influence of certain forces on evolution of...

14
FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects C. SELVA KUMAR 1 , RAHUL R. NAIR 2 , K. G. SIVARAMAKRISHNAN 3 , D. GANESH 4 , S. JANARTHANAN 1 , M. ARUNACHALAM 5 , & T. SIVARUBAN 6 1 Department of Zoology, University of Madras, Chennai 600 025, Tamil Nadu, India, 2 Department of Biotechnology, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India, 3 Department of Zoology, Madras Christian College, Tambaram East, Chennai 600 059, Tamil Nadu, India, 4 Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India, 5 Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India, and 6 Department of Zoology, The American College, Madurai 625002, Tamil Nadu, India (Received 3 February 2012; revised 3 July 2012; accepted 3 July 2012) Abstract Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat–microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages. Keywords: Aquatic insects, relative synonymous codon usage, Ephemeroptera, Plecoptera, Odonata, mitochondrial DNA Introduction When the genetic code was deciphered in the 1960s, it became very clear that most amino acids are encoded by multiple codons, typically differing only at the third position of the codon, i.e. synonymous codons (Sharp et al. 2010). There are a total of 64 codons, with 61 of them coding for 20 different amino acids and the remaining three serving as stop codons. Usage of synonymous codons is not at equal frequencies both within and between organisms (Grantham et al. 1980; Liu et al. 2011; Sablok et al. 2011; Xu et al. 2011). The trends in synonymous codon usage (SCU) ISSN 1940-1736 print/ISSN 1940-1744 online q 2012 Informa UK, Ltd. DOI: 10.3109/19401736.2012.710203 Correspondence: K. G. Sivaramakrishnan, Department of Zoology, Madras Christian College, Tambaram East, Chennai 600 059, Tamil Nadu, India. Tel: þ 91 9940490259. Fax: þ 91-44-22352494/3309. E-mail: [email protected] Mitochondrial DNA, December 2012; 23(6): 447–460 Mitochondrial DNA Downloaded from informahealthcare.com by IBI Circulation - Ashley Publications Ltd on 03/07/13 For personal use only.

Upload: others

Post on 05-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

FULL LENGTH RESEARCH PAPER

Influence of certain forces on evolution of synonymous codon usage biasin certain species of three basal orders of aquatic insects

C. SELVA KUMAR1, RAHUL R. NAIR2, K. G. SIVARAMAKRISHNAN3, D. GANESH4,

S. JANARTHANAN1, M. ARUNACHALAM5, & T. SIVARUBAN6

1Department of Zoology, University of Madras, Chennai 600 025, Tamil Nadu, India, 2Department of Biotechnology,

Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412,

Tamil Nadu, India, 3Department of Zoology, Madras Christian College, Tambaram East, Chennai 600 059, Tamil Nadu,

India, 4Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,

Tamil Nadu, India, 5Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University,

Alwarkurichi 627412, Tamil Nadu, India, and 6Department of Zoology, The American College, Madurai 625002,

Tamil Nadu, India

(Received 3 February 2012; revised 3 July 2012; accepted 3 July 2012)

AbstractForces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquaticinsects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and twofrom Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating theunderstanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineagesand their subtle differences in some of their ecological and environmental requirements in terms of habitat–microhabitatrequirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts.The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of sixcarefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the sixspecies, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Sincetranscription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may bethe key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesispredicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be animportant factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains thepredominance of A and T ending codons in these species. This study does not find any association between microhabitatsand codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces,such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in theprimitive clades of insect lineages.

Keywords: Aquatic insects, relative synonymous codon usage, Ephemeroptera, Plecoptera, Odonata, mitochondrial DNA

Introduction

When the genetic code was deciphered in the 1960s, it

became very clear that most amino acids are encoded

by multiple codons, typically differing only at the

third position of the codon, i.e. synonymous codons

(Sharp et al. 2010). There are a total of 64 codons,

with 61 of them coding for 20 different amino acids

and the remaining three serving as stop codons. Usage

of synonymous codons is not at equal frequencies

both within and between organisms (Grantham et al.

1980; Liu et al. 2011; Sablok et al. 2011; Xu et al.

2011). The trends in synonymous codon usage (SCU)

ISSN 1940-1736 print/ISSN 1940-1744 online q 2012 Informa UK, Ltd.

DOI: 10.3109/19401736.2012.710203

Correspondence: K. G. Sivaramakrishnan, Department of Zoology, Madras Christian College, Tambaram East, Chennai 600 059,Tamil Nadu, India. Tel: þ 91 9940490259. Fax: þ 91-44-22352494/3309. E-mail: [email protected]

Mitochondrial DNA, December 2012; 23(6): 447–460

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 2: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

differ considerably among species, and also among

genes from the same species (Hershberg and Petrov

2008; Plotkin and Kudla 2010). Synonymous codons

are considered to be integrated parts of the genetic

code for maintaining its functional integrity (Biro

2008). In most genomes, SCU exhibits ‘codon usage

biases’ or nonrandom usage of codons within a single

amino acid family toward some preferred codons.

Recently, weak selection of preferred codons (codon

usage bias) has been shown as a significant evolution-

ary force (Carlini et al. 2001). This phenomenon has

been studied widely in bacterial, fungal, and insect

genes (Ikemura 1982; Sharp and Cowe 1991;

Moriyama and Powell 1997), as it is an important

component between patterns of genomic expression

and protein evolution, which in turn has high

significance in constructing models for the estimation

of evolutionary rates and implications regarding

phylogenetic reconstructions (Sarmer and Sullivan

1989; Wall and Herback 2003).

Departure from the random usage of codons has

been considered from two main perspectives: (i) base

composition constraints of genomes that generate a

bias in degenerate positions of coding regions

(Bernardi and Bernardi 1986) and (ii) natural selection

favoring protein elongation rates, i.e. translational

efficiency (Bulmer 1991) and for lessening the errors in

translating mRNA transcripts, i.e. translational accu-

racy (Akashi 1994). In addition, synonymous codon

usage bias (SCUB) is often attributed to codon/

anticodon interaction (Kurland 1993), site-specific

codon biases (Smith and Smith 1996), time of

replication (Deschavanne and Filipski 1995), codon

context (Irwin et al. 1995), and evolutionary age

(Karlin et al. 1998). In the context of molecular

evolution, the selection–mutation theory of SCU plays

a critical role by elucidating the co-evolution of

nonrandom usage of codons and tRNA content in

the context of translation optimization (Rocha 2004).

Insects are a very biodiverse taxonomic group with

high AT content in their mitochondrial genome (Sun

et al. 2009), and the gene content of the insect

mitochondrial genome is usually highly conserved but

not without some exceptions (Zhang et al. 2008).

Though codon usage prefers AT richness, nucleotide

content and codon usage bias may vary among taxa

(Sun et al. 2009). Perusal of published literature on

SCUB reveals paucity of information on aquatic insect

genomes. The rationale behind choosing six species of

aquatic insects (three from Ephemeroptera, one from

Plecoptera, and two from Odonata) for the present

analysis is based on the phylogenetic position of these

taxa at the base of the Order Insecta. Examining these

basal taxa should facilitate the better understanding of

the evolution of codon bias and of factors shaping

codon usage patterns in primitive clades of insect

lineages. In addition, we can examine the impact of

subtle differences in some of the ecological and

environmental requirements of these taxa in terms

of habitat–microhabitat requirements, altitudinal

preferences, temperature tolerance ranges, and con-

sequent responses to climate change impacts (Table I)

on codon bias. The present analysis focuses on open

reading frames (ORFs) of the standard 13 protein-

coding genes in the mitochondrial genome of six

carefully chosen basal insect species to get a

comprehensive picture of the evolutionary intricacies

of codon bias.

Materials and methods

Sequence data

The sequences of 13 protein-coding genes in

mitochondria of six species of aquatic insects were

retrieved from the National Centre for Biotechnology

Information (NCBI), and gene IDs are given in

Table II.

Table I. Systematic position, microhabitats, and influence of climate change in habitats of selected aquatic insects.

Species Systematic position Altitudinal, habitat, and thermal preference Climate change impacts

Ephemera orientalis Ephemeroptera Larvae burrowing on sandy substratum

in streams and rivers

Moderate range shift to higher elevations

Parafronurus youi Ephemeroptera Mid latitudinal preference Moderate range shift to higher elevations

Lotic in small streams

Somewhat eurythermal

Siphlonurus immanis Ephemeroptera Mid latitudinal preference Moderate range shift to higher elevations

Lotic in small streams

Somewhat eurythermal

Pteronarcys princeps Plecoptera Preference for high, altitude streams Range shift to higher altitudes

Cold stenothermal

Davidius lunatus Odonata Low altitude preference Range extention to cooler areas

Inhabits warmer

Water bodies

Euphaea formosa Odonata Low altitude preference Range extention to cooler areas

Inhabits warmer

Water bodies

C. Selva Kumar et al.448

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 3: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Relative synonymous codon usage (RSCU)

To study the features of SCU variations by avoiding

the influence of amino acid composition, the RSCU

values of all sequences were calculated according to

the following equation (Sharp et al. 1986).

