integrated ion trajectory simulations in openfoam, an open ... · ka =0.5s °1 k b =0.001s °1 cmax...

1
k a = 0.5s °1 k b = 0.001 s °1 c max = 1 mol m °3 t = 8 £ 10 °4 s t = 1 £ 10 °4 s t = 6 £ 10 °6 s t = 9 £ 10 °4 s ! " ! # $$ " ! ! Introduction Conclusions Walter Wißdorf ; Thorsten Benter Physical & Theoretical Chemistry Wuppertal, Germany Institute for Pure and Applied Mass Spectrometry Custom Simulation Codes Acknowledgement Financial support by iGenTraX UG (Haan, Germany) is gratefully acknowledged Literature In the past years, the numerical simula2on of ion trajectories at elevated background gas pressures based on computa2onal fluid dynamics (CFD) has become readily feasible with commercial tools (Comsol, CFX, Simion) [1,2,3]. Despite the possibili2es provided by these programs, they have certain disadvantages, e.g. lack of mul2core support, lack of advanced flow models and inaccessibility of the core source code. In contrast, the open source simula2on framework OpenFOAM provides an accessible, integrated base for coupled mul2physical simula2ons as for example ion trajectory calcula2ons. We present a set of custom OpenFOAM solvers for the calcula2on of the mo2on of charged par2cles at atmospheric pressure. The results of exemplary simula2on problems are compared with results obtained using established commerical tools. Software Tools: Solvers: ● OpenFOAM v2.2.2 ● Comsol Mul2physics v4.4 ● SIMION 8.1.1.32 with SDS model OpenFOAM mesh genera4on: ● Salome 6.3.0 ● blockMesh OpenFOAM result visualiza4on: Paraview 4.1.0 Addi4onal result analysis genera4on: NumPy and Matplotlib Python libraries Ion Deflection in an Atmospheric Pressure Measurement Chamber Integrated ion trajectory simulations in OpenFOAM, an open source framework for complex numerical simulations Drift Channel including Ion Chemistry Methods A solver for electrokine2c flow and a par2cle tracing solver for the simula2on of ion trajectories have been developed based on the OpenFOAM framework The simula2on results obtained with the new solvers are in good qualita2ve agreement with the results from commercial solvers (SIMION, Comsol) A par2cle in cell solver was developed which is currently not commercially available The PIC solver combines space charge and par2cle based ion transport models which allows simula2ons of ion mo2on in high space charge regions Basic chemical reac2on modeling is demonstrated for the electrokine2c flow simula2on The overall results show that OpenFOAM is a highly valuable tool for ion dynamics simula2ons at atmospheric pressure Despite the good overall agreement, no2ceable differences between the solu2ons are apparent Future research will inves2gate the causes for these differences The freely accessible structure of OpenFOAM provides a wide range of future development op2ons which is par2cularly valuable for experimental numerical models in fundamental research [1] Appelhans, A. D.; Dahl, D. A., SIMION ion op2cs simula2ons at atmospheric pressure. Int. J. Mass Spectrom. 2005, 244, 1–14. DOI: 10.1016/j.ijms. 2005.03.010. [2] Wissdorf, W.; Pohler, L.; Klee, S.; Müller, D.; Benter, T., Simula2on of ion mo2on at atmospheric pressure: par2cle tracing versus electrokine2c flow. J. Am. Soc. Mass Spectrom. 2012, 23, 397–406. DOI: 10.1007/s133610110290x. [3] Wissdorf, W.; Lorenz, M.; Pöhler, T.; Hönen, H.; Benter, T., Atmospheric Pressure Ion Source Development: Experimental Valida2on of Simulated Ion Trajectories within Complex Flow and Electrical Fields. J. Am. Soc. Mass Spectrom. 2013. DOI: 10.1007/s1336101306465. [4] Scanlon, T. J.; Roohi, E.; White, C.; Darbandi, M.; Reese, J. M., An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids. 2010, 39, 2078–2089. DOI: 10.1016/j.compfluid.2010.07.014. [5] Gimelshein, N.; Gimelshein, S.; Lilly, T.; Moskovets, E., Numerical Modeling of Ion Transport in an ESIMS System. J. Am. Soc. Mass Spectrom. 2014, 820–831. DOI: 10.1007/s1336101408387. [6] Wissdorf, W.; Seifert, L.; Derpmann, V.; Klee, S.; Vautz, W.; Benter, T., Monte Carlo Simula2on of Ion Trajectories of Reac2ng Chemical Systems: Mobility of Small Water Clusters in Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 632–641. DOI: 10.1007/s1336101205531. Simulation Results: Exemplary Simulation Cases OpenFOAM: Future Options Space Charge: Particle in cell model Electrokinetic Flow: Particle Tracing Simulations: The mo2on of two ionic species (“A”, “B”) in a drip channel (200x20 mm) with stacked ring electrodes was simulated with Comsol and OpenFOAM. The ionic species are simulated as con2nuous concentra2on field (electrokine2c flow). The gas flow (1 m/s inflow velocity) as well as the electric field (linear drip field, 4kV on first electrode) were also simulated using both solvers. To demonstrate the basic ability to simulate reac2ng ion flows, the ionic species was assumed to be reac2ve: Compressible and incompressible CFD solvers Hardware: advanced consumer class computer: ● Dell Precision T7400 Worksta2on (Xeon E5530 CPU) ● Apple iMac (Core i5 CPU) The transport of ions in the measurement chamber was also simulated with a par2cle tracing model. The resul2ng par2cle trajectories are compared with results obtained with SIMION with the Sta2s2cal Diffusion Simula2on (SDS) collision model. The par2cle tracing calcula2ons performed with OpenFOAM and SIMION on the deflec2on voltage dependence show no2ceable differences. The simulated par2cles exhibit a higher electrical mobility in the OpenFOAM calcula2ons. In comparison to the electrokine2c flow simula2on (above), the differences between the models are larger in the par2cle tracing calcula2ons. Interes2ngly, the difference in the normalized ion current on the receiver electrode (far right) is rela2vely minor. above: The simulated ion current on the receiver electrode shows good qualita2ve agreement between SIMION and OpenFOAM or Comsol and OpenFOAM, despite the visible differences in the par2cle trajectories and in the electrokine2c flow parern (le4, le4 above). 0V Ion Chemistry A k a °! B B k b °! A Electric field: above: Simula2on of the electric poten2al and field lines, the solu2ons are essen2ally iden2cal Comsol OpenFOAM Reacting Electrokinetic Flow: Comsol OpenFOAM above: Simula2on of the spa2al concentra2on distribu2on in the drip channel. A A B B Gas Flow c max = 1 mol m °3 c max º 3 £ 10 °3 mol m °3 c max º 4 £ 10 °3 mol m °3 Axial Concentration Profile: above: The axial concentra2on profiles reveal a no2ceable difference between the solu2ons The presented demonstra2on models prove that OpenFOAM is applicable to simula2on problems in mass spectrometry and ion source development. The open structure of OpenFOAM allows the rapid development of new custom solvers and combina2on with exis2ng sopware. Planned development op2ons for the OpenFOAM package are: Low pressure transsonic fluid dynamics The presented models are applicable for high pressure condi2ons. OpenFOAM allows also the simula2on of transsonic gas flows under low pressure condi2ons (e.g. by DSMC via dsmcFoam)[4,5]. To combine these solvers with ion trajectory simula2ons, low pressure gas collision models have to be developed. Chemical modeling in par4cle tracing simula4ons Adap2on of the recently published Reac2on Simula2on (RS) method [5] for par2cle based simula2ons in OpenFOAM Charged droplets / droplet breakup It is envisioned that the simula2on of the dynamics of charged droplets gains deeper insight into the overall dynamics of ESI processes Bulk Gas Flow: Field Magnitude (V/m): One op2on to model space charge in a par2cle based simula2on is projec2on of the charged par2cle density back onto the discre2za2on mesh. In the subsequent 2me step the electric field distribu2on is calculated considering the charge density induced by the par2cles. This is known as the Par4cle in Cell (PIC) method. The par2cle tracing library of OpenFOAM provides the required par2cle density which allows the rapid implementa2on of a PIC solver for ion mo2on at AP condi2ons. The proofofconcept simula2on shows the emission of ions from a needle shaped field emirer with 500 µm diameter (e.g. an ESI emirer). le4: A par2cle tracing simula2on without the PIC space charge model clearly differs from the result with space charge modeling (below le4) le4: With ac2vated PIC model, the effect of the charged par2cles on the field distribu2on (field shielding) is clearly visible. Also, the effects of the changed charge distribu2on on the par2cle cloud (coulomb repulsion and field shielding) is visible. no space charge model no space charge PIC model Gas Flow m/s Ions generated in an upstream ion source are transported into the measurement chamber by the bulk gas flow. In the chamber, the ions are deflected by an electric poten2al on a deflec2on electrode. The ion current on a parallel receiver electrode was measured in previous experiments to verify the Comsol and SIMION model presented here (see [2] for details). The electrokine2c flow of the ions was simulated with OpenFOAM and the results are compared with Comsol calcula2on results. Both solvers give similar results for the deflec2on voltage dependence. above: Bulk gas flow (velocity magnitude and stream lines) in the measurement chamber. Despite some no2ceable differences, the results are in good overall agreement. OpenFOAM Comsol OpenFOAM OpenFOAM Comsol SIMION Inlet Outlet A measurement setup was simulated which has been used in the past for the experimental verifica2on of numerical ion transport models [ref]. It consists of a cylindrical measurement chamber at atmospheric pressure condi2ons. A bulk gas flow (1.25 m/s mean inflow velocity) transports ions from an ion source through this chamber. We have simulated the gas flow with Comsol and OpenFOAM. The results have been used for ion transport simula2ons (below). above: Velocity magnitude on a cutline trough the main gas stream (as marked on the lep). cutline Deflection Electrode Receiver E. 10V 30V 0V 10V 30V

