inpac meeting, berkeley may 5, 2007 majorana status and perspectives1 kai vetter lawrence livermore...

23
INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives 1 Majorana Status and Perspectives Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

Post on 21-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 1

Majorana Status and Perspectives

Kai VetterLawrence Livermore National Laboratory

UC Berkeley

Page 2: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 2

Institute for Theoretical and Experimental Physics, Moscow, Russia

Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, RussiaViktor Brudanin, Slava Egorov, K. Gusey, S. Katulina,Oleg Kochetov, M. Shirchenko, Yu. Shitov, V. Timkin,

T. Vvlov, E. Yakushev, Yu. Yurkowski

Lawrence Berkeley National Laboratory, Berkeley, California and

the University of California - BerkeleyYuen-Dat Chan, Mario Cromaz, Brian Fujikawa,,

Donna Hurley, Kevin Lesko, Paul Luke, Akbar Mokhtarani,Alan Poon, Gersende Prior, Nikolai Tolich, Craig Tull

Lawrence Livermore National Laboratory, Livermore, CaliforniaDave Campbell, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New MexicoSteven Elliott, Gerry Garvey, Victor M. Gehman,

Vincente Guiseppe, Andrew Hime, Bill Louis, Geoffrey Mills, Kieth Rielage, Larry Rodriguez, Richard Schirato,

Laura Stonehill, Richard Van de Water, Hywel White, Jan Wouters

Oak Ridge National Laboratory, Oak Ridge, TennesseeCyrus Baktash, Jim Beene, Fred Bertrand, Thomas V. Cianciolo,

David Radford, Krzysztof Rykaczewski, Chang-Hong Yu

Osaka University, Osaka, JapanHiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima

Tatsuji

Pacific Northwest National Laboratory, Richland, WashingtonCraig Aalseth, James Ely, Tom Farmer, Jim Fast, Eric Hoppe, Brian Hyronimus, David Jordan, Jeremy Kephart, Richard T. Kouzes, Harry Miley, John Orrell, Jim Reeves, Robert Runkle, Bob Schenter, John Smart, Bob Thompson, Ray Warner, Glen

Warren

Queen's University, Kingston, OntarioFraser Duncan, Aksel Hallin, Art McDonald

Triangle Universities Nuclear Laboratory, Durham, North Carolina and Physics Departments at Duke University ,North

Carolina State University, and the University of North CarolinaHenning Back, James Esterline, Reyco Henning,

Mary Kidd, Werner Tornow, Albert Young

University of Chicago, Chicago, IllinoisPhil Barbeau, Juan Collar, Keith Crum, Smritri Mishra,

Brian Odom, Nathan Riley

University of South Carolina, Columbia, South CarolinaFrank Avignone, Richard Creswick, Horatio

A. Farach, Todd Hossbach, George King

University of South Dakolta, Vermillion, South DakotaTina Keller, Dongming Mei

University of Tennessee, Knoxville, TennesseeWilliam Bugg, Tom Handler, Yuri Efremenko, Brandon White

University of Washington, Seattle, WashingtonJohn Amsbaugh, Tom Burritt, Jason Detwiler, Peter J. Doe,

Alejandro Garcia, Mark Howe, Rob Johnson, Michael Marino,Sean McGee,R. G. Hamish Robertson, Alexis Schubert,

Brent VanDevender, John F. Wilkerson

The Majorana Collaboration

Note: Red text indicates students

Page 3: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 3

Neutrinoless Double Beta Decay

• Immediate Implications of Discovery:– Neutrino is Majorana (own antiparticle)– Total Lepton Number is not conserved– Neutrino has mass (known)

• Well-studied example: Exchange of virtual neutrino.

• Could probe absolute Mass-scale of Neutrino:

ZA Z2A 2e

T1/ 20 1

(Matrix Element) (Phase Space) m

Page 4: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 4

Decay Sensitivity to <m>

Page 5: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 5

Experimental Considerations

• Measure extremely rare decay rates :T1/2 ~ 1026 -1027 years (~1013x age of universe!)

• Large, highly efficient source mass.• Extremely low (near-zero) backgrounds in the 0 peak

region-of-interest (ROI) (1 count/t-y)

• High Q value• Best possible energy

resolution– Minimize 0 peak ROI

to maximize S/B– Separate 2/0

Page 6: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 6

Experimental Program in Search

Page 7: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 7

Ge Detection Principle

• Majorana uses 76Ge

• Enriched HPGe Diodes -- Detector is Source.

• Excess at Q = 2039 keV

• Demonstrated in IGEX, Heidelberg Moscow.

• Intrinsically clean

electrons

holes

Ionizing radiation interaction site

n

p

HPGe Detectors have excellent energy resolution

0.16% at ROI for Majorana

Page 8: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 8

We don’t want to repeat that …

• The Klapdor-Kleingrothaus Result

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, Phys. Lett. B 586 198 (2004).

Best result - 5 76Ge crystals, 10.96 kg of mass, 71 kg-years of data.

1/2 = (1.19 +2.99/-0.5 ) x 1025 y0.24 < mv < 0.58 eV (3 )

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.

1/2 = (1.25 +6.05/-0.57) x 1025 y

Pulse shape selected spectrum(single site events)

• Much smaller background• More (efficient) tools to identify and

suppress background• Better systematic handles on data

Page 9: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 9

76Ge Sensitivity & Background Dependence

T1/2 ln(2) ff atoms time

decays

1

m 2T1/2

ln(2) ff atoms time

Bi (t)dtLimiting case of no obs. decays

<m> of

100 meV[Rod06]

Page 10: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 10

Background Identification

• Majorana is background limited.• Goal: 1 event / ton-year in 4 keV ROI• Backgrounds:

– Natural isotope chains: 232Th, 235U, 238U, Rn– Cosmic Rays:

• Activation at surface creates 68Ge, 60Co.• Hard neutrons from cosmic rays in rock and shield.