RSCU ¼ Observed frequency of a codon=Expected

frequency provided all synonymous

codons for those amino acids used equally:

The effective number of codons (NC) (Wright 1990)

This index is a simple measure bias of synonymous

codons. The values of effective number of codons

(ENC) vary from 20 (when only one codon is used for

each amino acid) to 61 (when codons are used

randomly). If the calculated ENC is greater than 61

(because codon usage is more evenly distributed than

expected), it is adjusted to 61. ENCs of all sequences

were calculated as per the equation

ENC ¼ 2 þ sþ29

s2 þ ð1 2 s2ÞðWright 1990Þ;

where s ¼ GC3 (GC content at the third codon

position).

Sequence analysis

All sequence analysis was carried out by using

MEGA version 4.0 (Molecular Evolutionary Genetic

Analysis) (Tamura et al. 2007).

Statistical methods

Correspondence analysis (COA). COA is extensively

used to analyze multidimensional data (Perriere and

Thioulouse 2002). COA is used to analyze RSCU

data to explore the different characterestics of SCU

Table II. Name of aquatic insects and genes analyzed in this study.

Species Gene ID Length

E. orientalis ATP6 7804414 677

ATP8 7804413 162

COX1 7804411 1534

COX2 7804412 688

COX3 7804415 789

CYTB 7804421 1135

ND1 7804422 942

ND2 7804410 1018

ND3 7804416 354

ND4 7804418 1342

ND4L 7804419 297

ND5 7804417 1735

ND6 7804420 522

S. immanis ATP6 8774447 678

ATP8 8774446 162

COX1 8774444 1567

COX2 8774445 688

COX3 8774448 789

CYTB 8774454 1135

ND1 8774455 939

ND2 8774443 1017

ND3 8774449 354

ND4 8774451 1342

ND4L 8774452 297

ND5 8774450 1735

ND6 8774453 519

P. youi ATP6 6973033 675

ATP8 6973032 159

COX1 6973030 1536

COX2 6973031 688

COX3 6973034 788

CYTB 6973040 1135

ND1 6973041 951

ND2 6973029 1033

ND3 6973035 355

ND4 6973037 1346

ND4L 6973038 297

ND5 6973036 1734

ND6 6973039 510

P. princeps ATP6 2943519 678

ATP8 2943516 158

COX1 2943513 1532

COX2 2943510 688

COX3 2943521 789

CYTB 2943518 1137

ND1 2943517 951

ND2 2943512 1035

ND3 2943509 353

ND4 2943511 1341

ND4L 2943514 297

ND5 2943520 1736

ND6 2943515 525

D. lunatus ATP6 7804400 677

ATP8 7804399 162

COX1 7804397 1533

COX2 7804398 688

COX3 7804401 787

CYTB 7804407 1132

ND1 7804408 942

ND2 7804396 997

ND3 7804402 352

ND4 7804404 1343

ND4L 7804405 294

ND5 7804403 1729

ND6 7804406 519

Table II – continued

Species Gene ID Length

E. formosa ATP6 9725966 675

ATP8 9725965 159

COX1 9725963 1548

COX2 9725964 688

COX3 9725967 787

CYTB 9725973 1134

ND1 9725974 951

ND2 9725975 990

ND3 9725968 354

ND4 9725970 1344

ND4L 9725971 294

ND5 9725969 1723

ND6 9725972 498

Codon bias of mtDNA in aquatic insects 449

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 4: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Table III. Identified nucleotide contents in complete coding regions of protein-coding mitogenes in six selected species.

