 - threat analysis paradigms in

96
Industrial Tutorial 2 - Threat Analysis Paradigms in Wireless Technology Canada-France MITACS Workshop on Foundations and Practice of Security Michel Barbeau, Joaquín García-Alfaro and Christine Laurendeau Carleton University

Upload: others

Post on 01-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Industrial Tutorial 2 - Threat Analysis Paradigms in

Industrial Tutorial 2 - Threat Analysis Paradigms in Wireless Technology

Canada-France MITACS Workshop on Foundations and Practice of Security

Michel Barbeau, Joaquín García-Alfaro and Christine Laurendeau

Carleton University

Page 2: Industrial Tutorial 2 - Threat Analysis Paradigms in

2© 2008 Barbeau, García-Alfaro and Laurendeau

Outline• Threat analysis paradigms (C)

• Threats to confidentiality (M)– The WiFi/802.11 case– The WiMAX/802.16 case

• Threats from insiders (C)– The vehicular communications case

• Threats to EPC/RFID (J)

Page 3: Industrial Tutorial 2 - Threat Analysis Paradigms in

3© 2008 Barbeau, García-Alfaro and Laurendeau

Threat Analysis Paradigms

• Rationale

• Methodologies

• Risk Factors

Page 4: Industrial Tutorial 2 - Threat Analysis Paradigms in

4© 2008 Barbeau, García-Alfaro and Laurendeau

Why Analyze Threats?• Countermeasures

– We want to make sure we don’t get attacked

• Efficiency– Why waste time researching minor threats? Why bother fixing

something nobody cares about?

• Solution: Focus on critical and major threats– Identify the threats– Classify them by order of importance– Determine which ones require countermeasures

Page 5: Industrial Tutorial 2 - Threat Analysis Paradigms in

5© 2008 Barbeau, García-Alfaro and Laurendeau

Types ofThreat Analysis Methodologies• Quantitative Methodologies

– Use statistics, probabilistic model, historic data– Example Risk: Probability [0..1] of accident– Example Methodologies: PRA, QRAS

Problem: Need historic data

• Qualitative Methodologies– Use discrete values for risk factors– Example Risk: Likely, Possible, Unlikely– Example Methodologies: ETSI, NIST, Octave, Mehari

Problem: Values for risk factors are subjective

Page 6: Industrial Tutorial 2 - Threat Analysis Paradigms in

6© 2008 Barbeau, García-Alfaro and Laurendeau

Qualitative Methodologies• NIST: G. Stoneburner, A. Goguen, and A. Feringa, Risk Management

Guide for Information Technology Systems, NIST Special Publication 800-30, July 2002.

• Octave: C. J. Alberts and A. J. Dorofee, OCTAVE Criteria, Version 2.0. Technical Report CMU/SEI-2001-TR-016, CERT, December 2001.

• Mehari: CLUSIF Methods Commission, MEHARI 2007 Concepts and Mechanisms, Club de la securité de l’Information français, April 2007.

• ETSI: ETSI, Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) Release 4; Protocol Framework Definition;Methods and Protocols for Security; Part 1: Threat Analysis, Technical Specification TS 102 165-1 V4.1.1, European Telecommunications Standards Institute, 2003.

Page 7: Industrial Tutorial 2 - Threat Analysis Paradigms in

7© 2008 Barbeau, García-Alfaro and Laurendeau

Threat Analysis Risk Factors

RISKThreatScenario

TechnicalDifficulty

Exposure

Circumstances

Protection

ContainmentDeterrents

ETSI, NIST

OctaveMehari

Methodology:

LikelihoodImpact

Motivation

ObservedData

Page 8: Industrial Tutorial 2 - Threat Analysis Paradigms in

8© 2008 Barbeau, García-Alfaro and Laurendeau

Methodology Comparisons• ETSI, NIST

– Use qualitative, static risk factors

• Octave– Threat scenario generation– Likelihood based on observed data

• Mehari– Includes knowledge base of security services– Dynamically adjusts risk assessment based on implemented

countermeasures

Page 9: Industrial Tutorial 2 - Threat Analysis Paradigms in

9© 2008 Barbeau, García-Alfaro and Laurendeau

• Three threat analyses using ETSI:– J. Garcia-Alfaro, M. Barbeau and E. Kranakis, Analysis of Threats to the

Security of EPC Networks, 6th Annual Communication Networks and Services Research (CNSR) Conference, Halifax, Nova Scotia, Canada, May 2008.

– C. Laurendeau and M. Barbeau, Threats to Security in DSRC/WAVE, 5th International Conference on Ad-hoc Networks, 2006.

– M. Barbeau, WiMax/802.16 Threat Analysis, 1st ACM Workshop on QoS and Security for Wireless and Mobile Networks (Q2SWinet), 2005.

