integrated-circuit technologyj.guntzel/ine5442/csi_aulas05-08.pdf · 1 integrated-circuit...

38
1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition 1.4. Etching 1.5. Diffusion 1.6 Backend: assembly, test 2. Bipolar Technology 3. CMOS Technology 0. Silicon crystal growth and wafer preparation

Upload: others

Post on 04-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

1

INTEGRATED-CIRCUIT TECHNOLOGY

1. Processing Steps

1.1. Photolitography

1.2. Oxidation

1.3. Layer Deposition

1.4. Etching

1.5. Diffusion

1.6 Backend: assembly, test

2. Bipolar Technology

3. CMOS Technology

0. Silicon crystal growth and wafer preparation

Page 2: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

2

CRYSTAL GROWTH

• Czochralski Process is a

Technique in Making

Single-Crystal Silicon

• A Solid Seed Crystal is

Rotated and Slowly

Extracted from a Pool of

Molten Si

• Requires Careful Control

to Give Crystals Desired

Purity and Dimensions

Page 3: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

3

Wafer Slicing & Polishing

The silicon ingot is grown and individual wafers are sliced.

The silicon ingot is sliced into

individual wafers, polished, and

cleaned.

silicon wafer

p+ silicon substrate

Page 4: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

4

Photoresist Coating Processes

p- epi

p+ substrate

field oxide

photoresist

PhotoresistsNegative Photoresist *

Positive Photoresist *

Other Ancillary Materials (Liquids)Edge Bead Removers *

Anti-Reflective Coatings *

Adhesion Promoters/Primers (HMDS) *

Rinsers/Thinners/Corrosion Inhibitors *

Contrast Enhancement Materials *

DevelopersTMAH *

Specialty Developers *

Inert GasesAr

N2

Page 5: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

5

Exposure Processes

p- epi

p+ substrate

field oxide

photoresist

ExposeKr + F2 (gas) *

Inert GasesN2

Page 6: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

6

1. Photolitography – Basic Concept

Photolitography – Basic Concept

Page 7: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

7

Photolitography using positive photoresist

Page 8: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

8

The simplest method of producing an oxide layer

consists of heating a silicon wafer in an oxidizing

atmosphere.

Page 9: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

9

Oxidation of the silicon surface

Page 10: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

10

6min20min1.7hWet O2

15min40min1.7h6h30hDry O2

1200°C1100°C1000°C900°C800°CAmbient

Times required to grow 0.1µµµµm of oxide on (III) silicon

Silicon Melting Point, 1410°C

Page 11: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

11

Selective SiO2 growth, using local oxidation

Page 12: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

12

Vapor deposition. PVD (a) and CVD(b).

Page 13: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

13

Chemical Vapor Deposition (CVD) Dielectric

* High proportion of the total product use

CVD DielectricO2

O3

TEOS *

TMP *

TEOSSource

LPCVDChamber

TransferChamber

Gas Inlet

Exhaust

RF Power

Wafer

MeteringPump

Inert MixingGas

Process Gas

Vaporizer

DirectLiquid

Injection

n-w ell

p-channel transistor

p-w ell

n-channel transistorp+ substrate

Metal 1insulator layer 2

Chemical Reactions

Si(OC2H5)4 + 9 O3 → SiO2 + 5 CO + 3 CO2 + 10 H2O

Process Conditions (ILD)

Flow Rate: 100 to 300 sccm

Pressure: 50 Torr to Atmospheric

Page 14: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

14

Epitaxy and mechanisms of

defect formation in the epitaxial layer

Page 15: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

15

Epitaxial Silicon DepositionGasInput Lamp

Module

QuartzLamps

Wafers

Susceptor

Exhaust

* High proportion of the total product use

Chemical Reactions

Silicon Deposition: HSiCl3 + H2 → Si + 3 HCl

Process Conditions

Flow Rates: 5 to 50 liters/min

Temperature: 900 to 1,100 degrees C.

Pressure: 100 Torr to Atmospheric

silicon wafer

p- silicon epi layer

p+ silicon substrate

Dopants

AsH3

B2H6

PH3

Etchant

HCl

Carriers

Ar

H2 *

N2

Silicon Sources

SiH4

H2SiCl2HSiCl3 *

SiCl4 *

Page 16: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

16

Wet etching.

Page 17: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

17

Dry etching.

