integrated logistic

Upload: hafizah-zulkipli

Post on 17-Feb-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Integrated Logistic

    1/150

    Int gr ted

    2

    Beulle

    Univer

    2/1/20

    Lo

    01

    sP.

    sityofSout

    15

    ist

    5

    ampton

    cs

  • 7/23/2019 Integrated Logistic

    2/150

    Integrated Logistics

    2

    Contents

    1 Introduction .............................................................................................. 4

    1.1 Defining Supply Chain Management ........................................................... 4

    1.2

    Understanding Supply Chain Management .................................................... 4

    1.3 Measuring Supply Chain Performance ......................................................... 4

    1.4 What is Integrated Logistics? ................................................................... 4

    2 IL & Finance .............................................................................................. 5

    2.1 Strategy and Finance ............................................................................ 5

    2.2 Time value of money ............................................................................. 6

    2.2.1 Net Present Value for discrete interest rates ............................................. 6

    2.2.2 Net Present Value for continuous interest rates ......................................... 8

    2.2.3 Annuity Stream ............................................................................... 10

    2.2.4 Linear approximations of NPV and AS ..................................................... 10

    2.2.5

    NPV and AS of a few useful cases .......................................................... 11

    2.3 Economic Order Quantity (EOQ) Harris (1913) ............................................ 14

    2.4 Economic Production Quantity (EPQ) Taft (1918) ........................................ 18

    2.5 EOQ with batch demand Grubbstrm (1980) .............................................. 21

    2.6 Lot-for-lot production at finite rate Monahan (1984) .................................... 24

    2.7 EOQ for batch demand Goyal (1976) ....................................................... 26

    2.8 EPQ for batch demand Joglekar (1988) .................................................... 28

    2.9 Vending machine ................................................................................ 29

    2.10 Payment structures ............................................................................. 30

    2.11 Consignment arrangements .................................................................... 32

    2.12

    The profit function of the integrated supply chain ........................................ 34

    2.13 Using the NPV framework to include other cost components ............................ 35

    3 IL in Buyer-Supplier Supply Chains .................................................................. 38

    3.1 One-to-one shipping ............................................................................. 38

    3.1.1 Shortest Path Problem ....................................................................... 38

    3.1.2 Economic Transport Quantity (ETQ) ....................................................... 41

    3.1.3 Maximum Economic Haulage Radius (MEHR) ............................................. 45

    3.1.4 Optimal policy to order N different items from a Cross-Docking Facility (CDF) .... 46

    3.2 One-to-many shipping .......................................................................... 48

    3.2.1 Length of an optimal TSP tour visiting many customers ............................... 48

    3.2.2

    Expected length of an optimal TSP tour visiting a few customers ................... 51

    3.2.3 Continuous approximation of an optimal vehicle routing solution ................... 52

    3.2.4 One-to-many ETQ ............................................................................ 54

    4 Strategy in the supply chain: Alliances versus Leaders .......................................... 61

    4.1 Alliances .......................................................................................... 61

    4.1.1 Cooperative game theory ................................................................... 61

    4.1.2 Alternative methods ......................................................................... 71

    4.2 Two-party alliances in the supply chain ..................................................... 71

    4.2.1 Two-party alliance: example ............................................................... 71

    4.2.2 Two-party alliance: example 2 ............................................................. 79

    4.3 Perfect coordination ............................................................................ 82

  • 7/23/2019 Integrated Logistic

    3/150

    Integrated Logistics

    3

    4.3.1 Perfect coordination schemes: examples ................................................ 83

    4.4 Leaders and followers .......................................................................... 88

    4.4.1 Leaders and followers: Stackelberg games ............................................... 88

    4.4.2 Stackelberg leader in the supply chain: examples ...................................... 90

    5 Stochastic Models ...................................................................................... 96

    5.1 When is the assumption of a constant demand rate valid? ............................... 96

    5.2 (r, Q) reorder point models .................................................................... 97