• Observations:– Not all risk factors have equal weight; technical difficulty is the

most influential factor– Static risk factors preclude automation

ETSI Methodology Analyses

Page 10: Industrial Tutorial 2 - Threat Analysis Paradigms in

10© 2008 Barbeau, García-Alfaro and Laurendeau

Risk Factor Ontology

RISK

Extent

Severity

LikelihoodImpact

Physical

Knowledge

TechnicalDifficulty

Gain

Target

Means Motive Opportunity

Circumstances

SecurityMeasures

Page 11: Industrial Tutorial 2 - Threat Analysis Paradigms in

11© 2008 Barbeau, García-Alfaro and Laurendeau

Risk Factor Priority

RISK

LikelihoodImpact

Means Motive Opportunity

• Countermeasures aim to reduce impact and opportunity

Page 12: Industrial Tutorial 2 - Threat Analysis Paradigms in

12© 2008 Barbeau, García-Alfaro and Laurendeau

ETSI Risk Assessment• Overall Risk Assessment:

– Critical, Major, Minor

• Risk Factors:– Likelihood of threat occurrence– Impact on user or system

• Likelihood Assessment Factors:

– Motivation of attacker– Technical difficulty

Likely

Possible

Difficulty

Low Moderate HighMotivation

Strong

Solvable

None

Unlikely

Major risk

Minor riskUnlikely

Possible

Likely

Likelihood

HighMediumLow

Impact

Criticalrisk

Page 13: Industrial Tutorial 2 - Threat Analysis Paradigms in

13© 2008 Barbeau, García-Alfaro and Laurendeau

Threats to Confidentiality

• The WiFi/802.11 case • The WiMAX/802.16 case

Page 14: Industrial Tutorial 2 - Threat Analysis Paradigms in

14© 2008 Barbeau, García-Alfaro and Laurendeau

What is Confidentiality?

• The contents of a message can be understood only by its source and destination

Page 15: Industrial Tutorial 2 - Threat Analysis Paradigms in

15© 2008 Barbeau, García-Alfaro and Laurendeau

Why is it Challenging?• Interception easiness

• Need to maintain backward compatibility

• Easiness to work around regulations

Page 16: Industrial Tutorial 2 - Threat Analysis Paradigms in

16© 2008 Barbeau, García-Alfaro and Laurendeau

Cryptographic Techniques• Symmetric key-based

– Same key is used for both encryption and decryption

• Asymmetric key-based– A key for encryption, another key for decryption

Page 17: Industrial Tutorial 2 - Threat Analysis Paradigms in

17© 2008 Barbeau, García-Alfaro and Laurendeau 17

Symmetric Key-based Cryptography

Page 18: Industrial Tutorial 2 - Threat Analysis Paradigms in

18© 2008 Barbeau, García-Alfaro and Laurendeau 18

The XOR Operation

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Page 19: Industrial Tutorial 2 - Threat Analysis Paradigms in

19© 2008 Barbeau, García-Alfaro and Laurendeau

WiFi/802.11 Confidentiality• Wired Equivalent Privacy (WEP), RC4• Not so secret key!

– Shared between all the network members: clients, access points

• Key reuse for different messages!– If one message is known, then the others can be decrypted

Page 20: Industrial Tutorial 2 - Threat Analysis Paradigms in

20© 2008 Barbeau, García-Alfaro and Laurendeau

RC4 Encryption

1001100 1001111 1000111 1001001 1001110

L O G I NMessageText

Messagein ACSII

KeyStream

Cyphertext

1000100 1000001 1010110 1001001 1000100

0001000 0001110 0010001 0000000 0001010

XOR

Page 21: Industrial Tutorial 2 - Threat Analysis Paradigms in

21© 2008 Barbeau, García-Alfaro and Laurendeau

Cracking RC4 MessagesCyphertext

1 0001000 0001110 0010001 0000000 0001010

XOR

Cyphertext2 0001110 0010100 0011010 0000000 0000101

0000110 0011010 0001011 0000000 0001111

J U L I A2nd

MessageText

1001100 1001111 1000111 1001001 1001110

1001010 1010101 1001100 1001001 10000012nd

Messagein ACSII

XOR

XOR ofun encrypted

messages

1stMessagein ACSII

Page 22: Industrial Tutorial 2 - Threat Analysis Paradigms in

22© 2008 Barbeau, García-Alfaro and Laurendeau

Confidentiality• Uses Wired Equivalent Privacy (WEP) with secret key• Data is encrypted using IV and Default key or Key-mapping

key• Initialization Vector (IV): 24-bit random val. chosen by

transmitter• Default key: 40- or 104-bit key shared between AP and

several stations• Key-mapping key: 40- or 104-bit key shared between AP and

one station• Encryption: RC4• Integrity (are frames intact?): CRC-32 Integrity Check Value

(ICV)• An exhaustive search can find the secret key in few hours• Can be cracked by cryptanalysis [Fluhrer et al. 2001]: e.g.