Species A T G C A3 T3 G3 C3 GC3 ENC

E. orientalis ATP6 0.299 0.380 0.112 0.208 0.568 0.474 0.035 0.151 0.160 39.8

ATP8 0.308 0.407 0.067 0.216 0.567 0.568 0.00 0.159 0.132 37.3

COX1 0.281 0.365 0.164 0.189 0.574 0.485 0.032 0.159 0.163 40.0

COX2 0.330 0.337 0.137 0.194 0.616 0.460 0.056 0.178 0.188 43.4

COX3 0.295 0.352 0.149 0.202 0.618 0.437 0.028 0.218 0.206 43.5

CYTB 0.301 0.372 0.132 0.193 0.665 0.446 0.032 0.173 0.175 38.5

ND1 0.290 0.436 0.103 0.169 0.579 0.506 0.075 0.115 0.153 38.0

ND2 0.279 0.443 0.104 0.172 0.546 0.550 0.04 0.180 0.179 46.3

ND3 0.267 0.471 0.176 0.085 0.500 0.600 0.147 0.010 0.119 32.0

ND4 0.252 0.508 0.158 0.080 0.493 0.607 0.169 0.000 0.122 32.9

ND4L 0.291 0.442 0.176 0.090 0.487 0.631 0.156 0.025 0.131 32.7

ND5 0.335 0.419 0.074 0.170 0.728 0.417 0.016 0.145 0.139 31.1

ND6 0.241 0.475 0.192 0.091 0.416 0.636 0.190 0.022 0.153 32.1

S. immanis ATP6 0.289 0.405 0.118 0.187 0.543 0.490 0.056 0.155 0.178 35.1

ATP8 0.333 0.382 0.067 0.216 0.578 0.523 0.026 0.190 0.170 30.6

COX1 0.260 0.379 0.175 0.184 0.482 0.527 0.093 0.142 0.192 38.7

COX2 0.331 0.343 0.139 0.185 0.622 0.466 0.069 0.157 0.179 42.9

COX3 0.278 0.367 0.162 0.191 0.556 0.480 0.089 0.173 0.210 42.2

CYTB 0.291 0.374 0.138 0.196 0.617 0.446 0.056 0.188 0.204 39.6

ND1 0.255 0.456 0.194 0.092 0.469 0.584 0.204 0.029 0.167 34.8

ND2 0.265 0.441 0.112 0.180 0.485 0.522 0.109 0.149 0.206 42.8

ND3 0.265 0.457 0.127 0.149 0.500 0.529 0.135 0.156 0.222 39.3

ND4 0.268 0.456 0.177 0.097 0.495 0.549 0.179 0.053 0.177 35.6

ND4L 0.298 0.422 0.177 0.101 0.506 0.563 0.177 0.058 0.175 36.5

ND5 0.298 0.422 0.177 0.101 0.506 0.563 0.177 0.058 0.175 36.5

ND6 0.310 0.450 0.07 0.167 0.620 0.500 0.008 0.160 0.145 38.5

P. youi ATP6 0.250 0.403 0.132 0.215 0.390 0.552 0.067 0.189 0.219 41.2

ATP8 0.270 0.428 0.088 0.214 0.500 0.561 0.111 0.171 0.212 39.9

COX1 0.266 0.363 0.167 0.204 0.501 0.496 0.069 0.182 0.208 41.3

COX2 0.297 0.344 0.154 0.206 0.497 0.487 0.093 0.215 0.245 47.8

COX3 0.274 0.352 0.155 0.219 0.542 0.425 0.051 0.270 0.267 45.5

CYTB 0.259 0.382 0.145 0.215 0.492 0.463 0.081 0.242 0.267 44.6

ND1 0.235 0.443 0.223 0.100 0.407 0.515 0.317 0.051 0.266 41.9

ND2 0.270 0.416 0.118 0.196 0.500 0.515 0.076 0.177 0.206 41.1

ND3 0.263 0.401 0.120 0.216 0.507 0.456 0.052 0.272 0.271 43.4

ND4 0.272 0.444 0.186 0.099 0.539 0.492 0.195 0.052 0.185 40.3

ND4L 0.259 0.444 0.199 0.098 0.437 0.469 0.310 0.086 0.296 46.9

ND5 0.293 0.412 0.188 0.108 0.496 0.529 0.213 0.063 0.206 40.8

ND6 0.265 0.435 0.092 0.208 0.446 0.521 0.058 0.219 0.231 42.6

P. princeps ATP6 0.310 0.415 0.100 0.176 0.609 0.495 0.033 0.142 0.145 38.4

ATP8 0.290 0.371 0.162 0.178 0.589 0.502 0.047 0.130 0.145 37.3

COX1 0.303 0.376 0.141 0.180 0.550 0.589 0.025 0.107 0.109 38.6

COX2 0.354 0.392 0.076 0.177 0.647 0.571 0.029 0.119 0.115 41.2

COX3 0.301 0.395 0.120 0.184 0.571 0.478 0.043 0.144 0.160 42.2

CYTB 0.275 0.378 0.147 0.200 0.583 0.502 0.017 0.170 0.160 38.5

ND1 0.302 0.404 0.113 0.181 0.671 0.455 0.025 0.158 0.154 34.8

ND2 0.287 0.443 0.172 0.098 0.536 0.556 0.175 0.027 0.147 36.1

ND3 0.274 0.464 0.169 0.093 0.525 0.561 0.179 0.024 0.148 37.6

ND4 0.276 0.495 0.152 0.077 0.606 0.529 0.182 0.012 0.133 35.1

ND4L 0.356 0.389 0.086 0.170 0.706 0.401 0.024 0.176 0.161 39.2

ND5 0.294 0.385 0.134 0.187 0.612 0.458 0.024 0.202 0.193 38.7

ND6 0.239 0.476 0.189 0.096 0.422 0.618 0.229 0.022 0.177 34.1

D. lunatus ATP6 0.342 0.326 0.128 0.203 0.662 0.302 0.090 0.218 0.253 41.4

ATP8 0.413 0.308 0.086 0.191 0.676 0.359 0.088 0.333 0.302 59.0

COX1 0.301 0.324 0.175 0.197 0.625 0.368 0.103 0.186 0.235 43.9

COX2 0.346 0.297 0.162 0.194 0.613 0.393 0.104 0.236 0.258 49.2

COX3 0.321 0.320 0.158 0.199 0.703 0.333 0.089 0.214 0.240 39.6

CYTB 0.330 0.351 0.135 0.182 0.719 0.412 0.057 0.169 0.183 38.8

ND1 0.214 0.469 0.196 0.120 0.307 0.606 0.278 0.108 0.278 41.9

ND2 0.358 0.334 0.111 0.196 0.708 0.315 0.068 0.265 0.256 37.9

ND3 0.347 0.333 0.113 0.206 0.734 0.305 0.048 0.242 0.231 36.3

ND4 0.225 0.468 0.191 0.114 0.375 0.570 0.256 0.091 0.251 41.0

ND4L 0.217 0.527 0.166 0.088 0.344 0.678 0.293 0.035 0.206 35.8

ND5 0.237 0.467 0.186 0.109 0.365 0.649 0.236 0.051 0.203 33.8

ND6 0.366 0.352 0.096 0.185 0.700 0.368 0.081 0.241 0.250 42.8

C. Selva Kumar et al.450

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 5: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

variations across the protein-coding genes in the

mitochondria of six chosen species of aquatic insects.

Correlation analysis. Correlation analysis was used to

analyze the relationship between nucleotide

compositions and SCU patterns. This analysis was

implemented based on the Pearson correlation

method. All statistical processes were carried out

with statistical software Past version 2.12 (Hammer

et al. 2001).

Results

Compositional properties of ORFs of 13 protein-coding

genes

Complex correlations were observed between A, T, G,

C and A3, T3, G3, C3, GC3 contents in all the six

species (Tables III and IV). In Ephemera orientalis,

significant correlations were found between A3, G3, C3

and A, T, G, C contents, but T3 was not correlated

with G. Remarkably, in E. orientalis, GC3 was

observed to be highly correlated with T content,

whereas in other species, individual nucleotide

contents exhibited no correlation with GC3. Con-

sidering Parafronurus youi, T3 showed no correlation

with individual nucleotide contents, and A3 was found

to be correlated only with T, G, C contents and it was

not correlated with A. In Siphlonurus immanis, T3 was

correlated only with T, whereas A3 and G3 were found

to have correlations with A, G, C contents. C3

exhibited high correlations with all individual nucleo-

tide contents except with A. In Pteronarcys princeps, G3

was highly correlated with all individual nucleotide

contents but T3 showed no correlations with A, T, G,

C. Higher correlations existed between A3 and T, A,

G. But C3 showed correlation with T, G, C. In

Davidius lunatus and Euphaea formosa, individual

nucleotide contents were highly correlated with T3,

A3, G3, C3. These data suggest that compositional

constraints greatly influence codon usage variations in

all the six selected species, particularly in D. lunatus

and E. formosa.

Characteristics of overall RSCU

Overall codon usage pattern of all the six species is

summarized in Table V. Insect mitochondrial genomes

use AGA and AGG (ariginine in the universal code) to

code for Ser, AUA (isoleucine in the universal code) to

code for methionine, UGA (termination codon in the

universal code) to code for tryptophan, but in certain

groups, AGG is either used for coding Lys instead of

Ser or absent (Abascal et al. 2006). Since insect

mitochondrial genomes are AT rich, all the amino

acids were found to use A and T ending codons

preferentially in all the chosen species. From the

overall RSCU values, it can be assumed that

compositional constraints influenced in shaping

codon usage variation across genes of all six species.

Codons with RSCU value greater than one are

preferred codons and those with RSCU value less than

0.66 are considered as rare codons. If the RSCU value

of any codon falls between 0.66 and 1, such codons

are termed as intermediate codons.

Characteristics of strand-specific codon usage

Since mitochondrial DNA does not follow Chargaff’s

parity rule (Buehler 2006; Nikolaou and Almirantis

2006), codon usage analysis of the majority (J strand)

and the minority strand (N strand) of these insect

genomes would be appropriate to understand different

mutation biases acting on the genes of these two

strands (Table VI). Strand-specific analysis of codon

usage reveals that in the selected species of aquatic

insects, the third codon position of most of the amino

acids in majority strand-encoded genes is biased

Table III – continued

Species A T G C A3 T3 G3 C3 GC3 ENC

E. formosa ATP6 0.370 0.330 0.111 0.188 0.770 0.323 0.044 0.177 0.179 36.3

ATP8 0.465 0.302 0.082 0.151 0.800 0.412 0.025 0.147 0.115 30.2

COX1 0.333 0.308 0.168 0.191 0.718 0.324 0.072 0.177 0.202 36.8

COX2 0.384 0.287 0.157 0.173 0.742 0.368 0.092 0.175 0.197 40.5

COX3 0.338 0.309 0.156 0.197 0.781 0.312 0.055 0.188 0.195 35.4

CYTB 0.352 0.325 0.138 0.185 0.807 0.320 0.073 0.169 0.194 33.7

ND1 0.212 0.483 0.192 0.113 0.318 0.674 0.229 0.063 0.209 33.4

ND2 0.405 0.318 0.112 0.165 0.767 0.310 0.091 0.220 0.228 35.8

ND3 0.396 0.322 0.113 0.170 0.915 0.261 0.012 0.185 0.154 28.3

ND4 0.181 0.539 0.178 0.102 0.220 0.748 0.233 0.042 0.188 30.2

ND4L 0.180 0.561 0.180 0.078 0.226 0.753 0.258 0.035 0.196 29.2

ND5 0.208 0.499 0.184 0.110 0.275 0.728 0.226 0.054 0.192 32.8

ND6 0.392 0.343 0.112 0.153 0.730 0.406 0.090 0.172 0.194 39.1

Note: All the nucleotide contents are in fraction of 1/100.

Codon bias of mtDNA in aquatic insects 451

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 6: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

toward A and in minority strand-encoded genes, the

third codon position of most of the amino acids is

biased toward T, although some exceptions do occur.

Variations of ENC values and GC distributions at

silent site suggested that in addition to compositional

constraints, some other forces may also influence in

shaping codon usage patterns.

ENC vs. GC3 plot

ENC vs. GC3 plots give a graphic display of codon

usage patterns across a number of genes. The axes of

this plot are independent of the data and effectively

demonstrate intraspecific and interspecific SCU

patterns (Wright 1990). The ENC Vs GC3 plot was

reported to be highly effective in interpreting patterns

of SCU variations if GC content of the genome

significantly differs from 0.50 (Wright 1990). The

same extreme GC content was encountered in all

the six species of aquatic insects under analysis to

ascertain the influence of two well-discussed evol-

utionary forces, GC compositional constraints, and

natural selection for translational accuracy. ENC and

GC3 values were calculated and plotted (Figure 1a–f)

for the six species in this study using the null

hypothesis that expected SCU pattern is influenced

only by GC compositional constraints. If a particular

gene is subjected to GC compositional constraints, it

will lie on or just below the expected GC3 curve. If the

SCU pattern of a gene is influenced by translational

selection, it will lie considerably below the GC3 curve.

The grouping of the majority of genes on or below

the left-hand side of the expected GC curve (Figure 1)

indicates that in all six species of aquatic insects (three

in Ephemeroptera, one in Plecoptera, and two in

Odonata) extreme compositional constraints are

involved in shaping SCU pattern across genes.

Independent evolution of codon bias and tRNA

anticodons in insect mitochondrial genome minimizes

the possibilities of natural selection for translational

accuracy in shaping codon usage (Sun et al. 2009).

Since the mitochondrial genomes are AT rich and GC

poor in all the six species, A and Tending codons were

used roughly equally, and more frequently than G and

C ending codons. This would substantiate the role of

mutation pressure rather than transcription hypoth-

esis of codon usage (Xia 1996) in framing SCU

patterns of genes in all six species of aquatic insects

(Figure 2).

Correspondence analysis. A multivariate statistical

analysis based on COA was used to examine the

variation in codon usage patterns among the 13

protein-coding genes of the six basal insect species in

this study. The complete coding region of each gene in

our study was represented as a 62 dimensional vector

(62 synonymous codons in insect mitochondria), and

Tab

leIV

.P

ears

on

corr

elati

on

an

aly

sis

bet

wee

nA

,T

,G

,C

con

ten

tsan

dA

3,

T3,

G3,

C3,

GC

3co

nte

nts

inO

RF

sof

13

pro

tein

-cod

ing

gen

esof

six

chose

nsp

ecie

s.

