infrared exponents and the strong coupling limit in...

30
Infrared Exponents and the Strong Coupling Infrared Exponents and the Strong Coupling Limit in Lattice Landau Gauge Limit in Lattice Landau Gauge Lorenz von Smekal Lorenz von Smekal St Goar, St Goar, March March 2008 2008 Wilhelm & Else Wilhelm & Else Heraeus Heraeus Seminar: Quarks and Seminar: Quarks and Gluons Gluons in in Strong Strong QCD QCD

Upload: others

Post on 26-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Infrared Exponents and the Strong Coupling

Limit in Lattice Landau GaugeLimit in Lattice Landau Gauge

Lorenz von SmekalLorenz von Smekal

St Goar, St Goar, MarchMarch 20082008

Wilhelm & Else Wilhelm & Else HeraeusHeraeus Seminar: Quarks and Seminar: Quarks and GluonsGluons in in StrongStrong QCDQCD

Page 2: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 22

Mτ MΖ

αS(Q) DSEs (N

f=0)

Running CouplingRunning Coupling• Determine αS from lattice Landau-gauge ghost/gluon propagators:

unquenched,

A. Sternbeck, K. Maltman, L. von Smekal, A. G. Williams, E. M. Ilgenfritz andM. Muller-Preussker, PoS (LATTICE 2007) 256, arXiv:0710.2965 [hep-lat].

αminMOMS (q2) =g2(a)

4πZL(q

2, a2)G2L(q

2, a2) + O(a2)

M. Schmelling, 1997

(QCDSF).

Page 3: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 33

Running CouplingRunning Coupling

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120

αs(p

2)

p2 [GeV2]

Nf = 2

(β, κ) = (5.40, 0.1366)fit: 4-loop using c1, c2, c3

c1, c2

c1

fit: 2-loop

0.65

0.70

0.000 0.005 0.010 0.015 0.020

r 0Λ

MS

2

amq

β = 5.255.295.40

• Minimom scheme αminMOMS known to 4 loops(Maltman, Sternbeck, LvS, in prep):

• Compare observables in PT:

4π2D0(Q2) = 1 +

αMSsπ

+ 1.64

(αMSsπ

)2+ 6.37

(αMSsπ

)3+ 49.1

(αMSsπ

)4+ . . .

= 1+αmMsπ

− 1.05

(αmMsπ

)2− 4.82

(αmMsπ

)3+ 3.13

(αmMsπ

)4+ . . . .

Baikov, Chetyrkin & Kuhn, arXiv:0801.182[hep-ph].

Page 4: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 44

• Landau Gauge QCD Propagators

(DSEs, lattice LG,...).

• Strong Coupling Limit in Lattice Landau Gauge.

• Modified Lattice Landau Gauge.

• Summary and Conclusions.

ContentsContents

Page 5: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 55

2

3

4

5 64321

1

0

[ ]GeVk

( )2kZ

0.664323 =× β lattice,

DSEs

Gluon PropagatorGluon Propagator

15.0,0

21)( 2

2

0

2

2 2

<<→

∝→

κ

κ

σ

k

kk

kZ k

DSEs:

Lerche & L.v.S., 2002Fischer & Alkofer, 2002

L.v.S. et al., 1997

Lattice:

Leinweber et al., 1998

GeV21 =−a

ERGE, J. Pawlowski

48^4 6.0

32^4 6.0

32^4 5.8

48^4 5.7

56^4 5.7

A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller andI. L. Bogolubsky, PoS LAT2006, 076 (2006) [arXiv:hep-lat/0610053].

Page 6: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 66

1

0 1 2 3 4 5 6

Running CouplingRunning Coupling

0,

)()(4

)(

2

2222

2

→→

=

k

kGkZg

k

πα

L.v.S. et al., 1997

2,...46.4)(

4=== c

c

c NIN κ

πα

Lerche & L.v.S., 2002

3,...97.2 == cc Nα

J. C. R. Bloch, A. Cucchieri, K. Langfeld andT. Mendes, Nucl. Phys. B 687 (2004) 76.

SU(2)163 × 32

Page 7: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 77

Infrared Dominance of Infrared Dominance of GhostsGhosts

DSEs

κσ

−∝−

22

0

2

2 1)(2

kkk

kG k

Ghost Propagator

DSEs:

L.v.S. et al., 1997

15.0 << κ

Lattice:

Suman & Schilling, 1996

• DSEs: Lerche & L.v.S., PRD 65 (2002) 125006.

• Stochastic Quantisation: Zwanziger, PRD 65 (2002) 094039.

• ERGEs: Pawlowski, Litim, Nedelko, & L.v.S., PRL 93 (2004) 152002.