AirSnort

Page 23: Industrial Tutorial 2 - Threat Analysis Paradigms in

23© 2008 Barbeau, García-Alfaro and Laurendeau

WEP Encryption

Page 24: Industrial Tutorial 2 - Threat Analysis Paradigms in

24© 2008 Barbeau, García-Alfaro and Laurendeau

WEP Decryption

Page 25: Industrial Tutorial 2 - Threat Analysis Paradigms in

25© 2008 Barbeau, García-Alfaro and Laurendeau

Recent WiFi Development• Encryption key establishment uses asymmetric key-

based techniques

• WiFi Protected Access (WPA)– Temporal Key Integrity Protocol (TKIP): RC4 with longer non

reused keys

• 802.11i– Advanced Encryption Standard (AES)

Page 26: Industrial Tutorial 2 - Threat Analysis Paradigms in

26© 2008 Barbeau, García-Alfaro and Laurendeau

IEEE 802.11iProtocol Authentication and

access controlConfidentiality andIntegrity

WiFi Protected Access (WPA)/Temporal Key Integrity Protocol (TKIP)

802.1X-based Per-packet RC4 encryption keyMessage Integrity Code (64-bit hash)Replay protection (48-bit sequence num.)

WiFi Protected Access 2 (WPA2)/Robust Security Network (RSN)/Counter-Mode-CBC-MAC Protocol (CCMP)

802.1X-based AES 128-bit encryptionMessage Authentication Code(64-bit hash)Replay protection (48-bit sequence num.)

Page 27: Industrial Tutorial 2 - Threat Analysis Paradigms in

27© 2008 Barbeau, García-Alfaro and Laurendeau

TKIP

Page 28: Industrial Tutorial 2 - Threat Analysis Paradigms in

28© 2008 Barbeau, García-Alfaro and Laurendeau

Counter Mode

Page 29: Industrial Tutorial 2 - Threat Analysis Paradigms in

29© 2008 Barbeau, García-Alfaro and Laurendeau

Threat SecurityMeasures Likelihood Impact Risk

EavesdroppingData Traffic Msgs

WEP(before 2001) Unlikely High Minor

WEP(before 2002) Possible High

WEP(2002-) Likely High

WPA802.11i

Unlikely High Minor

Major

Critical

EavesdroppingManagement Msgs None Likely Medium Major

WiFi/802.11 Threat Analysis

Page 30: Industrial Tutorial 2 - Threat Analysis Paradigms in

30© 2008 Barbeau, García-Alfaro and Laurendeau

Threats to ConfidentialityThe WiMAX/802.16 Case

Page 31: Industrial Tutorial 2 - Threat Analysis Paradigms in

31© 2008 Barbeau, García-Alfaro and Laurendeau

A WiMAX/802.16 PMP Network

Page 32: Industrial Tutorial 2 - Threat Analysis Paradigms in

32© 2008 Barbeau, García-Alfaro and Laurendeau

MAC Layer Concepts

Page 33: Industrial Tutorial 2 - Threat Analysis Paradigms in

33© 2008 Barbeau, García-Alfaro and Laurendeau

Management ConnectionsType Usage When SA

DL Basic Short & urgent

mgnt msgsMS init

timeNoneUL Basic

DL Primary Delay tolerant

mgnt msgsUL Primary

DL Secondary IP encap mgnt msgs(e.g. DHCP, SNMP, TFP)

MS init time

(optional)

PrimaryUL Secondary

Page 34: Industrial Tutorial 2 - Threat Analysis Paradigms in

34

WiMAX/802.16 Security Model

MS BSX.5091 1

Primary SA1 1 1 1

AK

seq. num. : 0..15lifetime:

1 1

1..21..2

KEK

1

1..2 1..2

1

HMAC Key

direction: {up, down}

1

1..4 1..4

1

Static SA

0..n0..n 0..n

0..n

Dynamic SA

0..n

0..n 0..n

0..nNetwork Entry

• Authorization• Registration• Connection

Establishment

Page 35: Industrial Tutorial 2 - Threat Analysis Paradigms in

35© 2008 Barbeau, García-Alfaro and Laurendeau

Encryption

Generic MACHeader MAC Management Message CRC

HT EC Type LEN (3 MSB)

LEN (8 LSB)

MSF CI RSVEKS

CID (8 MSB)CID (8 LSB) HCS

ManagementMessage

Type

ManagementMessagePayloaD

IEEE 802.16d/e standard (Section 7.1.1) states:

• generic MAC header is not encrypted • all MAC management messages shall be sent in the clearthis for facilitating registration, ranging and normal operation of the MAC.