E.orientalis

P.youi

S.im

manis

P.princeps

D.lunatus

E.form

osa

T3

A3

G3

C3

GC

3T

3A

3G

3C

3G

C3

T3

A3

G3

C3

GC

3T

3A

3G

3C

3G

C3

T3

A3

G3

C3

GC

3T

3A

3G

3C

3G

C3

T0.78720.644

0.74820.84520.734

0.4

412

0.3

94

0.603

0.6522

0.1

08

0.7702

0.5

15

0.4

1720.680

0.5

07

0.4

512

0.4

85

0.92120.861

0.0

48

0.94620.913

0.93720.9042

0.3

05

0.96020.966

0.94620.953

0.2

05

A20.733

0.84520.743

0.664

0.2

932

0.0

80

0.6382

0.2

63

0.1

192

0.3

322

0.5

08

0.79320.604

0.5

052

0.0

422

0.4

68

0.80920.658

0.5

282

0.3

5720.881

0.91120.910

0.956

0.3

4820.881

0.93820.930

0.8872

0.3

96

G0.4

8220.643

0.75820.5742

0.0

472

0.2

592

0.1

37

0.78520.685

0.2

21

0.3

4620.570

0.80820.614

0.1

13

0.5

3720.823

0.72520.641

0.2

28

0.70020.775

0.74220.8072

0.2

61

0.68720.776

0.80020.690

0.5

43

C20.784

0.70420.950

0.949

0.6292

0.0

69

0.1

7520.932

0.931

0.0

0220.810

0.56520.795

0.957

0.4

552

0.5

12

0.5

2420.965

0.934

0.0

3220.984

0.94520.960

0.888

0.2

5420.947

0.90220.892

0.9172

0.0

53

Note

s:F

igu

res

inbold

an

dit

alics

ind

icate

the

sign

ifica

nce

atp,

0.0

05.

Fig

ure

sin

bold

wit

hou

tit

alics

ind

icate

sign

ifica

nce

atp,

0.0

5.

C. Selva Kumar et al.452

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 7: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Tab

leV

.O

vera

llsy

nonym

ou

sco

don

usa

ge

data

of

pro

tein

-cod

ing

mit

ogen

esofE.orientalis,S.im

manis

,P.

youi,P.

princeps,D.lunatus,

an

dE.form

osa.

Ep

hem

erop

tera

Ple

cop

tera

Od

on

ata

E.orientalis

S.im

manis

P.youi

P.princeps

D.lunatus

E.form

osa

AA

Cod

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

U

AG

CT

61

1.2

45

AG

CT

121

2.2

62

AG

CT

76

1.5

12

AGCT

138

2.509

AGCT

105

1.850

AGCT

109

2.086

AG

CG

17

0.3

47

AG

CG

30.0

56

AG

CG

60.1

19

AG

CG

70.1

27

AG

CG

14

0.2

47

AG

CG

12

0.2

30

AG

CC

33

0.6

73

AG

CC

29

0.5

42

AG

CC

29

0.5

77

AG

CC

27

0.4

91

AG

CC

46

0.8

11

AG

CC

43

0.8

23

AG

CA

85

1.7

35

AGCA

61

1.140

AGCA

90

1.791

AG

CA

48

0.8

73

AG

CA

62

1.0

93

AG

CA

45

0.8

61

CTGT

40

1.778

CTGT

36

1.946

CTGT

44

1.833

CTGT

39

1.814

CTGT

40

1.860

CTGT

32

1.829

CT

GC

50.2

22

CT

GC

10.0

54

CT

GC

40.1

67

CT

GC

40.1

86

CT

GC

30.1

40

CT

GC

30.1

71

DGAT

59

1.513

DGAT

50

1.389

DGAT

53

1.359

DGAT

59

1.662

DGAT

49

1.400

DGAT

48

1.371

DG

AC

19

0.4

87

DG

AC

22

0.6

11

DG

AC

25

0.6

41

DG

AC

12

0.3

38

DG

AC

21

0.6

00

DG

AC

22

0.6

29

EG

AG

17

0.4

42

EG

AG

12

0.3

08

EG

AG

17

0.4

10

EG

AG

16

0.3

81

EG

AG

18

0.4

29

EG

AG

15

0.3

75

EGAA

60

1.558

EGAA

66

1.692

EGAA

66

1.590

EGAA

68

1.619

EGAA

66

1.571

EGAA

65

1.625

FTTT

258

1.491

FTTT

237

1.514

FTTT

274

1.579

FTTT

256

1.652

FTTT

254

1.568

FTTT

242

1.546

FT

TC

88

0.5

09

FT

TC

76

0.4

86

FT

TC

73

0.4

21

FT

TC

54

0.3

48

FT

TC

70

0.4

32

FT

TC

71

0.4

54

GG

GT

52

0.8

70

GG

GT

104

1.6

71

GG

GT

73

1.2

22

GG

GT

68

1.1

43

GG

GT

66

1.0

43

GGGT

85

1.377

GG

GG

53

0.8

87

GG

GG

26

0.4

18

GG

GG

45

0.7

53

GG

GG

34

0.5

71

GG

GG

56

0.8

85

GG

GG

71

1.1

50

GG

GC

10

0.1

67

GG

GC

80.1

29

GG

GC

10

0.1

67

GG

GC

14

0.2

35

GG

GC

16

0.2

53

GG

GC

21

0.3

40

GGGA

124

2.075

GGGA

111

1.783

GGGA

111

1.858

GGGA

122

2.050

GGGA

115

1.818

GG

GA

70

1.1

34

HCAC

45

1.084

HC

AC

29

0.6

52

HC

AC

33

0.8

68

HC

AC

17

0.4

20

HC

AC

39

0.8

76

HC

AC

33

0.7

42

HC

AT

38

0.9

16

HCAT

60

1.348

HCAT

43

1.132

HCAT

64

1.580

HCAT

50

1.124

HCAT

56

1.258

IATT

251

1.579

IATT

255

1.735

IATT

250

1.667

IATT

266

1.744

IATT

247

1.698

IATT

274

1.797

IA

TC

67

0.4

21

IA

TC

39

0.2

65

IA

TC

50

0.3

33

IA

TC

39

0.2

56

IA

TC

44

0.3

02

IA

TC

31

0.2

03

KAAA

55

1.264

KAAA

46

1.243

KAAA

52

1.182

KAAA

42

1.135

KA

AA

35

0.9

59

KAAA

47

1.270

KA

AG

32

0.7

36

KA

AG

28

0.7

57

KA

AG

36

0.8

18

KA

AG

32

0.8

65

KAAG

38

1.041

KA

AG

27

0.7

30

LCTA

106

1.963

LC

TA

79

1.6

90

LC

TA

92

1.9

68

LC

TA

69

1.6

43

LC

TA

67

1.2

07

LC

TA

62

1.4

85

LC

TC

11

0.2

04

LC

TC

14

0.2

99

LC

TC

70.1

50

LC

TC

13

0.3

10

LC

TC

31

0.5

59

LC

TC

90.2

16

LC

TG

24

0.4

44

LC

TG

40.0

86

LC

TG

70.1

50

LC

TG

50.1

19

LC

TG

90.1

62

LC

TG

70.1

68

LC

TT

75

1.3

89

LCTT

90

1.925

LCTT

81

1.733

LCTT

81

1.929

LCTT

115

2.072

LCTT

89

2.132

LT

TA

223

1.4

16

LT

TA

383

1.7

14

LT

TA

230

1.4

38

LT

TA

428

1.7

72

LT

TA

325

1.5

48

LT

TA

413

1.7

54

LT

TG

92

0.5

84

LT

TG

64

0.2

86

LT

TG

90

0.5

63

LT

TG

55

0.2

28

LT

TG

95

0.4

52

LT

TG

58

0.2

46

MA

TG

60

0.4

80

MA

TG

35

0.3

55

MA

TG

58

0.4

48

MA

TG

32

0.3

44

MA

TG

31

0.3

43

MA

TG

37

0.3

92

MATA

190

1.520

MATA

162

1.645

MATA

201

1.552

MATA

154

1.656

MATA

150

1.657

MATA

152

1.608

NA

AC

43

0.5

77

NA

AC

24

0.3

40

NA

AC

45

0.5

56

NA

AC

22

0.2

97

NA

AC

37

0.5

25

NA

AC

32

0.4

41

NAAT

106

1.423

NAAT

117

1.660

NAAT

117

1.444

NAAT

126

1.703

NAAT

104

1.475

NAAT

113

1.559

PCCT

63

1.800

PCCT

91

2.476

PC

CT

54

1.5

65

PCCT

75

2.000

PCCT

85

2.179

PCCT

92

2.437

PC

CG

50.1

43

PC

CG

30.0

82

PC

CG

10.0

29

PC

CG

50.1

33

PC

CG

80.2

05

PC

CG

60.1

59

PC

CC

26

0.7

43

PC

CC

13

0.3

54

PC

CC

14

0.4

06

PC

CC

24

0.6

40

PC

CC

34

0.8

72

PC

CC

18

0.4

77

PC

CA

46

1.3

14

PC

CA

40

1.0

88

PCCA

69

2.000

PC

CA

46

1.2

27

PC

CA

29

0.7

44

PC

CA

35

0.9

27

QC

AG

15

0.3

95

QC

AG

80.2

16

QC

AG

15

0.3

57

QC

AG

12

0.3

16

QC

AG

10

0.2

44

QC

AG

12

0.3

00

QCAA

61

1.605

QCAA

66

1.784

QCAA

69

1.643

QCAA

64

1.684

QCAA

72

1.756

QCAA

68

1.700

RCGA

28

1.806

RC

GA

23

1.5

86

RCGA

27

1.895

RCGA

36

2.323

RCGA

25

1.695

RCGA

25

1.754

RC

GC

60.3

87

RC

GC

10.0

69

RC

GC

00.0

00

RC

GC

20.1

29

RC

GC

70.4

75

RC

GC

70.4

91

RC

GG

40.2

58

RC

GG

50.3

45

RC

GG

10.0

70

RC

GG

40.2

58

RC

GG

10

0.6

78

RC

GG

40.2

81

Codon bias of mtDNA in aquatic insects 453

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 8: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Tab