3,...972.2)(

4,...595.0 ==== c

c

c NIN κ

πακ

Page 8: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 88

Finite Volume DSE SolutionsFinite Volume DSE Solutions

ghost

gluon

Fischer, Maas, Pawlowski & L.v.S., Ann. Phys. 322 (2007) 2916.

10-1

100

p [GeV]

1

10

G(p

2)

Infinite volumeL = 4.5 fmL = 5.1 fmL = 6.7 fmL = 7.9 fmL = 9.5 fmL = 10.7 fmL = 13.5 fm

0.0 0.4 0.8 1.2 1.6 2.0p [GeV]

1

2

3

4

D(p

2)

[1/G

eV2]

Inf. volumeL = 4.5 fmL = 5.1 fmL = 6.7 fmL = 7.9 fmL = 9.5 fmL = 10.7 fmL = 13.5 fm

0.2 0.43

4

need: π/L ≪ p ≪ ΛQCD

Page 9: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 99

Gluon PropagatorGluon Propagator

0.0 0.4 0.8 1.2 1.6 2.0 2.4p [GeV]

0

1

2

3

4D

(p2)

[1/G

eV2]

L = 4.6 fmL = 9.7 fmSternbeck et al. (2005)Sternbeck et al. (2006)Infinite volume

Page 10: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1010

Ghost PropagatorGhost Propagator

L = 3fm

L = 4.6fm

inf. Vol.

Sternbeck et al., Adelaide—Berlin—Moscow, unpublished (preliminary).

Page 11: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1111

SUSU(3)(3) vsvs SUSU(2)(2)

gluon

ghost

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams,PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

Page 12: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1212

SUSU(3)(3) vsvs SUSU(2)(2)

gluon

ghost

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams,PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

Page 13: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1313

SUSU(2) (2) PropagatorsPropagatorsvolume dependencevolume dependence

gluon

ghost

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams,PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

fixed β, unrenormalised.

Page 14: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1414

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

244

ββ = 0 = 0 ―― Gluon PropagatorGluon Propagator

324

564

κ = 0.595

a2p2

Z(a2p2) ∝ (a2p2)2κ ?

gluon mass: κ = 0.5

SU(2)

Page 15: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1515

ββ = 0 = 0 ―― Gluon PropagatorGluon Propagator

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

564

324

244

Z( a2p2)

x = a2p2

κ = 0.656± 0.006

Zfit(x) = c x + d x2κ

d = 0.22± 0.01

c = 0.51± 0.01

Fit parameters (564):

Page 16: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1616

transverse mass m2 ∝ 1/a2

ββ = 0 = 0 ―― Gluon PropagatorGluon Propagator

c

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

20 25 30 35 40 45 50 55 60

d

L/a

x = a2p2Zfit(x) = c x + d x2κ,

c = c∞ + ccorra

L

fit finite volume effects:

d = d∞ + dcorra

L

c∞ = 0.57± 0.01 �= 0 ⇔

glu

on

fit p

ara

me

ters

Page 17: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1717

ββ = 0 = 0 ―― Ghost PropagatorGhost Propagator

Not a finite volume effect!

G( a2p2)

κ = 0.595

Page 18: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1818

0.1

1

0.01 0.1 1 10

ββ = 0 = 0 ―― Ghost PropagatorGhost Propagator

G−1fit (x) = c + d xκ

564

324244

x = a2p2

G−1( a2p2)

κ = 0.595

Page 19: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 1919

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

ββ = 0 = 0 ―― Ghost PropagatorGhost Propagator

G−1fit (x) = c + d xκ

564324244

x = a2p2

G−1( a2p2)

Page 20: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2020

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

20 30 40 50 60 70 80

infr

are

d e

xpo

nen

ts κ = κ∞ + κcorra

L

L/a

ghost

gluon

κ∞:

ββ = 0 = 0 ―― Infrared ExponentsInfrared Exponents

ghost: 0.678± 0.003

gluon: 0.684± 0.002

Page 21: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2121

ββ = 0 = 0 ―― Infrared ExponentsInfrared Exponents

x = a2p2

Zfit(x) = c x (1 + dx)2κ−1,

G−1fit (x) = c (1 + d x)κ,

κ∞:

gluon: 0.571± 0.001

ghost: 0.569± 0.006

• alternative fit models:

Zfit(x) = c x + d x2κ,

G−1fit (x) = c + d xκ,

x = a2p2

κ∞:

ghost: 0.678± 0.003

gluon: 0.684± 0.002

• in either case : κgluon = κghost

Page 22: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2222

Stereographic Projection Stereographic Projection

θ

• Consider SN

S

N

with

(x1, . . . , xN+1) →1

1 + xN+1(x1, . . . , xN )