Plain Text (L bytes)

PacketNumber(4 bytes)

Encrypted Text (L bytes)EncryptedIntegrity

Check Value(8 bytes)

ServiceData Transported

Payload

Page 36: Industrial Tutorial 2 - Threat Analysis Paradigms in

36© 2008 Barbeau, García-Alfaro and Laurendeau

WiMAX/802.16 Threat AnalysisThreat Security

Measures Likelihood Impact Risk

EavesdroppingManagement Msgs

EavesdroppingData Traffic Msgs

DES-CBC,AES-CCM

None Likely

Unlikely

Medium

High

High Minor

Critical

Major

Page 37: Industrial Tutorial 2 - Threat Analysis Paradigms in

37© 2008 Barbeau, García-Alfaro and Laurendeau

Insider Threats toVehicular Communications

• Malicious Insiders

• Vehicular Communications Security

• Insider Threat Analysis

Page 38: Industrial Tutorial 2 - Threat Analysis Paradigms in

38© 2008 Barbeau, García-Alfaro and Laurendeau

Malicious Insiders• Wireless networks use an open medium

Security measures are necessary

• Problem:

– Most measures secureagainst outsider threats

– Few secure againstmalicious insiders

Page 39: Industrial Tutorial 2 - Threat Analysis Paradigms in

39© 2008 Barbeau, García-Alfaro and Laurendeau

Example of Insider Attack

• Sequence from “Live Free or Die Hard,” Stage One

Page 40: Industrial Tutorial 2 - Threat Analysis Paradigms in

40© 2008 Barbeau, García-Alfaro and Laurendeau

Vehicular CommunicationsSecurity

• Broadcast Applications– E.g. traffic updates, hazards,

collision warningsDigital signatures

• Transaction Applications– E.g. navigation, location-

based services, toll paymentEncryption

Page 41: Industrial Tutorial 2 - Threat Analysis Paradigms in

41© 2008 Barbeau, García-Alfaro and Laurendeau

Example ofBroadcast Application

M, Pu, {M}Pr

ECDSA

M Pr

{M}Pr

ECDSAECDSA

M, Pu, {M}Pr

ECDSA

{Valid, Invalid}

{Pu,Pr}

Page 42: Industrial Tutorial 2 - Threat Analysis Paradigms in

42© 2008 Barbeau, García-Alfaro and Laurendeau

Example ofTransaction Application

{Pu,Pr}

ECDSA

M Pu

{M}K

AES ECIES

K

{K}Pu

M

{M}K

AES

KPr

ECIES

K

{K}Pu

{M}K, {K}Pu

Nearest gas station?

At Main and Elm

Page 43: Industrial Tutorial 2 - Threat Analysis Paradigms in

43© 2008 Barbeau, García-Alfaro and Laurendeau

Insider Threat Analysis• Threats to broadcast and transaction messages

– Masquerading– Eavesdropping– Tampering

• Motivation = High– Nothing is secret anymore

• Technical Difficulty = None– Insider access to secret keys

Likely threats

Page 44: Industrial Tutorial 2 - Threat Analysis Paradigms in

44© 2008 Barbeau, García-Alfaro and Laurendeau

Masquerading

• Motivation– Evading retribution

• Technical Difficulty– Victim’s private key used to sign

messages– Credentials untraceable to malicious

insider

• Impact– Wide scope due to lack of accountability

Page 45: Industrial Tutorial 2 - Threat Analysis Paradigms in

45© 2008 Barbeau, García-Alfaro and Laurendeau

Masquerading Analysis

Threat Likelihood Impact Risk

Masquerading Likely

Messages

All High Critical

Page 46: Industrial Tutorial 2 - Threat Analysis Paradigms in

46© 2008 Barbeau, García-Alfaro and Laurendeau

EavesdroppingTransaction Messages

• Motivation– Access to victim’s personal and financial

information

• Technical Difficulty– Victim’s private key used to decrypt

messages

• Impact– Scope limited to victim

Page 47: Industrial Tutorial 2 - Threat Analysis Paradigms in

47© 2008 Barbeau, García-Alfaro and Laurendeau

Eavesdropping Analysis

Threat Likelihood Impact Risk

Minor

Messages

Broadcast

Transaction Likely

Unlikely Low

Medium MajorEavesdropping

Page 48: Industrial Tutorial 2 - Threat Analysis Paradigms in

48© 2008 Barbeau, García-Alfaro and Laurendeau

• Sequence from “Live Free or Die Hard,” Tunnel

Example of TamperingBroadcast Messages

Page 49: Industrial Tutorial 2 - Threat Analysis Paradigms in

49© 2008 Barbeau, García-Alfaro and Laurendeau

TamperingBroadcast Messages

• Motivation– Manipulate vehicular traffic

• Technical Difficulty– Valid key pair used to sign messages

• Impact– All vehicles within radio range are vulnerable

Page 50: Industrial Tutorial 2 - Threat Analysis Paradigms in

50© 2008 Barbeau, García-Alfaro and Laurendeau

TamperingTransaction Messages

• Motivation– Manipulate information to/from victim

• Technical Difficulty– Victim’s private key used to sign messages

• Impact– Scope limited to victim

Page 51: Industrial Tutorial 2 - Threat Analysis Paradigms in

51© 2008 Barbeau, García-Alfaro and Laurendeau

Tampering Analysis

Threat Likelihood Impact Risk

High Critical

Major

Messages

TamperingBroadcast

Transaction

Likely

Likely Medium

Page 52: Industrial Tutorial 2 - Threat Analysis Paradigms in

52© 2008 Barbeau, García-Alfaro and Laurendeau 52© 2008 Barbeau, García-Alfaro and Laurendeau