Upload: others

Post on 14-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Integrated ion trajectory simulations in OpenFOAM, an open ... · ka =0.5s °1 k b =0.001s °1 cmax =1molm °3 t =8£10°4s t =6£10°6s t =1£10°4s t =9£10°4s Introduction Conclusions

ka = 0.5s°1 kb = 0.001s°1

cmax

= 1mol m

°3

t = 8£10°4 s

t = 1£10°4 st = 6£10°6 s t = 9£10°4 s

������������������� ������������������������ ���������������������������������

����� ����� ��

�����������������������������

���������������

��������������

����������������������� ��������������

�� �������������� ������������������������������������������������������������������������

�� ��������� ���������������������������������

��� �������� �������������������������������������������������������������������������������������������������

��� �������� �������������������������������������������

������ ��!"��������!��������������� �������#�$�$�������������������������������"���������

��!!���������������������������������������������������������

Introduction Conclusions

Walter Wißdorf; Thorsten BenterPhysical & Theoretical Chemistry

Wuppertal, GermanyInstitute for Pure and Applied Mass Spectrometry

Custom Simulation Codes

AcknowledgementFinancial support by iGenTraX UG (Haan, Germany) is gratefully acknowledged

Literature

In  the  past  years,  the  numerical  simula2on  of  ion  trajectories  at  elevated  background  gas  pressures  based  on  computa2onal  fluid  dynamics  (CFD)  has  become  readily  feasible  with  commercial  tools  (Comsol,  CFX,  Simion)  [1,2,3].  Despite  the  possibili2es  provided  by  these  programs,  they  have  certain  disadvantages,  e.g.  lack  of  mul2core  support,  lack  of  advanced  flow  models  and  inaccessibility  of  the  core  source  code.  In  contrast,  the  open  source  simula2on  framework  OpenFOAM  provides  an  accessible,  integrated  base  for  coupled  mul2physical  simula2ons  as  for  example  ion  trajectory  calcula2ons.  We  present  a  set  of  custom  OpenFOAM  solvers  for  the  calcula2on  of  the  mo2on  of  charged  par2cles  at  atmospheric  pressure.  The  results  of  exemplary  simula2on  problems    are  compared  with  results  obtained  using  established  commerical  tools.  