ϕ(x) = tan(θ/2) x

SN−1

• Example SU(2):

1

2trUg → ln

(1 +

1

2trUg

)replace

suppresses South pole!

in sum over links ofgauge-fixing potential,

modified Landau gauge� −2π 2π

S S

N

ϕ :

Page 23: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2323

χ(S1×#sites

) = χ(S1)#sites = 0#sites

Zgf =

∫ ∏

sites

d[θ, c, c, b] exp{−∑

i

s(ci(Fi(φ

θ) − iξ

2bi))}

= 0

• Compact U(1):

links U = eiφ, with g.t. φθ = φ + dθ

standard Morse potential: V [Uθ] =∑

links

cosφθ

Landau gauge: 0 = Fi(φθ) =

∂θiV =

µ

(sinφθi, µ − sinφθi−µ, µ

)

However,

Modified Lattice Landau GaugeModified Lattice Landau Gauge

Page 24: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2424

θ

x(θ) = tan(θ/2)

• Use stereographic projection:

Morse potential: V [Uθ] =∑

links

ln(1 + cosφθ

)

and Fi(φθ) =

µ

(tan(φθi, µ/2)− tan(φθi−µ, µ/2)

)

Explicitly worked out in 1-dim (eliminates all Gribov copies)and ≥ 2-dim (all but minima, 1st Gribov region) compact U(1).

Modified Lattice Landau GaugeModified Lattice Landau Gauge

L. von Smekal, D. Mehta, A. Sternbeck and A. G. Williams,PoS (LATTICE 2007) 382, arXiv:0710.2410 [hep-lat].

Page 25: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2525

SUSU(2)(2) Gluon Propagator Gluon Propagator –– ββ = 0= 0

-3

-2

-1

0

1

2

3

4

5

0.01 0.1 1 10

D(a

2q2

)

a2q2

SU(2), β = 0

)

std: L/a = 243256

mod: L/a = 2432

(lnU: L/a = 32

Page 26: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2626

SUSU(2)(2) Gluon Propagator Gluon Propagator –– ββ = 0= 0

∝ (a2p2)2κ,

κ = 0.6

terms

Zfit(x) = c x + d x2κ, x = a2p2

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16

D(a

2p2)

a2p2

324: stdmodlnU

Page 27: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2727

SUSU(2)(2) Ghost Propagator Ghost Propagator –– ββ = 0= 0

1

10

0.01 0.1 1 10

G(a

2q2

)

a2q2

SU(2), β = 0

std: L/a = 243256

mod: L/a = 2432

Page 28: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2828

SU(2)SU(2) Coupling Coupling –– ββ = 0= 0

αL =g2

4πZL(q

2)G2L(q

2)

0.01

0.1

1

10

0.01 0.1 1 10

αL(a

2q2

)

a2q2

SU(2), β = 0

αmaxc

std: L/a = 243256

mod: L/a = 2432

)(

4

κ

πα

INc

c =

Lerche & L.v.S., 2002:

,2,...46.4max === ccc Nαα

max for κ = 0.595 . . .

Page 29: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 2929

0

0.5

1

1.5

2

0.01 0.1 1 10

αL(a

2q2

)

a2q2

β = 2.5, L = 32

stdmod

SU(2)SU(2) Running Coupling Running Coupling –– finite finite ββ

αL =g2

4πZL(q

2)G2L(q

2)

1

0.01 0.1 1 10

αL(a

2q2

)

a2q2

β = 2.3, L = 56

stdmod

Page 30: Infrared Exponents and the Strong Coupling Limit in ...crunch.ikp.physik.tu-darmstadt.de/qhqcd/monday/smekal.pdf · Infrared Exponents and the Strong Coupling Limit , LvS 3 Running

Infrared Exponents and the Strong Coupling Limit , LvSInfrared Exponents and the Strong Coupling Limit , LvS 3030

ConclusionsConclusions

• Strong Coupling Limit of Lattice Landau GaugeStrong Coupling Limit of Lattice Landau Gauge

• Modified Lattice Landau Gauge

π/L≪ p≪ ΛQCD →∞facilitate

However, this all happens for 1≪ a2p2

deviations at small momenta are not a finite-size effect!

solves Neuberger 0/0 problem of lattice BRST.

will allow to perform (Landau) gauge-fixed MC.

Dgluon ∼ (a2p2)2κ−1, Dghost ∼ (a2p2)−κ−1,

in particular, κgluon = κghost, and αS → αc ≈ 4 (SU(2)).

κ ≈ 0.6,

alternative gauge field definition.

observe infrared behaviour of functional methods at large momenta: