institute for solid state physics, university of tokyo, japan · prl101, 137004 (2008). 0 0.5 1 1.5...

21
Jan/13/’14, Aspen Winter Conference "Beyond quasiparticles: New paradigms for quantum fluids" Yosuke Matsumoto Institute for Solid State Physics, University of Tokyo, Japan Collaborators: S. Nakatsuji, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, T. Tomita, Y. Uwatoko, A. H. Nevidomskyy, P. Coleman Contents Introduction: Kondo lattice vs. mixed valence systems Kondo lattice behavior in the mixed valence systems: b-, a-YbAlB 4 Quantum criticality without tuning in b-YbAlB 4 Strange metal phase detached from magnetism in b-YbAlB 4

Upload: others

Post on 23-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Jan/13/’14, Aspen Winter Conference "Beyond quasiparticles: New paradigms for quantum fluids"

    Yosuke Matsumoto Institute for Solid State Physics, University of Tokyo, Japan

    Collaborators:

    S. Nakatsuji, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, T. Tomita,

    Y. Uwatoko, A. H. Nevidomskyy, P. Coleman

    Contents

    Introduction: Kondo lattice vs. mixed valence systems

    Kondo lattice behavior in the mixed valence systems: b-, a-YbAlB4 Quantum criticality without tuning in b-YbAlB4 Strange metal phase detached from magnetism in b-YbAlB4

  • Kondo lattice vs. Mixed valence systems

    Mixed valence systems

    Large TK Pauli paramagnetism below TK g ( = C/T ) value is not large.

    “Kondo lattice” with integer valence

    Doniach like phase diagram

    Kondo vs. RKKY Quantum criticality based on critical

    spin fluctuations associated with

    magnetic QCP.

    Basically, no QC has been expected.

    A. L. Cornelius et al.,

    PRL 88, 117201 (2002).

    Example: YbAl3 Yb valence: 2.71 Suga et al., JPSJ 74,

    2880 (2005).

    TK ~ 300 K

    In contrast,

    a-, b-YbAlB4 provide unique examples of quantum criticality

    in the mixed valence systems.

    What is the origin ?

    Novel metallic state ?

  • HF Compounds: b-YbAlB4

    Space Group : Cmmm,

    a = 7.3080 Å, b = 9.3150 Å, c = 3.4980 Å

    Thickness: ~10 mm

    0.5 mm

    c

    a

    b

    c

    Yb Al B

    Yb form distorted hexagonal lattice.

    Layered but Yb-Yb distance is shortest in c axis.

    The first heavy fermion SC (Tc = 80 mK) in Yb based system.

    Pronounced NFL behavior in the normal state @ B = 0.

    S. Nakatsuji et. al., Nature Phys. 4, 603-607 (2008).

    0

    0.2

    0.4

    0.6

    0.8

    0 0.5 1

    T 1.5

    (K1.5

    )

    a

    b (

    m

    cm

    )

    0

    0.5

    1

    1.5

    2

    0 1 2 3 4T (K)

    a

    b (

    m

    cm

    )

    ab T

    @T > 1 K

    ab T1.5

    @ T < 1 K

    SC

    SC

  • SC in b-YbAlB4

    0

    50

    100

    150

    200

    0 20 40 60 80 100

    Bc2 (

    mT

    )

    T (mK)

    B // ab

    B // c

    b-YbAlB4

    0

    0.2

    0.4

    0.6

    0 50 100150

    B (mT)

    ab (

    m

    cm

    )

    50

    mK

    20

    mK

    B // ab

    -30

    -20

    -10

    0

    0 50 100 150

    T (mK)

    Bext

    = 3 mT // c

    -0.4

    -0.2

    0

    M/H

    ext (

    em

    u/m

    ol-

    Yb)

    Bext

    = 60 mT // ab

    b-YbAlB4

    40%

    7%

    15%

    5%

    ZFC

    FC

    ZFC

    FC

    K. Kuga, Y. Karaki, Y. Matsumoto, Y. Machida, and S. Nakatsuji,

    PRL101, 137004 (2008).

    0

    0.5

    1

    1.5

    2

    0 0.5 1

    b-YbAlB4

    a

    b (

    m

    cm

    )

    T1.5 (K1.5)

    sample A

    sample B

    sample C

    0

    1

    2

    0 50 100

    T (mK)

    sample C

    BA

    Type-II SC in the clean limit (l = 1.2 mm > x = 0.06 mm) with Tc = 80 mK

    RRR dependence of Tc ⇒ unconventional, non-s-wave SC ?

    Considerable amounts of volume fractions → Bulk SC

    Anisotropic Bc2 (B // ab: orbital critical fields, B // c: paramagnetic effect)

    = -2.6 T/K for B // ab → m*/m0 ~ 180 CT

    C TB /2

  • HF Compounds: b-, a-YbAlB4

    Space Group : Cmmm,

    a = 7.3080 Å, b = 9.3150 Å, c = 3.4980 Å

    The first HFSC (Tc = 80 mK) in

    Yb based system.

    Pronounced NFL behavior in

    the normal state @ B = 0. R. T. Macaluso et al., Chemistry of Materials 19 1918 (2007)

    Thickness: ~10 mm

    0.5 mm

    c

    FL ground state @ B = 0

    Close to QC ?

    Metamagnetic behavior @ B ~ 3 T

    a

    b

    c

    Yb Al B

    Space Group : Pbam

    a = 5.9220(2) Å b = 11.468(5) Å c = 3.5060(5) Å

    c

    ~ 1 x 1 x 3 mm3

    a

    b

    c

    Yb form distorted hexagonal lattice.

    Layered but Yb-Yb distance is shortest in c axis.

    b-YbAlB4 a-YbAlB4

  • 0 100 200 3000

    50

    100

    150

    T (K)

    Strong Valence Fluctuation in a, b-YbAlB4

    a-YbAlB4 : 2.73 0.02

    b-YbAlB4 : 2.75 0.02

    b phase is the first example of QC

    in mixed valence system.

    M. Okawa et al., PRL 104, 247201 (2010) .

    Inte

    nsity (

    arb

    . u

    nits)

    Coherence peak of a resistivity

    @ T ~ 200 ~ 250 K

    TTTSTCM /ln// 000

    T0 ~ 200 K obtained from C.

    Y. Matsumoto et al., PRB 84, 125126 (2011).

    (m

    c

    m)

    a-YbAlB4

    T (K)

    ab

    b-YbAlB4 ab

    m(ab)

    B = 0

    m(ab)

    a-LuAlB4

    b-LuAlB4

    m = (YbAlB4) - (LuAlB4)

    Large T scale peculiar to mixed valence systems

    from HXPES

    Y. H. Matsuda et al., JKPS 62, 1778 (2013).

    Yb valence measured by X-ray adsorption

    spectra revealed T scale of ~ 290 K.

  • Almost identical c for a and b @ T > 8 K

    Ising like susceptibility with moments

    aligned along the c-axis

    Curie-Weiss behavior in cc far below the

    valence fluctuation T scale

    Shoulder in cc @ T* ~ 8 K

    Energy scale of Kondo lattice which

    emerges in low T.

    Below T* ~ 8 K,

    a phase: FL ⇔ b phase: NFL

    C/T ~ 130 mJ/K2 mol @ 0.4 K

    Y. Matsumoto et al., Science 331, 316 (2011), Y. Matsumoto et al., PRB 84, 125126 (2011).

    Kondo lattice behavior with small T scale of ~ 8 K

    How does the small T scale 8 K coexists with

    large valence T scale of 200 ~ 300 K ?

    101 1020

    0.01

    0.02

    0.03

    M/H

    (e

    mu

    /mo

    l-Y

    b)

    T (K)T (K)

    cc

    cab

    T*

    c (

    em

    u/m

    ol)

    0 100 200 3000

    100

    200

    H/M

    (e

    mu-

    1m

    ol-

    Yb

    )

    T (K)

    cc -1

    (e

    mu

    -1m

    ol)

    b-YbAlB4

    a-YbAlB4

    B = 0.1 T

    T (K)

    b-YbAlB4

    a-YbAlB4

    b-YbAlB4

    a-YbAlB4

    B = 0.1 T

  • Local moment behavior in ESR spectra of b-YbAlB4

    171Yb hyperfine lines.

    g value increases from 2.4 to 3.0 below T ~ 100 K.

    anisotropy in g value

    H (kOe)

    Unique dual behavior

    L. M. Holanda et al., PRL 107, 026402 (2011).

    b-RAlB4 – fine powder (X-Band) b-RAlB4 – oriented crystals (X-Band)

    T independent intensity which is typical in ESR signal

    for conduction electron.