Threats to EPC/RFID

• Background• Threats• Countermeasures

Page 53: Industrial Tutorial 2 - Threat Analysis Paradigms in

53© 2008 Barbeau, García-Alfaro and Laurendeau 53© 2008 Barbeau, García-Alfaro and Laurendeau

• Evolution of optical barcodes

• Based on RFID technologies

• Still an evolving standard− Started in 1999 at MIT’s Auto-ID Labs

− academic research project− supported by industrial partners

− Since 2003, transferred to EPCglobal Inc.

Electronic Product Code (EPC)

Page 54: Industrial Tutorial 2 - Threat Analysis Paradigms in

54© 2008 Barbeau, García-Alfaro and Laurendeau

- Joint project of the organizations that regulate:- The Universal Product Code (UPC) - The European Article Number (EAN)- The Japanese Article Number (JAN)

- Main goal of EPCglobal - World-wide adoption and standardization of EPC technology

- Other issues of concern for EPCglobal:- Intellectual property- Frequency bands in the different world regions- Hardware/application standards- …

EPCglobal

54© 2008 Barbeau, García-Alfaro and Laurendeau

Page 55: Industrial Tutorial 2 - Threat Analysis Paradigms in

55© 2008 Barbeau, García-Alfaro and Laurendeau

• It support codes widely-used today or self defined conventions

• E.g., representation of an EPC general identifier (GID) of 96 bits:

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

Structure of the EPC

Identifies the EPC version number, e.g., GID-96

55

Page 56: Industrial Tutorial 2 - Threat Analysis Paradigms in

56© 2008 Barbeau, García-Alfaro and Laurendeau

• It support codes widely-used today or self defined conventions

• E.g., representation of an EPC general identifier (GID) of 96 bits:

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

Structure of the EPC

Manufacturer of the product, e.g., KELLOGG’s®

56

Page 57: Industrial Tutorial 2 - Threat Analysis Paradigms in

57

• It support codes widely-used today or self defined conventions

• E.g., representation of an EPC general identifier (GID) of 96 bits:

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

Structure of the EPC

Exact type of the product, e.g., Rice Krispies®

57

Page 58: Industrial Tutorial 2 - Threat Analysis Paradigms in

58© 2008 Barbeau, García-Alfaro and Laurendeau

• It support codes widely-used today or self defined conventions

• E.g., representation of an EPC general identifier (GID) of 96 bits:

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

Structure of the EPC

Unique reference to the item

58

Page 59: Industrial Tutorial 2 - Threat Analysis Paradigms in

59© 2008 Barbeau, García-Alfaro and Laurendeau

RFID tags & readers

59© 2008 Barbeau, García-Alfaro and Laurendeau

Page 60: Industrial Tutorial 2 - Threat Analysis Paradigms in

60

Rea

ders

Request

Sample EPC network

60

Page 61: Industrial Tutorial 2 - Threat Analysis Paradigms in

61

Rea

ders

Response

Request

Middleware

Repository

Repository

EPC InformationService (EPC-IS)

Sample EPC network

61

Page 62: Industrial Tutorial 2 - Threat Analysis Paradigms in

62© 2008 Barbeau, García-Alfaro and Laurendeau

Internet

DNS

R

EPC Network Retailer EPC Network Manufacturer

MEPC-IS EPC-IS

ONS

EPC

EPC

URL

URL

Interoperability between EPC Networks

62© 2008 Barbeau, García-Alfaro and Laurendeau

Page 63: Industrial Tutorial 2 - Threat Analysis Paradigms in

63© 2008 Barbeau, García-Alfaro and Laurendeau

Simulation

63© 2008 Barbeau, García-Alfaro and Laurendeau

Page 64: Industrial Tutorial 2 - Threat Analysis Paradigms in

64© 2008 Barbeau, García-Alfaro and Laurendeau 64© 2008 Barbeau, García-Alfaro and Laurendeau

Security threats to EPC networks

• Can target the different services of the EPC network

• In this talk, we focus on threats targeting the wireless channel used for the exchange of information between readers and tags

Page 65: Industrial Tutorial 2 - Threat Analysis Paradigms in

65© 2008 Barbeau, García-Alfaro and Laurendeau 65© 2008 Barbeau, García-Alfaro and Laurendeau

35 · 006A13A · 012B5F · 000034DA0

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

LogicLogicCircuitryCircuitry

MemoryMemoryCircuitryCircuitry

RFRFCircuitryCircuitry

- Very limited (generally few bytes)- One part stores the EPC number; the rest is available to the user - Read only write-once or Read/write