Page 18: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

18

Conductor Etch

* High proportion of the total product use

EtchChambers

Cluster ToolConfiguration

TransferChamber

Loadlock

Wafers

RIE Chamber

TransferChamber

Gas Inlet

Exhaust

RF Power

Wafer

p+ substrate

p-w ell

n-channel transistor

n-w ell

p-channel transistor

source-drain areas

gate linew idth

gate oxide

Polysilicon EtchesHBr *

C2F6

SF6 *

NF3 *

O2

Aluminum EtchesBCl3 *

Cl2

DiluentsAr

He

N2

Chemical Reactions

Silicon Etch: Si + 4 HBr → SiBr4 + 2 H2

Aluminum Etch: Al + 2 Cl2 → AlCl4Process Conditions

Flow Rates: 100 to 300 sccm

Pressure: 10 to 500 mTorr

RF Power: 50 to 100 Watts

Page 19: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

19

Dielectric Etch

* High proportion of the total product use

EtchChambers

Cluster ToolConfiguration

TransferChamber

Loadlock

Wafers

RIE Chamber

TransferChamber

Gas Inlet

Exhaust

RF Power

Wafer

Contact locations

n-w ell

p-channel transistor

p-w ell

n-channel transistorp+ substrate

Chemical Reactions

Oxide Etch: SiO2 + C2F6 → SiF4 + CO2 + CF4 + 2 CO

Process Conditions

Flow Rates: 10 to 300 sccm

Pressure: 5 to 10 mTorr

RF Power: 100 to 200 Watts

Plasma Dielectric EtchesCHF3 *

CF4

C2F6

C3F8

CO *

DiluentsAr

He

N2

CO2

O2

SF6

SiF4

Page 20: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

20

Diffusion mechanism

Page 21: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

21

2.00.7Arsenic

2.10.8Antimony

4.61.60.5Phosphorus

7.33.61.50.9Boron

1200°C1100°C1000°C950°CDopant

Representative junction depths, in microns

(1020 atoms/cm3 source, 1016 atoms/cm3 background,

15min predeposition, 1h drive-in)

Page 22: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

22

Diffusion of dopants through a window in the SiO2 layer.

Page 23: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

23

Ion Implantation

180 kV

ResolvingAperture

Ion Source

Equipment Ground

Acceleration Tube

90°Analyzing Magnet

Terminal Ground

20 kV

Focus Neutral beam and beam path gated

Beam trap andgate plate

Wafer in waferprocess chamber

X - axisscanner

Y - axisscanner

Neutral beam trap and beam gate

GasesAr

AsH3

B11F3 *

He

N2

PH3

SiH4

SiF4

GeH4

SolidsGa

In

Sb

LiquidsAl(CH3)3

* High proportion of the total product use

junction depth

p- epi

p+ substrate

field oxide

photoresist mask

n-w ell

p-channel transistor

phosphorus

(-) ions

Process Conditions

Flow Rate: 5 sccm

Pressure: 10-5 Torr

Accelerating Voltage: 5 to 200 keV

Page 24: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

24

Chemical Mechanical Planarization (CMP)

* High proportion of the total product use.

Platen

PolishingHead

PadConditioner

Carousel

HeadSweep Slide

Load/UnloadStation

Wafer HandlingRobot & I/O

Polishing Pad

SlurryDelivery

Platen

WaferCarrier

Wafer

n-w ell

p-channel transistor

p-w ell

n-channel transistorp+ substrate

Backing (Carrier) FilmPolyurethane

PadPolyurethane

Pad ConditionerAbrasive

CMP (Oxide)Silica Slurry

KOH *

NH4OH

H2O

CMP (Metal)Alumina *

FeNO3

Process Conditions (Oxide)

Flow: 250 to 1000 ml/min

Particle Size: 100 to 250 nm

Concentration: 10 to 15%, 10.5 to 11.3 pH

Process Conditions (Metal)

Flow: 50 to 100 ml/min

Particle Size: 180 to 280 nm

Concentration: 3 to 7%, 4.1 - 4.4 pH

*

Page 25: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

25

Electrical Test Probe

Defective IC

Individual integrated circuits are tested to distinguish good

die from bad ones.

n-well

p-channel transistor

p-well

n-channel transistorp+ substrate

bonding padnitride

Metal 2

Page 26: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

26

Die Cut and AssemblyGood chips are attached to a lead frame package.

Page 27: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

27

Die Attach and Wire Bonding

lead frame gold wire

bonding pad

connecting pin

Page 28: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

28

Final Test

Chips are electrically tested under varying environmental conditions.

Page 29: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

29

2. Bipolar Technology

Diffusion of the buried layer. Segment of

the mask (a) and cross-section of

the npn transistor (b) after the diffusion.

Page 30: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

30

Island formation. Segment of the mask (a) and

cross-section of the npn transistor (b) after diffusion of

the p-type isolation.

Page 31: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

31

Transistor base p-type diffusion. Segment of the mask (a) and

cross-section of the npn transistor (b) after

base diffusion

Page 32: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

32

Emitter diffusion. Segment of the mask (a) and

cross-section of the npn transistor (b) after

emitter diffusion.

Page 33: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

33

Layout (a) and cross-section of the complete

npn transistor (b).

Page 34: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

34

Active regions in the n-well CMOS inverter.

Edges of active regions in the mask (a) and cross-section

of the inverter (b).

3. CMOS Technology

Page 35: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

35

Polysilicon region in the n-well CMOS inverter.

Window in the mask (a) and cross-section of the

inverter (b).

Page 36: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

36

Implantation of n-channel transistor drain and source.

Window in the n-select mask (a) and cross-section of the

inverter (b).

Page 37: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

37

CMOS inverter. Composite layout (a),

cross-section (b), and electrical diagram (c).

Page 38: INTEGRATED-CIRCUIT TECHNOLOGYj.guntzel/ine5442/CSI_aulas05-08.pdf · 1 INTEGRATED-CIRCUIT TECHNOLOGY 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition

38

References

1. W. Maly, Atlas of IC Technologies, Benjamin/Cummings Publications,

1987

2. Conrad T. Sorenson, “Semiconductor Manufacturing Technology:

Semiconductor Manufacturing Processes,”

http://www.erc.arizona.edu/Education/MME%20Course%20Materials/

MME%20Modules/Manufacturing%20Module/Manufac%20Overview.p

pt

3. Young Soon Song. et. al., “EE 4345 - Semiconductor Electronics

Design Project. Silicon Manufacturing,”

www.uta.edu/ronc/4345sp02/lectures/L09a_4345_Sp02.ppt