  • Two component Hall effect E. C. T. O’Farrell, Y. Matsumoto, S. Nakatsuji, PRL 109, 176405 (2012).

    B (T)

    Large T dependence of RH

    RH has a peak at T ~ 40 K ⇒ Coherence develops below 40 K.

    xy becomes non-linear in B below 100 K. This can be explained

    by two band model with

    1. hole-like component (band 89?) and

    2. electron-like component with low carrier density

    (band 91?).

    A. Nevidomsky and P. Coleman, PRL 102,

    077202 (2009). Also by E. C. T. O’Farrell et

    al., H. Harima et al, and W. Pickett et al.

    The elecrton-like component is responsible for

    the Kondo lattice behavior and QC ?

    T (K)

    m (1

    04c

    m2/V

    s)

    RH (

    10

    -10m

    3C

    -1K

    )

    2

    0

    -2

    -4

    -6

    -8

    -10

    -12 0 50 100 150 200 250 300 350

    0

    -0.1

    -0.2

    -0.3

    -0.4

    -0.5

    -0.6 B (T)

    0 1 2 3 4 0 1 2 3 4

    xy (

    10

    -10m

    3C

    -1K

    )

    0

    -1.0

    -2.0

    -3.0

    de

    via

    tion

    fro

    m initia

    l slo

    pe

    (%

    )

    0

    20

    40

    20 K

    40

    60

    80 K

    100

    20 K

    40

    60

    80 K

    100

  • B

    T

    -dM

    /dT

    Superconductivity

    QCP

    Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara,

    A. H. Nevidomskyy, P. Coleman, Science 331, 316 (2011).

  • Superconductivity

    D = (T) – (0) = Ta

    Fermi Liquid

    Non-FL

    S. Nakatsuji et al., Nature Phys. 4, 603-607 (2008).

    QCP at B = 0 under P = 0 ?

    NFL behavior @ B = 0 in b-YbAlB4

    ab T1.5

    M/H T-0.5

    C/T ln(T*/T )

    B = 0:

    ab T2

    M/H = const.

    C/T = const.

    Non Fermi Liquid

    In magnetic field:

    Fermi Liquid

    FL behavior is recovered in magnetic field.

    Normally, we have to tune B or P or doping to approach QCP.

    ex) YbRh2Si2, CeCoIn5, CeCu5.9Au0.1, …

  • SQUID magnetometer installed in a dilution fridge

    Magnet (Bmax ~ 0.1 T)

    Nb shield

    + m-metal shield

    Pick up lines

    connected to SQUID

    in Pb tube

    Cu nuclear stage

    connected to MC

    of the dilution fridge

    High precision (resolution: ~ 10-8 emu)

    T range: 20 mK ≤ T ≤ 4 K, B < 0.1 T

    T down to ~ 0.1 mK is also available by using nuclear demag

    AC susceptibility and DC magnetization can be measured.

    magnet center

    Pb tube

    Silver support

    for pick up coils

    pickup &

    primary coils

    pickup coils

    viewed from above

    ULT group @ ISSP, Univ. of Tokyo

    Setup inside of the shielded magnet

    Samples: 0.82 mg,

    RRR > 200

  • 10-1 100

    10-1

    100

    101

    102

    dM

    /dT

    (e

    mu

    /mo

    l K

    )

    T (K)

    10-2 10-1 100 101 1020

    0.02

    0.04

    0.06

    0.08

    M/H

    (e

    mu

    /mo

    l-Y

    b)

    T (K)

    10-2 10-1 100 101 1020

    0.02

    0.04

    0.06

    0.08

    M/H

    (e

    mu

    /mo

    l-Y

    b)

    0.31 mT0.62 3.1

    0.1 T

    T (K)

    M/B

    2.0 1.0

    0.2

    0.1 T

    0.3 0.5

    44

    12 19 22 25 31

    6.2 mT

    10-2 10-1 100 101 1020

    0.02

    0.04

    0.06

    0.08

    M/H

    (e

    mu

    /mo

    l-Y

    b)

    T (K)

    6.0 7.0 T

    -dM

    /dT

    (e

    mu

    /mo

    l K

    )

    2.0 T

    22 mT

    6.2 mT

    0.62 mT

    0.31 mT

    b-YbAlB4 B // c

    1.0

    0.1

    0.3

    0.5

    B // c

    b-YbAlB4

    44 mT 12 mT

    31 mT

    3.1 mT

    0.2

    T-linear

    T-1.5

    At T/B >> 1 (but below T* ~ 8 K) (NFL): -dM/dT T-1.5 (M const. + T-0.5 )

    At T/B

  • T/B Scaling of Magnetization

    BTBT

    Ma 2

    -dM/dT @ B ≤ 2 T, T ≤ 3 K

    satisfy following scaling

    equations.