    5.2.1 Backorder case ................................................................................ 98

    5.2.2 Lost sales case .............................................................................. 103

    5.2.3 Service level approach .................................................................... 103

    5.2.4 Standard Tables ............................................................................ 105

    5.2.5 Exercises ..................................................................................... 110

    5.3 News vendor problems ........................................................................ 111

    5.3.1 Example ...................................................................................... 111

    5.3.2 Cost minimisation .......................................................................... 111

    5.3.3 Profit maximisation ........................................................................ 112

    5.3.4 Regret minimisation ....................................................................... 113

    5.3.5 Exercises ..................................................................................... 114

    6 MRP, JIT, and Bottlenecks .......................................................................... 116

    6.1 Materials Requirements Planning ........................................................... 116

    6.1.1 MRP inputs ................................................................................... 116

    6.1.2 MRP outputs ................................................................................. 118

    6.1.3 Lot sizing policies .......................................................................... 122

    6.1.4 Remarks on MRP ............................................................................ 125

    6.2

    Just-In-Time .................................................................................... 130

    6.2.1 Motivation ................................................................................... 131

    6.2.2 Push and pull systems ..................................................................... 131

    6.2.3 The Kanban System ........................................................................ 131

    6.2.4 How many cards? ........................................................................... 132

    6.2.5 Subcontractors .............................................................................. 134

    6.2.6 Fluctuations in demand ................................................................... 134

    6.2.7 Comparison JIT and MRP .................................................................. 136

    6.3 Bottleneck scheduling ........................................................................ 139

    6.3.1 Optimised Production Technology (OPT) ............................................... 139

    6.3.2

    Theory Of Constraints (TOC).............................................................. 143

  • 7/23/2019 Integrated Logistic

    4/150

    Integrated Logistics

    4

    1 Introduction

    Foranyquestions,email:[email protected]

    Seealsothematerialonblackboard.

    Thistext follows the lecturesgiven,but Imayhavearranged thesequenceofa few topics inorder toarriveatamorelogicalflow.

    1.1 DefiningSupply

    Chain

    Management

    Seeslidesonblackboardandreadthefollowingarticle(onblackboard):

    MENTZER J T, DE WITT W, KEEBLER J S, MIN S, NIX N W, SMITH C D, AND ZACHARIA Z G. 2001.

    DEFININGSUPPLYCHAINMANAGEMENT.JOURNALOFBUSINESSLOGISTICS22(2),125.

    1.2 UnderstandingSupplyChainManagement

    Seeslidesonblackboardandreadthefollowingarticle(onblackboard):CHENIJANDPAULRAJA.2004.UNDERSTANDINGSUPPLYCHAINMANAGEMENT:CRITICALRESEARCH

    ANDATHEORETICALFRAMEWORK. INTERNATIONAL JOURNALOFPRODUCTIONRESEARCH42 (1),131

    163.

    1.3 MeasuringSupplyChainPerformance

    Seeslidesonblackboardandreadthefollowingarticle(handout):SHEPHERDCANDGNTERH.2006.MEASURINGSUPPLYCHAINPERFORMANCE:CURRENTRESEARCH

    AND FUTURE DIRECTIONS. INTERNATIONAL JOURNAL OF PRODUCTIVITY AND PERFORMANCE

    MANAGEMENT55(3/4),242258.

    1.4 Whatis

    Integrated

    Logistics?

    Seetheslidesonblackboard.

  • 7/23/2019 Integrated Logistic

    5/150

    Integrated Logistics

    5

    2 IL Finance

    2.1 StrategyandFinance

    Source: SILVER A., PYKE D.F., AND PETERSON R. 1998. INVENTORY MANAGEMENT AND PRODUCTION

    PLANNING AND SCHEDULING, THIRD ED. JOHN WILEY & SONS, NEW YORK, CHAPTER 2: STRATEGICISSUES,P.14.

    Integrated Logistics (IL) should be linked to the corporate and business strategy. The most importantobjectiveofanyfirmisarguablylongtermprofitability.Inthiscontexttheoperatingprofitisdefinedas:

    ILcanaffectbothtermsontherighthandside.Byreducinge.g.aggregateinventorylevelsinthefirm,

    the investmentcostcanbe reduced.Byallocatingproper inventory levelsamongdifferent items inanimprovedway,salesrevenuemayincrease.