leV

–continued

Ep

hem

eropte

raP

leco

pte

raO

don

ata

E.orientalis

S.im

manis

P.youi

P.princeps

D.lunatus

E.form

osa

AA

Cod

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

UA

AC

od

on

NR

SC

U

RC

GT

24

1.5

48

RCGT

29

2.000

RCGT

29

2.035

RC

GT

20

1.2

90

RC

GT

17

1.1

53

RC

GT

21

1.4

74

SA

GC

16

0.3

76

SA

GC

80.1

84

SA

GC

90.2

31

SA

GC

90.2

18

SA

GC

12

0.2

87

SA

GC

11

0.2

51

SA

GA

73

1.7

18

SA

GA

70

1.6

14

SA

GA

65

1.6

67

SA

GA

62

1.5

03

SA

GA

65

1.5

52

SA

GA

68

1.5

50

ST

CA

65

1.5

29

ST

CA

68

1.5

68

ST

CA

85

2.1

79

ST

CA

81

1.9

64

ST

CA

48

1.1

46

ST

CA

56

1.2

76

ST

CC

31

0.7

29

ST

CC

28

0.6

46

ST

CC

15

0.3

85

ST

CC

21

0.5

09

ST

CC

38

0.9

07

ST

CC

14

0.3

19

ST

CG

13

0.3

06

ST

CG

50.1

15

ST

CG

60.1

54

ST

CG

60.1

45

ST

CG

90.2

15

ST

CG

80.1

82

STCT

96

2.259

STCT

109

2.513

STCT

92

2.359

STCT

101

2.448

STCT

102

2.436

STCT

134

3.054

SA

GG

10.0

24

SA

GG

10.0

23

SA

GG

10.0

26

SA

GG

00.0

00

SA

GG

00.0

00

SA

GG

10.0

23

SA

GT

45

1.0

59

SA

GT

58

1.3

37

SA

GT

39

1.0

00

SA

GT

50

1.2

12

SA

GT

61

1.4

57

SA

GT

59

1.3

45

TACA

83

1.660

TA

CA

86

1.6

07

TACA

116

2.231

TA

CA

78

1.4

25

TA

CA

57

1.1

01

TA

CA

84

1.6

31

TA

CC

34

0.6

80

TA

CC

28

0.5

23

TA

CC

29

0.5

58

TA

CC

21

0.3

84

TA

CC

48

0.9

28

TA

CC

28

0.5

44

TA

CG

10

0.2

00

TA

CG

30.0

56

TA

CG

40.0

77

TA

CG

80.1

46

TA

CG

12

0.2

32

TA

CG

20.0

39

TA

CT

73

1.4

60

TACT

97

1.813

TA

CT

59

1.1

35

TACT

112

2.046

TACT

90

1.739

TACT

92

1.786

VG

TC

16

0.2

79

VG

TC

40.0

70

VG

TC

14

0.2

25

VG

TC

19

0.3

45

VG

TC

14

0.2

43

VG

TC

90.1

62

VG

TG

21

0.3

67

VG

TG

12

0.2

11

VG

TG

17

0.2

73

VG

TG

20

0.3

64

VG

TG

25

0.4

35

VG

TG

23

0.4

14

VG

TT

78

1.3

62

VG

TT

100

1.7

54

VG

TT

101

1.6

22

VGTT

91

1.655

VGTT

102

1.774

VG

TT

89

1.6

04

VGTA

114

1.991

VGTA

112

1.965

VGTA

117

1.880

VG

TA

90

1.6

36

VG

TA

89

1.5

48

VGTA

101

1.820

WTGA

89

1.780

WTGA

83

1.596

WTGA

80

1.584

WTGA

98

1.885

WTGA

77

1.540

WTGA

82

1.562

WT

GG

11

0.2

20

WT

GG

21

0.4

04

WT

GG

21

0.4

16

WT

GG

60.1

15

WT

GG

23

0.4

60

WT

GG

23

0.4

38

YT

AC

50

0.6

06

YT

AC

21

0.2

66

YT

AC

41

0.4

91

YT

AC

32

0.4

08

YT

AC

35

0.4

61

YT

AC

26

0.3

13

YTAT

115

1.394

YTAT

137

1.734

YTAT

126

1.509

YTAT

125

1.592

YTAT

117

1.539

YTAT

140

1.687

Note

:F

igu

res

inb

old

lett

ers

are

pre

ferr

edco

don

sfo

rco

rres

pon

din

gam

ino

aci

ds.

C. Selva Kumar et al.454

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 9: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Table

VI.

Str

an

d-s

pec

ific

cod

on

usa

ge

data

of

pro

tein

-cod

ing

mit

ogen

esofE.orientalis,S.im

manis

,P.

youi,P.

princeps,D.lunatus,

an

dE.form

osa.