Memory Circuitry

Characteristics of EPC tags

Page 66: Industrial Tutorial 2 - Threat Analysis Paradigms in

66© 2008 Barbeau, García-Alfaro and Laurendeau 66© 2008 Barbeau, García-Alfaro and Laurendeau

35 · 006A13A · 012B5F · 000034DA0

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

LogicLogicCircuitryCircuitry

MemoryMemoryCircuitryCircuitry

RFRFCircuitryCircuitry

- Execution of queries - Anti-collision procedures- Control for specific commands

Logic Circuitry

Characteristics of EPC tags

Page 67: Industrial Tutorial 2 - Threat Analysis Paradigms in

67© 2008 Barbeau, García-Alfaro and Laurendeau 67© 2008 Barbeau, García-Alfaro and Laurendeau

35 · 006A13A · 012B5F · 000034DA0

ELECTRONIC PRODUCT CODE

Header Manager number Object class Serial number

LogicLogicCircuitryCircuitry

MemoryMemoryCircuitryCircuitry

RFRFCircuitryCircuitry

- Antenna pads- Demodulation/Modulation circuits- Capacitor/rectifier for storing energy and power the circuits

RF Circuitry

Characteristics of EPC tags

Page 68: Industrial Tutorial 2 - Threat Analysis Paradigms in

68© 2008 Barbeau, García-Alfaro and Laurendeau 68© 2008 Barbeau, García-Alfaro and Laurendeau

• Security features are minimalist− Kill & Access command

Security features of EPC tags

Page 69: Industrial Tutorial 2 - Threat Analysis Paradigms in

69© 2008 Barbeau, García-Alfaro and Laurendeau 69© 2008 Barbeau, García-Alfaro and Laurendeau

• Security features are minimalist− Kill & Access command

• Communication over insecure channel− Lack of authentication & confidentiality

Security features of EPC tags

Page 70: Industrial Tutorial 2 - Threat Analysis Paradigms in

70© 2008 Barbeau, García-Alfaro and Laurendeau 70© 2008 Barbeau, García-Alfaro and Laurendeau

TagReader

Nominal range

(reader-to-tag channel)

Eavesdropping of reader-to-tag communications

Eavesdropping reader channel

Page 71: Industrial Tutorial 2 - Threat Analysis Paradigms in

71© 2008 Barbeau, García-Alfaro and Laurendeau

Nominal range

(tag-to-reader channel)

Tag

Eavesdropping of tag-to-reader communications

Reader

Eavesdropping of reader-to-tag communications

Eavesdropping tag channel

71© 2008 Barbeau, García-Alfaro and Laurendeau

Page 72: Industrial Tutorial 2 - Threat Analysis Paradigms in

72© 2008 Barbeau, García-Alfaro and Laurendeau 72© 2008 Barbeau, García-Alfaro and Laurendeau

Nominal range

Tag

Rogue scanning range

Eavesdropping of reader-to-tag communications

Reader

Rogue scanning

Page 73: Industrial Tutorial 2 - Threat Analysis Paradigms in

73© 2008 Barbeau, García-Alfaro and Laurendeau

• Are read-range distances sufficient to allow for it?

– If we consider a dishonest third party using highly sensitive receivers, special antenna, … yes, it might be possible

Reader Tag

Eavesdropping of reader-to-tag communications

Rogue scanning range

Eavesdropping of tag-to-reader communications

Nominal range

Motivation

73© 2008 Barbeau, García-Alfaro and Laurendeau

Page 74: Industrial Tutorial 2 - Threat Analysis Paradigms in

74© 2008 Barbeau, García-Alfaro and Laurendeau

• Eavesdropping the exchange of data between readers and tags, attackers can store the data, manipulate it, and retransmit modifications to illicitly request specific actions

Consequences … replay attacks

74© 2008 Barbeau, García-Alfaro and Laurendeau

Page 75: Industrial Tutorial 2 - Threat Analysis Paradigms in

75© 2008 Barbeau, García-Alfaro and Laurendeau 75© 2008 Barbeau, García-Alfaro and Laurendeau

• It can lead to clandestine inventory, espionage of the organization, …

– For retailers, impact might be rated as medium– For the management of materiel on health care or military

scenarios, impact might be rated as high

• Which information could be disclosed? the EPC number associated to a tagged object

ELECTRONIC PRODUCT CODE

Header Manufacturer Object class Serial number

Consequences … disclosure of information

Page 76: Industrial Tutorial 2 - Threat Analysis Paradigms in

76© 2008 Barbeau, García-Alfaro and Laurendeau 76© 2008 Barbeau, García-Alfaro and Laurendeau

EPC/RFID Threat Analysis

Threat SecurityMeasures Likelihood Impact Risk

Eavesdropping None LikelyMedium

High Critical

Major

Rogue Scanning None Likely

Medium

High Critical

Major

Page 77: Industrial Tutorial 2 - Threat Analysis Paradigms in

77© 2008 Barbeau, García-Alfaro and Laurendeau 77© 2008 Barbeau, García-Alfaro and Laurendeau

• Shielding, jamming, blockers, guardians, …– It may work on some other RFID scenarios– Requires the management of new components

How to deal with these threats ?

