integrated circuits & guntzel/ine5442/slides/csi-lecture-1-introduction.pdf · pdf...

Click here to load reader

Post on 09-Nov-2018

225 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Lecture 1 Technology evolution. design representation,

    design metrics

    Prof. Jos Lus Gntzel [email protected]

    Integrated Circuits & Systems INE 5442

    Federal University of Santa Catarina Center for Technology

    Computer Science & Electronics Engineering

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.2

    Historical Perspective The use of Digital Electronics in different application domains (a chronology):

    1. Digital data manipulation 2. Instrumentation & control 3. Telecommunications & consumer electronics

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.3

    The First Automatic Calculator (Computer?)

    Charles Babbages

    Difference Engine I (1832)

    25.000 mechanical parts

    Price: 17,470

    Decimal-coded data

    Jan Rabaey et al. 2003

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.4

    ENIAC: The First Electronic Computer Year: 1946 18.000 vacuum tubes Intended for computing artillery firing tables Problems: low reliability excessive power consumption

    Jan Rabaey et al. 2003

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.5

    The First Transistor Bell Labs. 1948

    Jan Rabaey et al. 2003

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.6

    Bipolar Junction Transistor 1949 - Schockly introduces the bipolar transistor

    base

    colector

    emiter

    ib ic

    ie

    Approximate behavior:

    if ib < imin ie = 0

    if ib > imin ie ic

    The base current controls the emitter current

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.7

    Key Dates 1949 - Schockly introduces the bipolar junction transistor

    1956 - first bipolar digital logic gate, made by discrete components (by Harris)

    1958 - Jack Kilby (Texas Instruments) conceives the integrated circuit (all components are integrated on a single semiconductor substrate). He was awarded the Nobel prize

    1960 - first set of IC commercial logic gates, the Fairchild Micrologic family

    1962 - TTL (transistor-transistor logic) IC logic family is launched as commercial product, given rise to some large semiconductor companies, Fairchild, National and Texas Instruments.

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.8

    MOSFET (Metal-Oxide Silicon Field-Effect Transistor) 1925 - The MOSFET is proposed in a patent by J. Lilienfeld (Canada) 1935 Independently, O. Heil proposes the MOSFET in a patent

    (England) Problems concerning materials and the fabrication process postpone the

    commercial use of MOS technology 1960 - MOS ICs with PMOS-only logic gates (used in calculators) 1971 - the Intel 4004, first microprocessor, uses NMOS technology 1970 - first MOS memory (4kbits) 1978 - Intel launches the 8080 microprocessor in NMOS technology 1980 - new fabrication processes allow the integration of both NMOS and

    PMOS devices in the same IC. Consequence: reduction in power and increase of integration.

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.9

    The First Microprocessador

    Intel 4004 (1971)

    1,000 transistors 1 MHz operation frequency

    Jan Rabaey et al. 2003

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.10

    Pentium 4

    Jan Rabaey et al. 2003

    Year: 2000

    42M transistors 3 GHz

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.11

    Itanium 2 (Year: 2003)

    410M transistors 374 mm2 die size 6MB on-die L2

    cache 1.5 GHz at 1.3V

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.12

    Number of Transistors in a Single Die

    Source: Intel Corporation.

    http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

    Intel Processors (until 2004)

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.13

    Moores Law

    Gordon E. Moore, Co-founder, Intel Corporation.

    Source: http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

    The number of transistors incorporated in a chip will approximately double every 24 months.

    Gordon Moore, Co-Founder Intel Co., 1965

    Electronics, April 19, 1965.

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.14

    Number of Transistors in a Single Die

    1,000,000

    100,000

    10,000

    1,000

    10

    100

    1

    1975

    1980

    1985

    1990

    1995

    2000

    2005

    2010

    8086

    80286

    i386

    i486

    Pentium

    Pentium Pro

    K

    1 billion transistors

    Fonte: Intel

    Pentium II

    Pentium III

    Pentium 4: 42M tr. Core 2 Duo: 291M tr. Core 2 Quad: 582M tr.

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.15

    Moores Law (until the year 2000)

    5KW

    18KW

    1.5KW

    500W

    4004

    8008

    8080

    8085

    8086

    286

    386

    486

    Pentium proc

    0.1

    1

    10

    100

    1000

    10000

    100000

    1971

    1974

    1978

    1985

    1992

    2000

    2004

    2008

    Pow

    er (W

    atts)

    P6

    Pentium proc

    486

    386

    286

    8086

    8085

    8080

    8008

    4004

    0.1

    1

    10

    100

    1000

    10000

    1970

    1980

    1990

    2000

    2010

    Freq

    uenc

    y (M

    hz)

    Doubles each 2 years

    4004

    8008

    8080

    8085

    8086

    286

    386

    486

    Pentium proc

    P6

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    1970

    1980

    1990

    2000

    2010

    Tran

    sisto

    rs (M

    T)

    Grows 2X in 1.96 years!

    # of transistors

    Power

    Clock frequency

    Source: Rabaey; Chandrakasan; Nikolic, 2003

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.16

    Power and clock rate are correlated...

    Source: Patterson; Hennessy. 2009

    The Power Wall

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.17

    Para desktops, h um limite prtico de resfriamento que restringe a potncia mxima a 100W

    Source: Patterson; Hennessy. 2009

    The Power Wall

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.18

    Consequncia: mudana de paradigma nos microprocessadores

    Source: Patterson; Hennessy. 2009

    The Power Wall

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.19

    Core 2 Duo (Year: 2006)

    291M transistors 374 mm2 die size 6MB on-die L2

    cache 1.5 GHz at 1.3V

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.20

    http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

    SH-Mobile G1: an MPSoC (Year: 2006/2007)

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.21

    1

    10

    100

    1,000

    10,000

    100,000

    1,000,000

    10,000,000

    2003

    1981

    1983

    1985

    1987

    1989

    1991

    1993

    1995

    1997

    1999

    2001

    2005

    2007

    2009

    10

    100

    1,000

    10,000

    100,000

    1,000,000

    10,000,000

    100,000,000

    Logic Tr./Chip Tr./Staff Month.

    x x x

    x x x

    x 21%/Yr. compound

    Productivity growth rate

    x

    58%/Yr. compounded Complexity growth rate

    10,000

    1,000

    100

    10

    1

    0.1

    0.01

    0.001

    Logi

    c Tr

    ansi

    stor

    per

    Chi

    p (M

    )

    0.01

    0.1

    1

    10

    100

    1,000

    10,000

    100,000

    Pro

    duct

    ivity

    (K

    ) Tra

    ns./S

    taff

    - Mo.

    Source: Sematech

    Com

    plex

    ity

    Courtesy, ITRS Roadmap

    The Productivity Gap

  • Technology Evolution

    Lecture 1 2012/2 Prof. Jos Lus Gntzel

    INE/CTC/UFSC Integrated Circuits and Systems Slide 1.22

    CMOS Scaling Technology shrinks by 0.7/generation With every generation can integrate 2x more functions per

    chip; chip cost does not increase