– -decays.

• Need factor ~100 reduction over what has been demonstrated.• Monte Carlo estimates of acceptable levels• Most backgrounds are multi-site. Signal is single-site

Page 11: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 11

The Majorana Modular Approach1 Concept: 57 crystal modules

– Conventional vacuum cryostat made with electroformed Cu.– Scalable to 1-tonne

Cold Plate

Crystal

ThermalShroud

Vacuum jacket

Cold Finger

Bottom Closure 1 of 19 crystal stacks

CapCap

Tube (0.007” wall)

Tube (0.007” wall)

Ge(62mm x 70 mm)

Ge(62mm x 70 mm)

Tray(Plastic, Si, etc)

Tray(Plastic, Si, etc)

Page 12: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 12

– Ultra-radiopure materials– Deep underground: >5000’– Modular deployment.– 40 cm bulk Pb, 10 cm ultra-

low background shield– Active 4 veto detector

Materials and Shielding

Top view

57 Detector Module

Veto Shield

Sliding Monolith

LN Dewar

Inner Shield

Page 13: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 13

Concepts for background suppression

60Co

(“Low” Energy)

(“High” Energy)

(“High” Energy)

Pulse-shape discrimination

Segmentation

Page 14: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 14

Advanced Concepts in Detector and Data Processing Technologies

• Ge-drift/ modified electrode/ point contact detector• Highly segmented coaxial HPGe detectors

– N-type (e.g. GRETA, LLNL Coaxial Imager)– P-type (?)

• Low mass/ high resolution FE electronics (FET, preamplifiers)

• Digital acquisition and processing system– 1D-3D signal and data processing

Page 15: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 15

Highly Segmented N-Type Detectors

• Approach: Highly 2-D segmented n-type HPGe detector with 3D PSA of segments

• Advantage:– Best background rejection – Best event characterization in 3D with interaction

separation and gamma-ray reconstruction (w/ accuracy of the size of 0 event - 1 to 2 mm)

– Significant R&D effort completed (GRETINA, AGATA, LLNL Compton imager)

– Direct connection to NP projects

• Drawback:– Slower detector production rate– Most additional components (contacts, readout)– Most complicated acceptance, characterization,

and assembly– Requires design modifications (electronics,

mechanically)

6x6 9-detector module

60Co suppression w/ 32-fold segmented MSU detector”Red: single segmentBlue: with PSA

Suppression by segmentation and 3D PSA

Measured with 40-fold segmented LLNL detector

Full 3D event reconstruction and Compton imaging with

LLNL detectorCompton image of 137Cs source

GRETA 4 detector module prototype LLNL

Coaxial Imager

Page 16: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 16

Ge-drift/ modified electrode/ point contact detectorConventional, closed-ended coaxial detector

Modified electrode coaxial detector

Highly sensitive background suppression by PSA

• Approach: Non-segmented p-type HPGe detectors employing pulse-shape analysis in modified electrode or Ge-drift configuration

• Advantage:– High background rejection due to PSA sensitivity– Low energy threshold (~300 eV) – P-type material for potentially high fabrication rate

and low cost– Minimum number of readout components– Simple configuration in terms of design, production,

and operation of cryostat, mounts, readout, and cooling.

– Easy acceptance, characterization, and assembly.

– “Thick” outside contact attenuating potential surface - contamination

• Drawback:– Only one detector fabricated– Production rate, sensitivity to Ge material

requirements (e.g. impurity concentration) uncertain.– No 3D reconstruction possible

Page 17: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 17

Counts per Region of interest per Ton-Year

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Unsegmented p-type Modified electrode n-type 2x3 n-type 6x6 3D

SurfacesExternal

Small partsPb

Cu OuterCu ShieldCryostat

Inner MountGe

Anticipated background rates

Background rates are comparable !Background suppression compensates the increased background

level for segmented and more complex implementations

Counts per Region of Interest per Ton-Year

Non-segmentedP-type

ModifiedElectrode

P-type

2x3 segmentedN-type

6x6 segmentedN-type

1.0

Page 18: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 18

Majorana R&DTowards a 1-ton experiment

• Phase I: Construct 30-60 kg R&D Module• Mixed detectors, enrichment levels• Goals:

– Selection of optimal detector design:• Highly/modestly segmented• Modified electrode• Unsegmented p-type

– Verification of background simulation.– Materials, in particular cable and copper shielding.

• Continued cooperation with GERDA collaboration (MaGe, materials, Liquid Ar Shield)

Page 19: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 19

Majorana R&D Module

Page 20: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 20

1-ton 76Ge Sensitivity vs. Background

Page 21: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 21

Schedule

• Submit R&D proposal this summer for demonstration prototype for 1-ton.

• Construction in FY09.• Collect data FY11. 30-60 kg. of enriched material.

Page 22: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 22

Opportunities for UC

• What does it take to build a 1-ton 76Ge experiment?– Fabrication challenges: Cost & schedule …– Do we have the best technology?

• Can we enlarge our vision: 76Ge -in general fundamental physics– Instrumentation as common link? – Institute for NPAC Instrumentation? Center of Excellence?– Instrumentation technologies

• Detector

• Data processing

– Material processing with emphasis on (radio) purity

• Ties to – DUSEL– Homeland Security/ Nuclear Nonproliferation

Page 23: INPAC Meeting, Berkeley May 5, 2007 Majorana Status and Perspectives1 Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

INPAC Meeting, BerkeleyMay 5, 2007

Majorana Status and Perspectives 23

Majorana & GERDA