Page 78: Industrial Tutorial 2 - Threat Analysis Paradigms in

78© 2008 Barbeau, García-Alfaro and Laurendeau 78© 2008 Barbeau, García-Alfaro and Laurendeau

• Shielding, jamming, blockers, guardians, …– It may work on some other RFID scenarios– Requires the management of new components

• Use of lightweight cryptography– E.g., implementation of XOR-based authentication protocols

How to deal with these threats ?

Page 79: Industrial Tutorial 2 - Threat Analysis Paradigms in

79© 2008 Barbeau, García-Alfaro and Laurendeau 79© 2008 Barbeau, García-Alfaro and Laurendeau

• Hash-lock approach:– Readers and tags must share a common secret (s) – When tag receives pseudoID = hash(s), it locks itself

→ when interrogated, it only answers with pseudoID– Tag unlocks itself when it receives the secret

Reader TagIDx

Locking the tag

pseudoID ← hash(s)s,pseudoID

hash(s)

Hash-based AC

Page 80: Industrial Tutorial 2 - Threat Analysis Paradigms in

80© 2008 Barbeau, García-Alfaro and Laurendeau 80© 2008 Barbeau, García-Alfaro and Laurendeau

Reader TagIDx

Querying a locked tag

s,pseudoID

(Q)uery

hash(s)

Hash-based AC

Page 81: Industrial Tutorial 2 - Threat Analysis Paradigms in

81© 2008 Barbeau, García-Alfaro and Laurendeau 81© 2008 Barbeau, García-Alfaro and Laurendeau

TagIDx

Querying a locked tag

(Q)uery

hash(s)

Hash-based AC

Page 82: Industrial Tutorial 2 - Threat Analysis Paradigms in

82© 2008 Barbeau, García-Alfaro and Laurendeau 82© 2008 Barbeau, García-Alfaro and Laurendeau

EPC/RFID Threat AnalysisThreat Security

Measures Likelihood Impact Risk

Eavesdropping None LikelyMedium

High Critical

Major

Rogue Scanning None Likely

Medium

High Critical

Major

Page 83: Industrial Tutorial 2 - Threat Analysis Paradigms in

83© 2008 Barbeau, García-Alfaro and Laurendeau 83© 2008 Barbeau, García-Alfaro and Laurendeau

EPC/RFID Threat AnalysisThreat Security

Measures Likelihood Impact Risk

Eavesdropping Hash-based AC UnlikelyMedium

High

Rogue Scanning Unlikely

Medium

High

Minor

Minor

Minor

MinorHash-based AC

Eavesdropping None LikelyMedium

High Critical

Major

Rogue Scanning None Likely

Medium

High Critical

Major

Page 84: Industrial Tutorial 2 - Threat Analysis Paradigms in

Activity 1: XOR-based hash

hash(s:array of symbol){symbol H = 0000 0000; for (int i = 0; i < length(s); i++){

H = H XOR si;}return H;

}

Given the following function:

and the following table of symbols:

! = 0001 0000 $ = 0001 0001 % = 0001 1100 ? = 0001 1111 . = 0010 1110

0 = 0011 0000 1 = 0011 0001 2 = 0011 0010 3 = 0011 0011 5 = 0011 0101

6 = 0011 0110 7 = 0011 0111 8 = 0011 1000 9 = 0011 1001 & = 0100 0000

A = 0100 0001 B = 0100 0010 C = 0100 0011 D = 0100 0100 F = 0100 0110

Page 85: Industrial Tutorial 2 - Threat Analysis Paradigms in

85© 2008 Barbeau, García-Alfaro and Laurendeau 85© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 1: XOR-based hash

1) hash(“ABC”)2) hash(“BCA”)3) hash(“35.006A13A”)

Compute the following operations:

Page 86: Industrial Tutorial 2 - Threat Analysis Paradigms in

86© 2008 Barbeau, García-Alfaro and Laurendeau 86© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 1: XOR-based hash

Solution:

1) hash(“ABC”) “&” (0100 0000)

Iterations:

0000 00000100 0001(xor)

0100 0001(1)

0100 00010100 0010(xor)

0000 0011(2)

0100 00110100 0011(xor)

0100 0000(3)

Page 87: Industrial Tutorial 2 - Threat Analysis Paradigms in

87© 2008 Barbeau, García-Alfaro and Laurendeau 87© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 1: XOR-based hash

Solution:

2) hash (“BCA”) “&” (0100 0000)

Iterations:

Page 88: Industrial Tutorial 2 - Threat Analysis Paradigms in

88© 2008 Barbeau, García-Alfaro and Laurendeau 88© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 1: XOR-based hash

Solution:

3) hash (“35.006A13A”) “%” (0001 1100)

Iterations:

Page 89: Industrial Tutorial 2 - Threat Analysis Paradigms in

89© 2008 Barbeau, García-Alfaro and Laurendeau 89© 2008 Barbeau, García-Alfaro and Laurendeau

EPC/RFID Threat Analysis

Threat SecurityMeasures Likelihood Impact Risk

Eavesdropping Hash-based AC UnlikelyMedium

High

Rogue Scanning Unlikely

Medium

High

Minor

Minor

Minor

MinorHash-based AC

Tracking LikelyMedium

High Critical

MajorHash-based AC

Page 90: Industrial Tutorial 2 - Threat Analysis Paradigms in

90© 2008 Barbeau, García-Alfaro and Laurendeau

Reader TagSx

QuerySelect random R

R,hash(Sx, R)S1…Sx…

Searches hash(Sx, R)

90© 2008 Barbeau, García-Alfaro and Laurendeau

Randomized Hash-based AC

Page 91: Industrial Tutorial 2 - Threat Analysis Paradigms in

91© 2008 Barbeau, García-Alfaro and Laurendeau 91© 2008 Barbeau, García-Alfaro and Laurendeau

EPC/RFID Threat Analysis

Threat SecurityMeasures Likelihood Impact Risk

Eavesdropping Hash-based AC UnlikelyMedium

High

Rogue Scanning Unlikely

Medium

High

Minor

Minor

Minor

MinorHash-based AC

Tracking UnlikelyMedium

HighRandomizedHash-based AC

Minor

Minor

Page 92: Industrial Tutorial 2 - Threat Analysis Paradigms in

Activity 2: keyed-hash

hash(s:array of symbol){symbol H = 0000 0000; for (int i=0;i<length(s);i++){

H = H XOR si;}return H;}

Given these two functions:k_hash(m:array of symbol,k:symbol){

symbol H = NULL;symbol I = 0010 1001;symbol O = 0110 0101;

I = I XOR k;H = hash( [I, m ])return hash( [H, O ]);

}

and the following table of symbols:

! = 0001 0000 $ = 0001 0001 % = 0001 1100 ? = 0001 1111 . = 0010 1110

0 = 0011 0000 1 = 0011 0001 2 = 0011 0010 3 = 0011 0011 5 = 0011 0101

6 = 0011 0110 7 = 0011 0111 8 = 0011 1000 9 = 0011 1001 & = 0100 0000

A = 0100 0001 B = 0100 0010 C = 0100 0011 D = 0100 0100 F = 0100 0110

Page 93: Industrial Tutorial 2 - Threat Analysis Paradigms in

93© 2008 Barbeau, García-Alfaro and Laurendeau 93© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 2: keyed-hash

1) k_hash(“ABC”, “!”)2) k_hash(“ABC”, “5”)

Compute the following operations:

Page 94: Industrial Tutorial 2 - Threat Analysis Paradigms in

94© 2008 Barbeau, García-Alfaro and Laurendeau 94© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 2: keyed-hash

Solution:

1) k_hash(“ABC”, “!”) “%” (0001 1100)

Iterations:

Page 95: Industrial Tutorial 2 - Threat Analysis Paradigms in

95© 2008 Barbeau, García-Alfaro and Laurendeau 95© 2008 Barbeau, García-Alfaro and Laurendeau

Activity 2: keyed-hash

Solution:

2) k_hash(“ABC”, “5”) “9” (0011 1001)

Iterations:

Page 96: Industrial Tutorial 2 - Threat Analysis Paradigms in

© 2008 Barbeau, García-Alfaro and Laurendeau 96© 2008 Barbeau, García-Alfaro and Laurendeau

References• M. Barbeau and C. Laurendeau, "Analysis of Threats to WiMAX/802.16

Security", in: Y. Zhang and H.-H. Chen (Editors), Mobile WiMAX: Toward Broadband Wireless Metropolitan Area Networks, CRC Press, 2008.

• J. Garcia-Alfaro, M. Barbeau and E. Kranakis, Analysis of Threats to the Security of EPC Networks, Sixth Annual Communication Networks and Services Research (CNSR) Conference, Halifax, Nova Scotia, Canada, 2008.

• M. Barbeau and E. Kranakis. Principles of Ad Hoc Networking. John Wiley & Sons Ltd, West Sussex, England, 2007.

• M. Barbeau and C. Laurendeau, “Tilting at Giants: Avoiding Quixotic Pursuits in Understanding the Threats to Wireless Network Security,” MITACS e-newsletter, Connections, September 2007.

• C. Laurendeau and M. Barbeau, Threats to Security in DSRC/WAVE, 5th International Conference on Ad-hoc Networks, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume 4104, 2006, pp. 266-279.

URLs: http://www.scs.carleton.ca/~barbeau/http://www.scs.carleton.ca/~claurend/http://www.scs.carleton.ca/~joaquin/