    10-1 100 101 102 103

    10-3

    10-2

    10-1

    100

    101

    T/B (K/T)

    (-d

    M/d

    T)B

    1/2

    (e

    mu

    T1/2

    /Km

    ol)

    T/B

    (-d

    M/d

    T)B

    1/2 (

    em

    uT

    1/2/m

    ol K

    )

    b-YbAlB4

    -0.3 0 0.30.97

    0.98

    0.99

    1

    R

    Bc (mT)Bc

    R

    with a = 3/2

    Scaling observed over 4

    orders of T/B

    No intrinsic energy scale (T and B are interchangeable)

    @ B ≤ 2 T, T ≤ 3 K.

    T (

    K)

    B (T)

    SC

    10-4 10-3 10-2 10-1 100

    10-1

    100

    101

    B (T)

    T (

    K)

    QCP is not of a SDW type

    Y. Matsumoto et al., Science 331, 316 (2011).

    BTfBF a

    Integrating both parts,

    (x) = (a-1)f ’(x) - xf ’’(x)

  • T/B Scaling of Magnetization

    10-1 100 101 102 103

    10-3

    10-2

    10-1

    100

    101

    T/B (K/T)

    (-d

    M/d

    T)B

    1/2

    (e

    mu

    T1/2

    /Km

    ol)

    T/B

    (-dM

    /dT

    )B1/2 (

    em

    uT

    1/2/m

    ol K

    )

    b-YbAlB4

    -0.3 0 0.30.97

    0.98

    0.99

    1

    R

    Bc (mT)Bc

    R

    Y. Matsumoto et al., Science 331, 316 (2011).

    |Bc| ≤ 0.2 mT (2 G)

    Bc is practically zero

    m0Hc2/Bc > 100

    Zero-field Quantum

    Criticality

    The first example of

    quantum criticality without tuning !!

    nxAxx )( 2 The data can be fitted to

    with x = T / (B-Bc)

    The best fit was obtained with

    n = 1.25 ± 0.01 (a = 3/2 ± 0.02) Bc = 0.1 ± 0.1 mT

    This satisfy the limiting behavior of f (x),

    i.e., f(x) xa (x >> 1, NFL)

    const + x2 (x

  • 10-1 101 103 10510-5

    10-3

    10-1

    101

    T/B1.5

    (K/T)

    (-d

    M/d

    T)B

    1 (

    em

    uT

    1/2

    /Km

    ol)

    10-1 101

    10-2

    100

    102

    T/B0.7

    (K/T)

    (-d

    M/d

    T)B

    0.2

    (e

    mu

    T1/2

    /Km

    ol)

    T/B1.5 (K/T)

    T/B0.7 (K/T)

    (-d

    M/d

    T)B

    (e

    mu

    T/K

    mo

    l)

    (-dM

    /dT

    )B0.2 (

    em

    uT

    0.2/K

    mo

    l)

    b-YbAlB4

    B // c

    b-YbAlB4

    B // c

    T/(B-Bc)d scaling with d ≠ 1, Bc ≠ 0 ?

    1.00

    0.99

    0.98

    0.97

    0.96

    0.95

    0 0.2 -0.4 Bc (mT)

    -0.2

    1.2

    1.0

    0.8

    d

    1.4

    R

    h

    1 1.5

    0.5

    1

    d

    h

    Bc = 0

    d

    d

    h

    c

    cBB

    TBB

    dT

    dM

    (d, h) = (1.5, 1.0)

    (d, h) = (0.7, 0.2)

    More general form was checked.

    The best fit is obtained with

    (Bc, d ) = (-0.02±0.20 mT, 0.94±0.12)

    ⇒ T/B scaling is most likely!

  • 10-1 100 1010

    100

    200

    C/T

    (m

    J/K

    2m

    ol)

    T (K)

    a-LuAlB4

    a-YbAlB4

    calculation 0.07 T 0.05

    fit to 0T

    Specific Heat

    The scaling indicates

    CQC/ T ∝ T-0.5.