Software Tools:

Solvers:   ●    OpenFOAM  v2.2.2●    Comsol  Mul2physics  v4.4●    SIMION  8.1.1.32  with  SDS  model

OpenFOAM  mesh  genera4on:  ●    Salome  6.3.0●    blockMesh

OpenFOAM  result  visualiza4on:  Paraview  4.1.0Addi4onal  result  analysis  genera4on:      

NumPy  and  Matplotlib  Python  libraries

Ion Deflection in an Atmospheric Pressure Measurement Chamber

Integrated ion trajectory simulations in OpenFOAM, an open source framework for complex numerical simulations

Drift Channel including Ion Chemistry

Methods• A  solver  for  electrokine2c  flow  and  a  par2cle  

tracing  solver  for  the  simula2on  of  ion  trajectories  have  been  developed  based  on  the  OpenFOAM  framework

• The  simula2on  results  obtained  with  the  new  solvers  are  in  good  qualita2ve  agreement  with  the  results  from  commercial  solvers  (SIMION,  Comsol)

• A  par2cle  in  cell  solver  was  developed  which  is  currently  not  commercially  available

• The  PIC  solver  combines  space  charge  and  par2cle  based  ion  transport  models  which  allows  simula2ons  of  ion  mo2on  in  high  space  charge  regions

• Basic  chemical  reac2on  modeling  is  demonstrated  for  the  electrokine2c  flow  simula2on  

• The  overall  results  show  that  OpenFOAM  is  a  highly  valuable  tool  for  ion  dynamics  simula2ons  at  atmospheric  pressure

• Despite  the  good  overall  agreement,  no2ceable  differences  between  the  solu2ons  are  apparent

• Future  research  will  inves2gate  the  causes  for  these  differences

• The  freely  accessible  structure  of  OpenFOAM  provides  a  wide  range  of  future  development  op2ons  which  is  par2cularly  valuable  for  experimental  numerical  models  in  fundamental  research

[1]  Appelhans,  A.  D.;  Dahl,  D.  A.,  SIMION  ion  op2cs  simula2ons  at  atmospheric  pressure.  Int.  J.  Mass  Spectrom.  2005,  244,  1–14.  DOI:  10.1016/j.ijms.2005.03.010.

[2]  Wissdorf,  W.;  Pohler,  L.;  Klee,  S.;  Müller,  D.;  Benter,  T.,  Simula2on  of  ion  mo2on  at  atmospheric  pressure:  par2cle  tracing  versus  electrokine2c  flow.  J.  Am.  Soc.  Mass  Spectrom.  2012,  23,  397–406.  DOI:  10.1007/s13361-­‐011-­‐0290-­‐x.

[3]  Wissdorf,  W.;  Lorenz,  M.;  Pöhler,  T.;  Hönen,  H.;  Benter,  T.,  Atmospheric  Pressure  Ion  Source  Development:  Experimental  Valida2on  of  Simulated  Ion  Trajectories  within  Complex  Flow  and  Electrical  Fields.  J.  Am.  Soc.  Mass  Spectrom.  2013.  DOI:  10.1007/s13361-­‐013-­‐0646-­‐5.

[4]  Scanlon,  T.  J.;  Roohi,  E.;  White,  C.;  Darbandi,  M.;  Reese,  J.  M.,  An  open  source,  parallel  DSMC  code  for  rarefied  gas  flows  in  arbitrary  geometries.  Comput.  Fluids.  2010,  39,  2078–2089.  DOI:  10.1016/j.compfluid.2010.07.014.

[5]  Gimelshein,  N.;  Gimelshein,  S.;  Lilly,  T.;  Moskovets,  E.,  Numerical  Modeling  of  Ion  Transport  in  an  ESI-­‐MS  System.  J.  Am.  Soc.  Mass  Spectrom.  2014,  820–831.  DOI:  10.1007/s13361-­‐014-­‐0838-­‐7.

[6]  Wissdorf,  W.;  Seifert,  L.;  Derpmann,  V.;  Klee,  S.;  Vautz,  W.;  Benter,  T.,  Monte  Carlo  Simula2on  of  Ion  Trajectories  of  Reac2ng  Chemical  Systems:  Mobility  of  Small  Water  Clusters  in  Ion  Mobility  Spectrometry.  J.  Am.  Soc.  Mass  Spectrom.  2013,  24,  632–641.  DOI:  10.1007/s13361-­‐012-­‐0553-­‐1.

Simulation Results: Exemplary Simulation Cases

OpenFOAM: Future Options

Space Charge: Particle in cell model

Electrokinetic Flow:

Particle Tracing Simulations:

The  mo2on  of  two  ionic  species  (“A”,  “B”)  in  a  drip  channel  (200x20  mm)  with  stacked  ring  electrodes  was  simulated  with  Comsol  and  OpenFOAM.  The  ionic  species  are  simulated  as  con2nuous  concentra2on  field  (electrokine2c  flow).  The  gas  flow  (1  m/s  inflow  velocity)  as  well  as  the  electric  field  (linear  drip  field,  4kV  on  first  electrode)  were  also  simulated  using  both  solvers.  

To  demonstrate  the  basic  ability  to  simulate  reac2ng  ion  flows,  the  ionic  species  was  assumed  to  be  reac2ve:  

Compressible  and  incompressible  CFD  solvers

Hardware: advanced  consumer  class  computer:        ●    Dell  Precision  T7400  Worksta2on  (Xeon  E5530  CPU)        ●    Apple  iMac  (Core  i5  CPU)

The  transport  of  ions  in  the  measurement  chamber  was  also  simulated  with  a  par2cle  tracing  model.  The  resul2ng  par2cle  trajectories  are  compared  with  results  obtained  with  SIMION  with  the  Sta2s2cal  Diffusion  Simula2on  (SDS)  collision  model.  The  par2cle  tracing  calcula2ons  performed  with  OpenFOAM  and  SIMION  on  the  deflec2on  voltage  dependence  show  no2ceable  differences.  The  simulated  par2cles  exhibit  a  higher  electrical  mobility  in  the  OpenFOAM  calcula2ons.  In  comparison  to  the  electrokine2c  flow  simula2on  (above),  the  differences  between  the  models  are  larger  in    the  par2cle  tracing  calcula2ons.  Interes2ngly,  the  difference  in  the  normalized  ion  current  on  the  receiver  electrode  (far  right)  is  rela2vely  minor.  

above:  The  simulated  ion  current  on  the  receiver  electrode  shows  good  qualita2ve  agreement  between  SIMION  and  OpenFOAM  or  Comsol  and  OpenFOAM,  despite  the  visible  differences  in  the  par2cle  trajectories  and  in  the  electrokine2c  flow  parern  (le4,  le4  above).  

0V

Ion  Chemistry

Aka°! B B

kb°! A

Electric field:

above:  Simula2on  of  the  electric  poten2al  and  field  lines,  the  solu2ons  are  essen2ally  iden2cal

Comsol

Comsol

OpenFOAM

Reacting Electrokinetic Flow:

Comsol

OpenFOAM

above:  Simula2on  of  the  spa2al  concentra2on  distribu2on  in  the  drip  channel.

A

A

B

B

Gas  Flow

cmax

= 1mol m

°3

cmax

º 3£10

°3

mol m

°3

cmax

º 4£10

°3

mol m

°3

Axial Concentration Profile:

above:  The  axial  concentra2on  profiles  reveal  a  no2ceable  difference  between  the  solu2ons

The  presented  demonstra2on  models  prove  that  OpenFOAM  is  applicable  to  simula2on  problems  in  mass  spectrometry  and  ion  source  development.  

The  open  structure  of  OpenFOAM  allows  the  rapid  development  of  new  custom  solvers  and  combina2on  with  exis2ng  sopware.  

Planned  development  op2ons  for  the  OpenFOAM  package  are:

Low  pressure  transsonic  fluid  dynamicsThe  presented  models  are  applicable  for  high  pressure  condi2ons.  OpenFOAM  allows  also  the  simula2on  of  transsonic  gas  flows  under  low  pressure  condi2ons  (e.g.  by  DSMC  via  dsmcFoam)[4,5].  To  combine  these  solvers  with  ion  trajectory  simula2ons,  low  pressure  gas  collision  models  have  to  be  developed.    

Chemical  modeling  in  par4cle  tracing  simula4onsAdap2on  of  the  recently  published  Reac2on  Simula2on  (RS)  method  [5]  for  par2cle  based  simula2ons  in  OpenFOAM

Charged  droplets  /  droplet  breakupIt  is  envisioned  that  the  simula2on  of  the  dynamics  of  charged  droplets  gains  deeper  insight  into  the  overall  dynamics  of  ESI  processes

Bulk Gas Flow:

Field  Magnitude  (V/m):

One  op2on  to  model  space  charge  in  a  par2cle  based  simula2on  is  projec2on  of  the  charged  par2cle  density  back  onto  the  discre2za2on  mesh.  In  the  subsequent  2me  step  the  electric  field  distribu2on  is  calculated  considering  the  charge  density  induced  by  the  par2cles.  This  is  known  as  the  Par4cle  in  Cell  (PIC)  method.  

The  par2cle  tracing  library  of  OpenFOAM  provides  the  required  par2cle  density  which  allows  the  rapid  implementa2on  of  a  PIC  solver  for  ion  mo2on  at  AP  condi2ons.  

The  proof-­‐of-­‐concept  simula2on  shows  the  emission  of  ions  from  a  needle  shaped  field  emirer  with  500  µm  diameter    (e.g.  an  ESI  emirer).  

le4:  A  par2cle  tracing  simula2on  without  the  PIC  space  charge  model  clearly  differs  from  the  result  with  space  charge  modeling  (below  le4)

le4:  With  ac2vated  PIC  model,  the  effect  of  the  charged  par2cles  on  the  field  distribu2on  (field  shielding)  is  clearly  visible.  Also,  the  effects  of  the  changed  charge  distribu2on  on  the  par2cle  cloud  (coulomb  repulsion  and  field  shielding)  is  visible.  

no space charge model

no space charge

PIC model

Gas  Flow

m/s

Ions  generated  in  an  upstream  ion  source  are  transported  into  the  measurement  chamber  by  the  bulk  gas  flow.  In  the  chamber,  the  ions  are  deflected  by  an  electric  poten2al  on  a  deflec2on  electrode.  The  ion  current  on  a  parallel  receiver  electrode  was  measured  in  previous  experiments  to  verify  the  Comsol  and  SIMION  model  presented  here  (see  [2]  for  details).  The  electrokine2c  flow  of  the  ions  was  simulated  with  OpenFOAM  and  the  results  are  compared  with  Comsol  calcula2on  results.  Both  solvers  give  similar  results  for  the  deflec2on  voltage  dependence.

above:  Bulk  gas  flow  (velocity  magnitude  and  stream  lines)  in  the  measurement  chamber.  Despite  some  no2ceable  differences,  the  results  are  in  good  overall  agreement.  

OpenFOAMComsol

OpenFOAM

OpenFOAM

Comsol

SIMION

Inlet

OutletA  measurement  setup  was  simulated  which  has  been  used  in  the  past  for  the  experimental  verifica2on  of  numerical  ion  transport  models  [ref].  It  consists  of  a  cylindrical  measurement  chamber  at  atmospheric  pressure  condi2ons.  A  bulk  gas  flow  (1.25  m/s  mean  inflow  velocity)  transports  ions  from  an  ion  source  through  this  chamber.  We  have  simulated  the  gas  flow  with  Comsol  and  OpenFOAM.  The  results  have  been  used  for  ion  transport  simula2ons  (below).

above:  Velocity  magnitude  on  a  cutline  trough  the  main  gas  stream  (as  marked  on  the  lep).    

cutline

DeflectionElectrode

Receiver E.10V 30V

0V 10V 30V