Ep

hem

erop

tera

Ple

cop

tera

Od

on

ata

E.orientalis

S.im

manis

P.youi

P.princeps

D.lunatus

E.Formosa

RS

CU

RS

CU

RS

CU

RS

CU

RS

CU

RS

CU

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AGCT

1.794

3.077

AGCT

1.896

2.432

AGCT

1.671

2.173

AGCT

2.490

2.551

AGCT

0.7

69

2.182

AGCT

0.7

16

3.104

AG

CG

0.0

00

0.1

54

AG

CG

0.1

19

0.4

32

AG

CG

0.0

82

0.5

43

AG

CG

0.0

00

0.4

06

AG

CG

0.2

15

0.6

06

AG

CG

0.1

19

0.1

19

AG

CC

0.8

24

0.0

51

AG

CC

1.0

67

0.3

78

AG

CC

1.1

51

0.1

98

AG

CC

0.6

89

0.0

58

AG

CC

0.8

00

0.4

24

AG

CC

0.6

27

0.4

78

AG

CA

1.3

82

0.7

18

AG

CA

0.9

19

0.7

57

AG

CA

1.0

96

1.0

86

AG

CA

0.8

21

0.9

86

AGCA

2.215

0.7

88

AG

CA

2.537

0.2

99

CTGT

1.833

2.000

CTGT

1.818

1.833

CTGT

1.846

1.867

CTGT

1.538

1.933

CTGT

1.333

1.939

CT

GT

1.455

1.946

CT

GC

0.1

67

0.0

00

CT

GC

0.1

82

0.1

67

CT

GC

0.1

54

0.1

33

CT

GC

0.4

62

0.0

67

CT

GC

0.6

67

0.0

61

CT

GC

0.5

45

0.0

54

DGAT

1.120

2.000

DGAT

1.234

1.652

DGAT

1.265

1.714

DGAT

1.510

2.000

DGAT

1.283

2.000

DG

AT

0.9

80

2.000

DG

AC

0.8

80

0.0

00

DG

AC

0.7

66

0.3

48

DG

AC

0.7

35

0.2

86

DG

AC

0.4

90

0.0

00

DG

AC

0.7

17

0.0

00

DGAC

1.020

0.0

00

EG

AG

0.0

42

0.7

33

EG

AG

0.1

22

0.7

74

EG

AG

0.2

08

0.7

22

EG

AG

0.0

40

0.8

82

EG

AG

0.1

63

0.9

29

EG

AG

0.1

43

0.9

63

EGAA

1.958

1.267

EGAA

1.878

1.226

EGAA

1.792

1.278

EGAA

1.960

1.1

18

EGAA

1.837

1.071

EGAA

1.857

1.037

FTTT

1.281

1.884

FTTT

1.405

1.780

FTTT

1.374

1.860

FTTT

1.420

1.955

FTTT

1.182

1.812

FTTT

1.245

1.862

FT

TC

0.7

19

0.1

16

FT

TC

0.5

95

0.2

20

FT

TC

0.6

26

0.1

40

FT

TC

0.5

80

0.0

45

FT

TC

0.8

18

0.1

88

FT

TC

0.7

55

0.1

38

GGGT

1.0

07

2.566

GGGT

1.0

28

1.864

GG

GT

1.0

86

0.9

80

GG

GT

1.0

99

1.2

08

GG

GT

0.5

41

1.2

83

GGGT

0.5

11

2.113

GG

GG

0.2

80

0.6

04

GG

GG

1.0

83

1.2

43

GGGG

0.3

71

1.647

GG

GG

0.2

54

1.0

42

GGGG

0.5

41

1.321

GG

GG

0.6

92

0.8

30

GG

GC

0.1

96

0.0

38

GG

GC

0.4

17

0.2

33

GG

GC

0.3

44

0.1

18

GG

GC

0.3

66

0.0

42

GG

GC

0.1

20

0.2

26

GG

GC

0.0

60

0.3

02

GGGA

2.517

0.7

92

GGGA

1.472

0.6

60

GGGA

2.199

1.2

55

GGGA

2.282

1.708

GGGA

2.797

1.1

70

GGGA

2.737

0.7

55

HC

AC

0.8

00

0.1

05

HC

AC

0.8

99

0.2

00

HCAC

1.000

0.3

53

HC

AC

0.5

15

0.0

00

HCAC

1.265

0.2

67

HCAC

1.032

0.1

43

HCAT

1.200

1.895

HCAT

1.101

1.800

HCAT

1.000

1.647

HCAT

1.485

2.000

HCAT

0.7

35

1.733

HCAT

0.9

68

1.857

IATT

1.668

1.888

IATT

1.725

1.957

IATT

1.602

1.929

IATT

1.660

1.919

IATT

1.427

1.886

IATT

1.530

1.940

IA

TC

0.3

32

0.1

12

IA

TC

0.2

75

0.0

43

IA

TC

0.3

98

0.0

71

IA

TC

0.3

40

0.0

81

IA

TC

0.5

73

0.1

14

IA

TC

0.4

70

0.0

60

KAAA

1.647

0.9

00

KAAA

1.455

1.122

KAAA

1.097

0.8

57

KAAA

1.556

0.7

37

KAAA

1.667

0.6

06

KAAA

1.544

0.5

16

KAAG

0.3

53

1.100

KA

AG

0.5

45

0.8

78

KAAG

0.9

03

1.143

KAAG

0.4

44

1.263

KAAG

0.3

33

1.394

KAAG

0.4

56

1.484

LC

TA

1.8

55

0.3

81

LC

TA

1.4

93

1.4

55

LC

TA

1.1

70

1.4

12

LC

TA

1.6

94

1.3

33

LCTA

2.395

0.8

14

LCTA

3.017

0.1

74

LC

TC

0.2

89

0.3

81

LC

TC

0.2

69

0.0

00

LC

TC

0.6

17

0.2

35

LC

TC

0.3

33

0.1

67

LC

TC

0.2

55

0.0

68

LC

TC

0.2

37

0.0

00

LC

TG

0.0

96

0.0

00

LC

TG

0.1

79

0.1

21

LC

TG

0.1

06

0.4

71

LC

TG

0.0

83

0.3

33

LC

TG

0.3

82

0.6

10

LC

TG

0.1

36

0.1

74

LCTT

1.7

59

3.238

LCTT

2.060

2.424

LCTT

2.106

1.882

LC

TT

1.8

89

2.167

LC

TT

0.9

68

2.508

LC

TT

0.6

10

3.652

LTTA

1.891

1.5

69

LT

TA

1.8

61

1.6

50

LT

TA

1.7

09

1.4

27

LT

TA

1.974

1.5

92

LT

TA

1.7

76

1.1

49

LT

TA

1.8

53

1.0

71

LT

TG

0.1

09

0.4

31

LT

TG

0.1

39

0.3

50

LT

TG

0.2

91

0.5

73

LT

TG

0.0

26

0.4

08

LT

TG

0.2

24

0.8

51

LT

TG

0.1

47

0.9

29

MA

TG

0.2

08

0.5

27

MA

TG

0.2

89

0.5

00

MA

TG

0.1

88

0.5

18

MA

TG

0.2

04

0.5

38

MA

TG

0.3

03

0.8

24

MA

TG

0.2

34

1.0

14

MATA

1.792

1.473

MATA

1.711

1.500

MATA

1.813

1.482

MATA

1.796

1.462

MATA

1.697

1.176

MATA

1.766

0.986

NA

AC

0.5

00

0.0

41

NA

AC

0.6

32

0.0

80

NA

AC

0.6

82

0.2

86

NA

AC

0.3

84

0.1

22

NA

AC

0.7

27

0.2

80

NA

AC

0.8

22

0.0

36

NAAT

1.500

1.959

NAAT

1.368

1.920

NAAT

1.318

1.714

NAAT

1.616

1.878

NAAT

1.273

1.720

NAAT

1.178

1.964

PCCT

2.255

3.135

PCCT

2.211

3.135

PCCT

2.069

2.500

PCCT

1.636

3.000

PCCT

1.476

2.703

PCCT

1.1

65

2.743

PC

CG

0.0

73

0.1

08

PC

CG

0.2

11

0.0

00

PC

CG

0.2

41

0.1

00

PC

CG

0.1

45

0.1

00

PC

CG

0.1

17

0.2

16

PC

CG

0.0

39

0.0

00

PC

CC

0.4

00

0.2

16

PC

CC

0.5

61

0.2

16

PC

CC

0.9

66

0.6

00

PC

CC

0.8

36

0.1

00

PC

CC

0.8

16

0.5

41

PC

CC

0.3

11

0.6

86

PC

CA

1.2

73

0.5

41

PC

CA

1.0

18

0.6

49

PC

CA

0.7

24

0.8

00

PC

CA

1.3

82

0.8

00

PC

CA

1.5

92

0.5

41

PCCA

2.485

0.5

71

QC

AG

0.0

82

0.4

80

QC

AG

0.0

74

0.7

69

QC

AG

0.1

72

0.4

17

QC

AG

0.0

78

0.8

00

QC

AG

0.1

48

1.000

QC

AG

0.1

85

0.9

47

QCAA

1.918

1.520

QCAA

1.926

1.231

QCAA

1.828

1.583

QCAA

1.922

1.200

QCAA

1.852

1.000

QCAA

1.815

1.053

RCGA

2.421

0.0

00

RCGA

2.378

0.6

00

RCGA

1.895

1.3

33

RCGA

2.769

1.5

65

RCGA

2.421

0.8

33

RCGA

3.176

0.0

00

Codon bias of mtDNA in aquatic insects 455

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 10: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Tab