    T (K)

    CM/T

    (m

    J/K

    2m

    ol)

    0.07

    6.0

    1.0

    4.0

    2.0

    0 T

    b-YbAlB4

    B // c

    0.5

    9.0

    a- LuAlB4, 0 T

    a-YbAlB4 B = 0 T

    10-3 10-2 10-1 1000

    20

    40

    60

    T/T0

    (C/T

    )T0 (

    J/K

    mo

    l) b-YbAlB4

    YbRh2(Si1-xGex)2 x = 0x = 0.05

    CeCu5.9Au0.1

    T/T0

    (CM/T

    )T0

    CM/T ~ ln(T0/T) @ T ≥ 0.2 K

    with T0 = 200 K

    Further increase below 0.2 K

    Small increase @ B ≤ 0.5 T is

    consistent with the scaling.

    This can be checked by

    Maxwell’s relations.

    CeCu5.9Au0.1: 6.2 K

    YbRh2Si2: 24 K

    Y. Matsumoto et al., Science 331, 316 (2011). BT T

    M

    B

    S

    00 2

    2

    B

    B

    T

    CdB

    T

    M

    T

    C⇒

    QC without tuning

    Difficult to extract due to

    the nuclear contribution.

  • Why Bc = 0 ?

    10-1 100 101 102 103

    10-3

    10-2

    10-1

    100

    101

    T/B (K/T)

    (-d

    M/d

    T)B

    1/2

    (e

    mu

    T1/2

    /Km

    ol)

    T/B

    (-dM

    /dT

    )B1/2 (

    em

    uT

    1/2/m

    ol K

    )

    b-YbAlB4

    -0.3 0 0.30.97

    0.98

    0.99

    1

    R

    Bc (mT)Bc

    R

    Y. Matsumoto et al., Science 331, 316 (2011).

    What happens under pressure ?

    NFL behavior robust against pressure ?

    0 1 20

    1

    2

    3

    B (T)

    T (

    K)

    FL

    NFL

    B

    T T

    B P

    NFL phase (metallic

    spin liquid?) SC

    1. Fine tuned to QCP?

    2. Non-fermi liquid phase or

    Quantum Critical Phase,

    More natural than the

    above accidental scenario.

  • What is the origin ?

    Partial Mott localization of the f-electrons ?

    Spin liquid metal @ ambient pressure ?

    J. Custers et al., PRL 104, 186402 (2010).

    References therein.

    Topological phase transition at Pc?

  • Anisotropic hybridization effect ?

    Topological phase transition

    Highly anisotropic resistivity in a-YbAlB4 with ab/c ~ 11 @ LT

    Consistent with hybridization node along the c-axis

    A hybridization node along the c-axis

    CEF ground doublet |Jz = ±5/2 > based on the local Yb site symmetry

    A. Nevidomsky and P. Coleman, PRL 102, 077202 (2009), A. Ramires et al., PRL 109, 176404 (2012).

    c-f hybridization V(k) ~ (kx ±iky)2

    2D heavy band with a dispersion

    E(k) ~ |V(k)|2 ~ (k┴)4 explains QC in b-

    YbAlB4, if Ef = 0 ?

    Yb

    B

    B

    Kondo break down QCP at mixed valence

    D ~ 80 K

    2/12/3 γ

    2/5

    S. Watanabe, K. Miyake, PRL 105, 186403 (2010).

    What is the origin ?

    Valence quantum criticality?

    J. H. Pixley, S. Kirchner, K. Ingersent, Q. Si, PRL 109, 086403 (2010).

    Y. Matsumoto, K. Kuga, T. Tomita, Y. Karaki and S. Nakatsuji, PRB 84, 125126 (2011).

  • Summary

    In spite of the strong valence fluctuation with characteristic T scale of

    200-300 K, the both a- and b-YbAlB4 exhibit Kondo lattice behavior

    with low-T scale of T* ~ 8 K.

    Contrasting behavior below T* ~ 8 K

    a phase: FL b phase: QC without tuning + SC

    T/B scaling of magnetization

    observed over 4 decades of T/B in

    b-YbAlB4 → QC without tuning

    Resistivity measurements under P

    revealed strange metal phase

    extends up to Pc ~ 0.4 GPa

    Strange metal phase detached

    from magnetic order

    What is the origin ? topological phase transition?

    valence? …