leV

I–continued

Eph

emer

op

tera

Ple

cop

tera

Od

on

ata

E.orientalis

S.im

manis

P.youi

P.princeps

D.lunatus

E.Formosa

RS

CU

RS

CU

RS

CU

RS

CU

RS

CU

RS

CU

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

AA

Cod

on

JN

RC

GC

0.0

00

0.2

00

RC

GC

0.7

57

0.0

00

RC

GC

0.7

37

0.0

00

RC

GC

0.2

05

0.0

00

RC

GC

0.6

32

0.0

00

RC

GC

0.0

00

0.0

00

RC

GG

0.0

00

1.0

00

RC

GG

0.2

16

0.4

00

RC

GG

0.4

21

1.1

43

RC

GG

0.1

03

0.5

22

RC

GG

0.1

05

0.5

00

RC

GG

0.1

18

0.0

00

RCGT

1.5

79

2.800

RCGT

0.6

49

3.000

RCGT

0.9

47

1.524

RCGT

0.9

23

1.913

RCGT

0.8

42

2.667

RCGT

0.7

06

4.000

SA

GC

0.3

25

0.0

00

SA

GC

0.1

97

0.3

24

SA

GC

0.2

84

0.2

90

SA

GC

0.2

21

0.2

15

SA

GC

0.4

15

0.3

27

SA

GC

0.2

38

0.2

22

SA

GA

1.1

78

2.1

87

SA

GA

0.8

67

2.4

86

SA

GA

0.8

12

2.609

SA

GA

1.2

82

1.7

72

SA

GA

2.1

97

1.0

88

SA

GA

2.3

33

0.8

89

STCA

2.274

0.6

40

ST

CA

1.7

34

0.6

49

ST

CA

1.5

03

0.6

38

STCA

2.387

1.4

50

STCA

2.446

0.3

27

STCA

3.571

0.5

56

ST

CC

1.1

37

0.0

00

ST

CC

0.5

12

0.0

54

ST

CC

1.3

81

0.2

32

ST

CC

0.8

84

0.0

54

ST

CC

0.9

12

0.4

9S

TC

C0.4

76

0.2

78

ST

CG

0.1

22

0.1

07

ST

CG

0.1

18

0.2

70

ST

CG

0.0

41

0.4

64

ST

CG

0.0

44

0.2

68

ST

CG

0.2

49

0.3

81

ST

CG

0.2

38

0.0

56

STCT

2.1

93

2.933

STCT

3.350

2.649

STCT

2.558

2.2

61

STCT

2.2

54

2.685

STCT

1.3

68

3.429

STCT

0.7

62

4.222

SA

GG

0.0

41

0.0

00

SA

GG

0.0

00

0.0

54

SA

GG

0.0

00

0.0

00

SA

GG

0.0

00

0.0

00

SA

GG

0.0

00

0.0

54

SA

GG

0.0

00

0.0

56

SA

GT

0.7

31

2.1

33

SA

GT

1.2

22

1.5

14

SA

GT

1.4

21

1.5

07

SA

GT

0.9

28

1.5

57

SA

GT

0.4

15

1.9

05

SA

GT

0.3

81

1.7

22

TACA

1.675

1.4

07

TACA

1.832

1.0

20

TA

CA

1.1

05

1.0

91

TA

CA

1.6

46

0.8

52

TACA

1.923

0.7

27

TACA

2.635

0.4

21

TA

CC

0.7

00

0.0

00

TA

CC

0.6

45

0.2

35

TA

CC

1.0

00

0.7

27

TA

CC

0.5

06

0.0

66

TA

CC

0.7

18

0.5

45

TA

CC

0.6

12

0.3

16

TA

CG

0.0

50

0.0

74

TA

CG

0.0

26

0.0

78

TA

CG

0.2

37

0.2

18

TA

CG

0.0

25

0.4

59

TA

CG

0.2

05

0.1

82

TA

CG

0.0

71

0.1

05

TACT

1.5

75

2.519

TA

CT

1.4

97

2.667

TACT

1.658

1.964

TACT

1.823

2.623

TACT

1.1

54

2.545

TACT

0.6

82

3.158

VG

TC

0.0

94

0.0

40

VG

TC

0.1

86

0.1

29

VG

TC

0.3

72

0.0

79

VG

TC

0.4

15

0.2

35

VG

TC

0.2

52

0.3

26

VG

TC

0.2

67

0.1

62

VG

TG

0.1

25

0.3

20

VG

TG

0.3

10

0.5

59

VG

TG

0.1

24

0.8

32

VG

TG

0.2

07

0.6

12

VG

TG

0.3

64

0.3

72

VG

TG

0.2

93

0.2

42

VGTT

1.5

94

1.960

VG

TT

1.5

81

1.6

34

VGTT

1.922

1.584

VGTT

1.4

52

1.976

VG

TT

0.7

83

2.326

VGTT

0.6

67

3.071

VGTA

2.188

1.6

80

VGTA

1.922

1.677

VG

TA

1.5

81

1.5

05

VGTA

1.926

1.1

76

VGTA

2.601

0.9

77

VGTA

2.773

0.5

25

WTGA

1.824

1.167

WT

GA

1.765

1.189

WT

GA

1.765

1.063

WT

GA

2.000

1.676

WT

GA

1.881

1.576

WT

GA

1.943

0.7

74

WT

GG

0.1

76

0.8

33

WT

GG

0.2

35

0.8

11

WT

GG

0.2

35

0.9

38

WT

GG

0.0

00

0.3

24

WT

GG

0.1

19

0.4

24

WT

GG

0.0

57

1.226

YT

AC

0.5

19

0.0

00

YT

AC

0.4

88

0.1

25

YT

AC

0.6

83

0.2

00

YT

AC

0.7

07

0.0

80

YT

AC

0.8

89

0.3

33

YT

AC

0.7

91

0.1

73

YTAT

1.481

2.000

YTAT

1.512

1.875

YTAT

1.317

1.800

YT

AT

1.293

1.920

YT

AT

1.111

1.667

YT

AT

1.209

1.827

Note

s:J

an

dN

den

ote

majo

rity

an

dm

inori

tyst

ran

ds,

resp

ecti

vely

.F

igu

res

inb

old

lett

ers

are

the

pre

ferr

edco

don

sfo

rth

eco

rres

pon

din

gam

ino

aci

din

each

stra

nd

.

C. Selva Kumar et al.456

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 11: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

each dimension corresponds to RSCU value of one

sense codon. A series of orthogonal axes were

generated to project the trends responsible for

varying patterns of codon usage. The origin denotes

the mean value of RSCU for all genes with regard to

the two principal axes. Among the genes, dissimilarity

in RSCU is explained by the distance between the

genes in the plot. The results of this analysis for each

species are reported in Table VII.

Discussion

Complex correlations obtained by Pearson correlation

analysis reveal that nucleotide compositional con-

straints may have significant roles in shaping the

patterns of codon usage variations, particularly in

D. lunatus and E. formosa. In these two species, higher

correlations are observed between all homogeneous

and heterogeneous nucleotide contents. Since insect

mitochondrial genomes are AT rich, in most of the

amino acids, codons preferred to choose A or T

endings in all six basal insect species. The rationale

behind the abundance of A and T nucleotides in

mitogenomes of insects has not been proven so far, but

transcription hypothesis of codon usage (Xia 1996) is

usually adopted to explain this phenomenon (Sun et al.

2009). In all the six species, A and T contents are

observed to be much higher than G and C content,

and are used roughly equally (Table III). The ENC vs.

GC3 plot (Wright 1990) is being widely used as a part

of studying the determining factor associated with

SCU variation across genes in both unicellular and

muticellular organisms (Banerjee et al. 2004; Liu et al.

2011; Zhang et al. 2011). In this study, a considerable

number of genes of all the six species are lying on or

below the expected curve in the GC poor region, and

it indicates the greater possibilities for extreme

compositional constraints to be a significant factor in

determining SCU variations. Variations in both ENC

values and GC3 with higher standard deviations also

confirm the effects of base compositional constraints

in the evolution of SCU patterns among these species.

In D. lunatus and E. formosa, axis 1 is found to have

significantly higher correlations with all silent base

Figure 1. ENC vs. GC3 plots of six species of aquatic insects belong to Ephemeroptera, Plecoptera, and Odonata.

Codon bias of mtDNA in aquatic insects 457

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 12: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

compositions and that emphasize the significance of

base compositional constraints as a major force in the

evolution of codon bias in the mitogenomes of these

species. But axis 2 has correlations with ENCs, but it

cannot be taken as an indicator of selection because

ATP8 alone has higher score in axis 2. A3 and T3

contents are found to be in correlation with genes

along axis 1 in P. princeps. Axis 2 and axis 3 are not

correlated with any of the silent base content. In the

light of this, it would be proper to believe that SCU

variations in P. princeps may be contributed by A3 and

T3 contents. Considering P. youi, axis 1 does not

exhibit any correlation with silent base compositions

but axis 2 shows significant correlations with G3, C3

and total GC, whereas axis 3 exhibits correlation with

T3 and GC3. In view of this, SCU variations across

mitochondrial genes of P. youi are expected to be highly

influenced by GC3 and T3 contents. InS. immanis, axis

2 has correlation with ENCs, but gene ATP8 alone

shows higher score in axis when compared to other

axes. Comparatively higher correlations are observed

for axis 1 with G3 and C3 rather than that of A3. But

axis 3 shows higher correlations with T3 and GC

contents. From this, it is likely to believe that A3, T3

and to some extent GC3 are playing a key role in SCU

variation of genes in S. immanis. In E. orientalis,

correlations are observed between axis 1 and total GC

content, and between axis 2, T3, and GC3. So,

variations of SCU may be attributed to the total GC,

GC3, and T3 content in E. orientalis.

Figure 2. Correspondence of six species of aquatic insects belongs to Ephemeroptera, Plecoptera, and Odonata showing

no grouping/separation of genes based on their ENC values.

C. Selva Kumar et al.458

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 13: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Conclusion

This study does not find any association between

microhabitats and codon usage variations in mito-

genes of selected aquatic insects. However, this has

identified major forces, such as compositional

constraints and mutation pressure, which shape

patterns of codon usage in mitochondrial genes in

the primitive clades of insect lineages.

Acknowledgements

We thank an anonymous reviewer for valuable

suggestions for improving the analysis and writing.

We are grateful to Mr Li Hu, Department of

Entomology, China Agricultural University, China

for his critical inputs in the manuscript. We thank

Dr M. Muralidharan, Sri Paramakalyani Centre for

Environmental Sciences, Manonmaniam Sundaranar

University, India for his help in statistical analysis.

Declaration of interest: The first author would like

to thank University Grants Commission, New Delhi,

India for providing Dr D. S. Kothari Post Doctoral

Fellowship (No. F.4-2/2006 (BSR) /13-670/2012

(BSR). K. G. Sivaramakrishnan thanks University

Grants Commission, New Delhi, India for the award

of Emeritus Fellowship (No. F.6-39/2011 (SA-II).

The authors report no conflicts of interest. The

authors alone are responsible for the content and

writing of the paper.

References

Abascal F, Posada D, Knight RD, Zardoya R. 2006. Parallel

evolution of the genetic code in arthropod mitochondrial

genomes. PLoS Biol 4(5):711–718.

Akashi H. 1994. Synonymous codon usage in Drosophila melanoga-

ster: Natural selection and translational accuracy. Genetics 136:

927–935.

Banerjee T, Basak S, Gupta SK, Ghosh TC. 2004. Evolutionary

forces in shaping the codon and amino acid usages in

Blochmannia floridanus. J Biomol Struct Dyn 22:13–23.

Bernardi G, Bernardi G. 1986. Compositional constraints and

genome evolution. J Mol Evol 24:1–11.

Biro JC. 2008. Does codon bias have an evolutionary origin? Theor

Biol Med Mod 5:1–15.

Buehler AG. 2006. Asymptotically increasing compliance of

genomes with Chargaff’s second parity rules through inversions

and inverted transpositions. PNAS 103:17828–17833.

Bulmer M. 1991. The selection-mutation-drift theory of synon-

ymous codon usage. Genetics 129:897–907.

Carlini DB, Chen Y, Stephan W. 2001. The relationship between

third-codon position nucleotide content, codon bias, mRNA

secondary structure and gene expression in the drosophilid

alcohol dehydrogenase genes Adh and Adhr. Genetics 159:

623–633.

Deschavanne I, Filipski J. 1995. Correlation of GC content with

replication timing and repair mechanisms in weakly expressed

E. coli genes. Nucleic Acids Res 23:1350–1353.

Grantham R, Gautier C, Gouy M, Mercier R, Pave A. 1980. Codon

catalog usage and the genome hypothesis. Nucleic Acids Res 8:

49–62.

Tab

leV

II.

Pea

rson

corr

elati

on

an

aly

sis

bet

wee

nC

OA

axes

,n

ucl

eoti

de

con

ten

ts,

an

def

fect

ive

nu

mb

erof

cod

on

s(E

NC

).

E.orientalis

P.youi

S.im

manis

P.princeps

D.lunatus

E.form

osa

Ax

1

(38.1

9%

)

Ax2

(13.3

3%

)

Ax3

(10.5

3%

)

Ax1

(26.6

3%

)

Ax2

(23.6

9%

)

Ax3

(14.3

4%

)

Ax1

(25.6

5%

)

Ax2

(19.3

9%

)

Ax3

(14.3

1%

)

Ax1

(30.1

9%

)

Ax2

(13.0

1%

)

Ax3

(12.8

8%

)

Ax1

(43.4

0%

)

Ax2

(15.9

7%

)

Ax3

(–

)

Ax1

(55.7

5%

)

Ax2

(–

)

Ax3

(–

)

A3

0.1

56

0.3

97

0.2

13

20.1

33

0.1

56

0.2

78

0.6

55*

0.0

97

20.2

35

0.7

16*

0.1

59

20.1

41

20.9

27

**

0.2

21

–0.9

92

**

––

T3

0.0

27

0.6

07*

0.2

45

20.4

28

0.2

30

20.6

28*

20.5

11

20.4

21

0.6

17*

0.5

54*

0.3

59

0.1

42

0.9

45

**

0.1

74

–0.9

82

**

––

G3

0.1

57

0.1

72

0.2

18

0.4

67

0.8

04

0.1

57

20.8

76

**

20.0

55

0.2

24

0.2

60

20.1

31

0.1

28

0.9

35

**

0.2

02

–0.9

61

**

––

C3

0.2

93

20.3

88

0.1

46

20.3

95

0.7

06

0.4

72

20.7

93*

0.2

12

20.4

20

0.3

01

0.2

40

20.1

35

20.9

43

**

0.1

60

–0.9

75

**

––

GC

20.5

85*

20.5

12

0.0

31

20.0

76

20.5

69*

0.2

61

0.0

06

0.1

54

0.7

77*

0.3

32

0.1

59

0.3

29

20.3

39

0.5

39

–2

0.2

56

––

GC

32

0.4

28

20.6

68*

0.0

18

0.2

32

0.1

23

0.6

28*

0.2

33

0.3

12

0.2

12

20.0

53

0.2

38

0.0

05

0.3

70

20.3

28

–0.1

92

––

EN

C2

0.3

46

20.5

00

20.0

35

0.2

87

20.1

12

0.4

43

0.0

03

0.6

38*

20.3

93

0.1

67

0.0

73

20.4

54

20.4

60

0.6

04*

–2

0.3

98

––

Note

:*F

igu

res

are

sign

ifica

nt

atp,

0.0

5;

**F

igu

res

are

sign

ifica

nt

atp,

0.0

05.

Codon bias of mtDNA in aquatic insects 459

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.

Page 14: Influence of certain forces on evolution of …ugcdskpdf.unipune.ac.in/Journal/uploads/BL/BL11-120187-A...FULL LENGTH RESEARCH PAPER Influence of certain forces on evolution of synonymous

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological

statistics software package for education and data analysis.

Palaeontologia Electronica 4(1):1–9.

Hershberg R, Petrov DA. 2008. Selection on codon bias. Annu Rev

Genet 42:287–299.

Ikemura T. 1982. Correlation between the abundance of yeast

tRNAs and the occurrence of the respective codons in its protein

genes. J Mol Biol 158:573–579.

Irwin B, Heck JD, Hatfield GW. 1995. Codon pair utilization the

biases influence translational elongation step times. J Biol Chem

270:22801–22806.

Karlin S, Mrazek J, Campbell AM. 1998. Codon usages in different

gene classes of the Escherichia coli genome. Mol Microbiol 29(6):

1341–1355.

Kurland CG. 1993. Major codon preference theme and variations.

Biochem Soc Trans 21:841–846.

Liu YS, Zhou JH, Chen HT, Maa L, Pejsak Z, Ding YZ, Zhang J.

2011. The characteristics of the synonymous codon usage in

enterovirus 71 virus and the effects of host on the virus in codon

usage pattern infection. Genet Evol 11:1168–1173.

Moriyama EN, Powell JR. 1997. Codon usage bias and tRNA

abundance in Drosophila. J Mol Evol 45:514–523.

Nikolaou C, Almirantis Y. 2006. Deviations from Chargaff’s second

parity rule in organellar DNA - Insights into the evolution of

organellar genomes. Gene 381:34–41.

Perriere G, Thioulouse J. 2002. Use and misuse of correspondence

analysis in codon usage studies. Nucleic Acids Res 30:

4548–4555.

Plotkin JB, Kudla G. 2010. Synonymous but not the same: The

causes and consequences of codon bias. Nature Rev Genet, 12:

32–42.

Rocha EPC. 2004. Codon usage bias from tRNA’s point of view:

Redundancy, specialization, and efficient decoding for trans-

lation optimization. Genome Res 14:2279–2286.

Sablok G, Nayak KC, Vazquez F, Tatarinova TV. 2011. Synon-

ymous codon usage, GC3, and evolutionary patterns across

plastomes of three pooid model species: Emerging grass genome

models for monocots. Mol Biotechnol 49:116–128.

Sarmer WT, Sullivan DT. 1989. A shift in the third-codon-position

nucleotide frequency in alcohol dehydrogenase genes in the

genus Drosophila. Mol Biol Evol 6:546–552.

Sharp PM, Cowe E. 1991. Synonymous codon usage in

Saccharomyces cerevisiae. Yeast 7:657–678.

Sharp PM, Tuohy TMF, Mosurski KR. 1986. Codon usage in yeast:

Cluster analysis clearly differentiate highly and lowly expressed

genes. Nucleic Acids Res 14:8207–8211.

Sharp PM, Emery LR, Zeng K. 2010. Forces that influence the

evolution of codon bias. Phil Trans R Soc B 365:1203–1212.

Smith MJ, Smith NH. 1996. Site-specific codon bias in bacteria.

Genetics 142:1037–1043.

Sun Z, Wan DG, Murphy RW, Ma L, Zhang XS, Huang DW. 2009.

Comparison of base composition and codon usage in insect

mitochondrial genomes. Genes Genomics 31(1):65–71.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular

evolutionary genetics analysis (MEGA) software version 4.0.

Mol Biol Evol 24(8):1596–1599.

Wall DP, Herback JT. 2003. Evolutionary patterns of codon usage in

the chloroplast gene rbcL. J Mol Evol 56(6):673–688.

Wright F. 1990. The “effective number of codons” used in a gene.

Gene 87:23–29.

Xia X. 1996. Maximizing transcription efficiency causes codon

usage bias. Genetics 144:1309–1320.

Xu C, Cai X, Chen Q, Zhou H, Cai Y, Ben A. 2011. Factors

affecting synonymous codon usage bias in chloroplast genome of

oncidium gower ramsey. Evol Bioinform 7:271–278.

Zhang J, Zhou C, Gai Y, Song D, Zhou K. 2008. The complete

mitochondrial genome of Parafronurus youi (Insecta: Ephemer-

optera) and phylogenetic position of the Ephemeroptera. Gene

424:18–24.

Zhang J, Wang M, Liu WQ, Zhou JH, Chen HT, Ma LN, Ding YZ,

Gu YX, Liu YS. 2011. Analysis of codon usage and nucleotide

composition bias in polioviruses. Virol J 8:146.

C. Selva Kumar et al.460

Mito

chon

dria

l DN

A D

ownl

oade

d fr

om in

form

ahea

lthca

re.c

om b

y IB

I C

ircu

latio

n -

Ash

ley

Publ

icat

ions

Ltd

on

03/0

7/13

For

pers

onal

use

onl

y.