    One common aggregate performance measure in IL and inventory management is the inventory

    turnover:

    An increase in sales without a corresponding increase in inventory will increase the inventory

    turnover,aswilladecreaseininventorywithoutadeclineinsales.Turnovercanbeausefulmeasuretocomparedivisionsofafirmorfirmsinanindustry.

    Ahigherturnoverratioforthesamelevelofsalesmeansamoreprofitablebusiness,aslessmoneyis

    tiedupininventories.Thedangeristhatareductionofinventorylevelsmayalsonegativelyaffectsales.Whenitisnotknownwithcertaintyhowmuchdemandthereisperperiod,anamountofsafetystockis

    needed to make sure enough products are in stock in case demand would be somewhat higher than

    expected.Furthermore,theright figureof inventoryturnover foryour firmdependsonthe levelof in

    houseproductionversusoutsourcing.Afirmthatdoeseverything inhousewillneeda lower inventory

    turnoverthan

    afirm

    that

    is

    completely

    based

    on

    outsourcing

    of

    the

    production.

    Indeed,

    the

    first

    firm

    will

    alsohaveastockofrawmaterialsandworkinprocess,whilethesecondwillonlyhaveendproductsininventory.These considerationsare importantwhen comparing inventory turnover figures of different

    firms.OtherusefulperformancemeasuresforILincludethosethatmeasureallsortsof:costs;averageand

    variabilityofleadtimes(oftenseenasthetimebetweeninitiationofsomesalesorderandrealisationof

    thesales,sometimesalsojust thetime istakes foraproduct tomovethroughaparticularpartofthe

    supply chain); product and service quality; customer satisfaction; and innovativeness (see also Section

    1.3).

  • 7/23/2019 Integrated Logistic

    6/150

    Integrated Logistics

    6

    2.2 Timevalueofmoney

    Source (on blackboard): GRUBBSTRM, R.W. 1980. A PRINCIPLE FOR DETERMINING THE CORRECT

    CAPITAL COSTS OF WORKINPROGRESS AND INVENTORY. INT. J. OF PRODUCTION ECONOMICS 18(2),259271.

    2.2.1 NetPresentValuefordiscreteinterestrates

    IfIinvestV()intoaprojectnow,theprojecthavingarateofreturn =0.2afteroneyear,whatwillbetheamountofmoneya()thatIwillreceiveoneyearlater?

    Theanswer: 1 1.2

    If Ikeepthe investmentrunningnot foronebutforTyears intotal,whatwillbemyrewardattheend?

    Theanswer: 1 1 1 1 Wecanturnthisaroundandaskthequestion:whatisthecurrentvalueV()ofreceivinga()within

    Tyearstimefromnow?Algebraicmanipulationoftheaboveequationgives:

    1

    Time

    Cashflows

    0 1

    V

    a

    Time

    Cashflows

    0 1

    V

    a

    T...2

  • 7/23/2019 Integrated Logistic

    7/150

    Integrated Logistics

    7

    ViscalledtheNetPresentValueofa. Itthusalldependsonthevalueof,calledthediscountfactor,interestrate,orinternalrateofreturn. Companiestypicallyusevaluesofwithintherange0.1to0.3.

    Considerasequenceofnpaymentsofdifferentamounts , 1, , atequidistantpoints intimewithcycletimeT(seeFigurebelow).WhatistheNetPresentValueofthesepayments,if

    istherateof

    returnoveroneperiodT?

    Theanswer:

    1 Therateofreturn isafunctionofthetimeperiodoverwhich it isdefined.Forexample, if

    isthe

    rateofreturnoveraoneyearperiod,whatistheequivalentrateofreturndefinedoveraperiodofone

    month(take

    this

    to

    be

    1/12th

    of

    ayear)

    that

    would

    give

    the

    same

    Net

    Present

    Value?

    Answer:Letuscall theequivalentrateofreturnoveronemonth,thenwithT=12: 1 1 1 1

    Mathsrefresher

    ln ln1 ln1

    1T ln1 ln1

    Thus,iftheannualinterestrateis0.2,theequivalentmonthlyinterestratewouldbegivenby:

    Time

    Cashflows

    0 1

    Van

    n...2

    a2

    a1

    TT

  • 7/23/2019 Integrated Logistic

    8/150

    Integrated Logistics

    8

    112 ln1 0 . 2 ln1

    . 1 0.0153Notethatiftheinterestratewouldbedefinedoverasmalltimeperiod,thenln1 .

    2.2.2 NetPresentValueforcontinuousinterestrates

    In general, the conversion of interest rates corresponding to different lengths of period obeys the

    formula:

    1 ln1 ,

    where isthe interestratepertainingtoaperiodof lengthand isthecontinuous interestratecorrespondingtothelimitlengthzero.ThedefinitionofNetPresentValueinthecontinuouscasebecomes:

    ,where

    isthecashflowattime

    plussomemultiple

    ofDiracsDeltafunctionatpoints

    at

    which

    there

    are

    finite

    payments

    .

    Wewilltypicallyneedtosolveonlyspecialcases,givenbelow.

    Example1Aoneofflumpsum()receivedatfuturetimeL

    Thus the NPV ofacashflow received L time units in the future is the cashflowmultipliedwith its

    delayfactor.Time

    Cashflows

    L

    a

    0

    V

  • 7/23/2019 Integrated Logistic

    9/150

    Integrated Logistics

    9

    Example2Afinitenumberofcashrevenues,eachreceivedtheirownfuturemoment

    Example3Aninfinitenumberofequalcashrevenuesreceivedatequidistantmoments

    Mathsrefresher

    If|| 1,then For , || 1

    Thus: 1

    Time

    Cashflows

    1

    an

    n...2

    a2

    a1

    T2

    T1

    0

    V

    Time

    Cashflows

    0 1 ...2

    aa

    TT

    ...

    a

  • 7/23/2019 Integrated Logistic

    10/150

    Integrated Logistics

    10

    Example4Acontinuouscashflowatarateofa(/year)receivedforeternity.

    2.2.3 AnnuityStream

    TheAnnuityStreamASofaseriesofcashflows istheNetPresentValueVofthesecashstreamstimestherateofreturn:

    Fromexample4,itisclearthattheannuitystreamisthatcontinuousstreamofcashyieldingthesamenetpresentvalueastheoriginalseriesofcashflows.

    2.2.4 LinearapproximationsofNPVandAS

    Mathsrefresher

    Maclaurinexpansionofanexponentialfunction ! 1 ! andconvergesfor

    Usingthisresultfor ,itiseasytoseethat:

    1

    2

    ,

    andit

    can

    also

    be

    proven

    (after

    lengthy

    algebraic

    manipulation):

    1 1 2 12 This can be used to derive linear or quadratic approximations in of NPV or AS functions, as

    illustratedinthenextsection.

    Time

    Cashflows

    0

    a ....

  • 7/23/2019 Integrated Logistic

    11/150

    Integrated Logistics

    11

    2.2.5 NPVandASofafewusefulcases

    Case1Aoneofflumpsuma()receivedatfuturemomentL

    1 1 Foraoneofflumpsum,boththelinearapproximationoftheNPVandthequadraticapproximationin

    of the AS are acceptable, and indeed would be of the same accuracy. However, the linear

    approximationof

    AS

    would

    be

    insufficiently

    accurate

    as

    indeed

    the

    above

    shows,

    cannotbetheASas a itself isnot itsNPV.The linear approximationof the AS would thus neglect the delayeffect altogether.Case2Aninfiniteseriesoflumpsumpaymentsa()receivedwithcycletimeT.

    1 1 1 2 12

    1 12 12

    1 1 2Foraninfiniteseriesofcashflows,thelinearapproximationofASisacceptable.

    Time

    Cashflows

    0 L

    a

    Time

    Cashflows

    0 1 ...2

    aa

    TT

    ...

    a

  • 7/23/2019 Integrated Logistic

    12/150

    Integrated Logistics

    12

    Case3Acontinuouscashflowatratea(/year),startingattimeL,andforeverlasting.

    Itcanbeobservedthatthisresultcouldhavebeenobtainedbycombiningexample4andcase3fromabove.IndeedtheNPVattimeLofthecontinuouscashflowaisa/(example4),andthenaccountingforthedelaywithtimeL(case1)givestheaboveresult.

    1 2 1

    Case4 Acontinuouscashflowatratea(/year)receivedinfuturetimeperiodT,startingat

    timeL.

    1

    Thisresultcanalsobeobtainedbyviewingthetemporarycontinuouscashflowaasthesumoftwo

    infinitecontinuous

    cash

    flows

    +a

    and

    a

    (starting

    atime

    Tlater),

    and

    thus

    by

    applying

    the

    result

    of

    case

    3

    twice:

    Time

    Cashflows

    0

    a ....

    L

    Time

    Cashflows

    0

    a

    L T

  • 7/23/2019 Integrated Logistic

    13/150

    Integrated Logistics

    13

    1 To find the linear approximation, it is safe to take the quadratic terms first into consideration and

    approximatelateron:

    1 2 1 1 2 2 1

    Case5 Aninfiniteseriesofcontinuouscashflowsatratea(/year)withcycletimeLandeachtimereceivedforalengthoftimeT(T L).

    The result of case 4 (without delay) can first be applied to find the NPV of the cashflow of every

    periodL.Usingtheapproachasincase2thengives:

    1 1 1 TofindthelinearapproximationofAS,itisagainsafetofirstconsiderthequadratictermsaswell:

    1

    1 1

    2! 1 2

    2 2

    Time

    Cashflows

    0

    a

    L

    a

    T T

    L

    ....

  • 7/23/2019 Integrated Logistic

    14/150

    Integrated Logistics

    14

    2.3 EconomicOrderQuantity(EOQ)Harris(1913)

    Aretailersellstocustomersatypeofproductatthepricepperproduct.Demandfortheproductcan

    beassumedtooccurataconstantrateaccordingtoanannualdemandofproducts.Theretailerhastopurchasefromanexternalsupplieratprice

    perproduct,andalsohastopaya

    fixed

    order

    cost

    for

    each

    order

    placed

    at

    this

    supplier

    (this

    could

    be

    the

    fixed

    cost

    of

    transport

    plus

    the

    fixedcostofadministrationtoplaceanorder).

    Figure 1. Lot-size model (EOQ).

    When the retailerwouldplaceanorderorsize Q (products/order)withcycletime T,the inventory

    levelovertimeattheretailerwillfollowtheclassicalsawtoothpatternasillustratedintheFigureabove.

    Itcanbeobservedthat:

    If there is a nonzero leadtime , and we want to make sure that the order arrives when the

    inventory drops to zero, we must order in advance when the inventory level is . This is called thereorderpoint.

    Thetraditionalapproachtoderivingtheoptimalpolicy

    Weconsideradeterministicsysteminwhichallrelevantparametersareconstantandshortagesarenotallowed.Thepolicyusedis(r,Q).Althoughtheaimistofindoptimalvaluesforbothrandq,theoptimal

    valuefor

    iseasilydetermined.TheproblemthereforereducestofindingtheoptimallotsizeQ.Inthis

    classiceconomiclotsizesystemthefollowingassumptionsaremade:

    1. constantannualdemandratey(items/year);

    w(/product)s(/order)

    y(products/year)p(/product)

    retailer

    Q(products/order)?T(cycletime)?

    Inventory

    retailer

    Time

    ...

    T

    Q

    L

    r

  • 7/23/2019 Integrated Logistic

    15/150

    Integrated Logistics

    15

    2. constantinfinitereplenishmentrateR=;

    3. constantunitholdingcosth(/item,year);

    4. constantunitordercosts(/order);

    5. noshortagesallowed;

    6. constantleadtimeL=0,easilyextendedtoconstantL0(years).

    7. constantreplenishmentquantityQ(items/order).

    TheinventoryfluctuationsinthissystemareillustratedinFigure1.Itisclearthatweplacetheorderatexactlythatmomentsothatreplenishmentsarrivewhenonhandinventoryreacheszero:ifleadtime

    L=0,weorderwhentheinventory levelI(t)=r*=0; ifL0(andL

  • 7/23/2019 Integrated Logistic

    16/150

    Integrated Logistics

    16

    Figure 2. Global cost f unct ion of t he EOQ model.

    yhsQ 2* 7

    Andsince

    y= Q/T, 8

    theoptimalcycletimeis:

    yh

    s

    y

    QT 2

    *

    * 9

    Graphically, the cost equations can be described as in Figure 2. At optimum, annual holding costs

    equalannualreplenishmentcosts.

    UsingtheNPVframeworktoderivetheoptimalpolicy

    TheNPVframeworkcanalsobeusedtoderivetheoptimalvaluesofQandT.Therefore,thecashflows

    for the retailer have to be determined. The following assumptions are adopted: Since demand isoccurring at a constant rate

    , the customers pay a continuous cashflow of

    to the retailer. The

    retailerwill

    pay

    the

    set

    up

    cost

    uponreceivingeverybatch,aswellastheamount tothesupplier.ThisisillustratedinFigure3.

    0 Q* Q

    (Q)

    Ordercost

    Holdingcost

    Totalcost

  • 7/23/2019 Integrated Logistic

    17/150

    Integrated Logistics

    17

    Figure 3. Cash-f l ows repr esentat ion of t he EOQ model .

    Theannuitystreamoftheprofitfunctionfortheretaileris:

    1

    Thelinearapproximation inisthus: 1 2

    2

    2

    Since

    :

    2 2 The optimal value for Q can be obtained by taking the derivative of this profit function to Q, and

    settingthisequalto0: 2 0

    2 Thusthesameresult isobtained,and inaddition itbecomesveryclearhowtheholdingcost(per

    productperyear),usedinthetraditionalinventoryframework,needstobecalculated: Thus,theholdingcostfortheretailerisrelatedtotheamountofmoneyinvestedperproduct,i.e..

    Wewilllaterencounterexamplesweretheholdingcostsperproductperyearwillbedifferent.

    Time

    Cashflows

    0

    s+wyT

    T

    py ....

    ....

  • 7/23/2019 Integrated Logistic

    18/150

    Integrated Logistics

    18

    2.4 EconomicProductionQuantity(EPQ)Taft(1918)

    Inthissectionwewillanalysealotsizesysteminwhichthereplenishmentrateisnotnecessarilyinfinite

    ashasbeenassumedintheprevioussection.Specifically,thesystemhasauniformreplenishmentrateR

    (items/year),where itisobviouslynecessarythatRy.Thistypeofreplenishinggenerallyoccurswhen

    the

    demand

    has

    to

    be

    met

    by

    a

    manufacturing

    department

    inside

    the

    company.

    The

    inventory

    fluctuationscanthenbedescribedgraphicallyasinFigure4.

    Aproducersellstocustomersatypeofproductatthepricewperproduct.Demandfortheproduct

    canbeassumedtooccurataconstantrateaccordingtoanannualdemandofproducts.Theproducerhastomaketheproductsatavariableproductioncostperproduct,andalsohasto

    payafixedsetupcostforeachrunoftheseproducts. Productionoccursataconstantfiniteproductionrateequivalenttoanannualrateof(productsperyear).Thetraditionalapproachtoderivingtheoptimalpolicy

    Figure 4. Manufact ur ing lot size syst em.

    Theaverageamountofinventoryequals

    E(I) = |bc|/2 10

    Wehavethefollowingrelationships:

    c(/product)s(/order)

    R(products/yr)

    y(products/year)w(/product)

    producer

    Q(products/order)?

    T(cycletime)?

    t

    I(t)

    q

    0

    T

    Lr

    R

    y

    b

    a

    c

  • 7/23/2019 Integrated Logistic

    19/150

    Integrated Logistics

    19

    abacbc (geometrical relationship) 11

    rL

    aby (demand rate)

    12

    rr L

    Q

    L

    acR (replenishment rate)

    13

    Hencetheaverageamountininventorycanberewrittenasafunctionoftheknownparametersyand

    RandthevariableQ:

    R

    yQ

    QR

    y

    QIE 122

    1

    )(

    14

    Thenumberofreplenishmentsperyearequalsy/Q.Thetotalsystemcostisthesumofholdingcosts

    andreplenishmentcosts:

    Q

    ys

    R

    yhQ

    Q

    ysIhEQ

    1

    2)()(

    15

    ThevalueQ*whichminimisestotalcostscanbeobtainedasfollows:

    012d

    d2

    Q

    sy

    R

    yh

    Q

    (Q)

    16

    R

    yQ

    R

    yh

    syQ EOQ

    1

    1

    1

    2 ** 17

    where

    *

    EOQQ

    refers

    to

    the

    economic

    order

    quantity

    of

    the

    basic

    EOQ

    model.

    The

    corresponding

    cost

    isgivenbysubstitutionof:

    R

    yh

    sy

    ys

    R

    yh

    sy

    R

    yhQ

    1

    21

    21

    2)( *

    18

    Rearranging:

  • 7/23/2019 Integrated Logistic

    20/150

    Integrated Logistics

    20

    2

    1

    2

    1

    )( *

    R

    yshy

    R

    yshy

    Q

    19

    R

    y

    R

    yshyQ EOQ 112)(

    ** 20

    where *EOQ referstothecostobtainedinbasicEOQmodel. ItiseasytoshowthattheEOQmodelis

    aspecialcaseofthecontinuousrateEOQmodelbysimplysubstitutingR=.

    Example.

    Lety=1000items/year,R=2000units/year,h=1.6/year,ands=200/year.Then:

    707500000

    5.016.1

    )2000)(1000(2

    1

    2*

    R

    yh

    syQ units/order.

    21

    UsingtheNPVframeworktoderivetheoptimalpolicy

    Thefollowingcashflowsareassumed:

    Then,usingCase5ofSection2.2.5forthevariableproductioncosts:

    1 1 2 2 2

    2

    1

    2

    Theoptimal

    order

    quantity

    is

    derived

    in

    the

    usual

    manner

    from

    the

    first

    order

    conditions:

    Time

    Cashflows

    0

    s

    T

    wy ....

    ....

    yT/R

    cR

  • 7/23/2019 Integrated Logistic

    21/150

    Integrated Logistics

    21

    21Thesameresultisthusobtainedasinthetraditionalderivationif:

    2.5 EOQwithbatchdemandGrubbstrm(1980)

    Weconsiderthesamesystemasintheprevioussectionbutwithtwomodifications:

    1. Theproductionrateissetsuchthat ;2. Salesoccursinbatchesofsize

    TheinventorylevelasafunctionoftimelookslikeamirrorimageoftheEOQsawtoothpattern:

    Thetraditionalapproachtoderivingtheoptimalpolicy

    ThiswouldbeexactlythesamemodelastheEOQofHarrisandwouldproduce:

    Q

    ys

    hQ

    Q

    ysIhEQ

    2)()(

    UsingtheNPVframeworktoderivetheoptimalpolicy

    FirstNPVsolution.ThisishowGrubbstrm(1980)derivedasolution:

    c(/product)

    s(/order)

    R(products/yr)

    y(products/year)

    w(/product)

    producer

    Q(products/order)?T(cycletime)?

    Time

    Inventory

    0

    T

    ....

  • 7/23/2019 Integrated Logistic

    22/150

    Henc

    Ther

    This

    theprod

    Noti

    whileth

    havepla

    Alternat

    conditio

    assumpt

    momen

    tooearl

    derivea

    Thiscan

    ethelinear

    fore:

    eansthatt

    uctandnot

    e,however,

    estartofpr

    cedabound

    iveNPVsol

    nisplaceda

    ionwould

    offirstdeli

    y andhasu

    noptimalpo

    berewritte

    pproximatio

    heholdingc

    hepurchase

    thatwithth

    ductionisk

    arycondition

    tion.Beulle

    tthemome

    akemore s

    ery isnotfi

    necessary s

    licyfromthe

    as:

    n:

    1

    stsinthetr

    price :

    e increaseo

    eptfixedat

    attime0.TsandJanss

    tintimewh

    ense if the

    xed,thecus

    tock tooear

    followingNP

    Integrated Logi

    12

    2ditionalfra

    wearedurrenttime

    hisisnotnec

    ns(2011)i

    enthefirst

    ustomerw

    omermay

    ly.Aprodu

    Vcalculatio

    stics

    1 22 2

    eworkaret

    elayingthe0.Wecaniessarilyalwa

    troducedan

    atchtothe

    nts this to

    itherrunou

    erunder th

    s:

    obebasedo

    eliveryofo

    terpretthis

    ysthebesta

    othermodel

    ustomerha

    appen, bec

    tofstockor

    se circumst

    nthesales

    derstothe

    asamodel

    ssumption.

    wherethis

    stobedeliv

    use otherw

    receivethe

    anceswould

    22

    riceof

    customer

    herewe

    oundary

    red.This

    ise if the

    products

    need to

  • 7/23/2019 Integrated Logistic

    23/150

    Andsin

    brackets

    Givin

    and

    asallow

    The

    Alter

    1.

    i

    2.

    c

    Wecan

    Inconcl

    framew

    e isafixe:

    g,when

    otheedbythecu

    oldingcosts

    natively,we

    heproducer

    alued at hi

    nterpretatio

    heproducer

    alled unit s

    roducesare

    thenrewrite

    sion,it

    is

    in

    rk.Thisbou

    constant,

    :

    rwise.(Inth

    tomerands

    inthiscase

    canlookatwill

    have

    as own inve

    ofbeingba

    willalsoha

    uppliers re

    venue,nota

    theprofitfu

    some

    mod

    darycondit

    eneedto f

    lattercase,

    uchthatouldhence

    2toderivetholding

    cost

    stment cost

    sedoninves

    eapositive

    ard cost!

    ction:

    ls

    therefore

    oniscalledt

    Integrated Logi

    indtheopti

    32

    22 theproduc .etakenas:

    woterms:

    ofkeeping

    s and this

    mentsmad

    ffectfromt (

    32important

    heAnchorP

    sticsalpolicy fr

    2

    rhasaninc

    roducts,jus

    holding cos

    intothepro

    hebatchdeli

    eullens and

    2 ow

    to

    set

    t

    oint(Beullen

    mthefunct

    2

    ntivetoma

    like

    in

    the

    t

    correspon

    ductplacedi

    veriestothe

    Janssens, 2

    eboundary

    sandJansse

    ion insidet

    ethelotsiz

    raditionalE

    s to the t

    instock: customergi

    011). Note

    conditionin

    ns,2011).

    23

    esquare

    aslarge

    Q,to

    be

    aditional;ingaso

    that this

    theNPV

  • 7/23/2019 Integrated Logistic

    24/150

    Integrated Logistics

    24

    2.6 LotforlotproductionatfiniterateMonahan(1984)

    Wecan extend the previousmodelof batchdemand by assuming that theproducer runs everybatch at some finite production rate . The producer would hence only start a production runsometime

    /earlierrelativetothedeliveryofabatchtothecustomer.

    Theclassiccostfunctionofthissystem(Monahan,1984)isgivenby:

    2 A first solution using NPV is found from setting the Anchor Point at start of production at time 0,

    assumingthecashflowsasinthefigurebelow.

    Ifthestartofproductionhastooccurattime0,theannuitystreamis:

    1 1 1 2 1 2 2 2

    2 2 2 2 Comparingwiththeclassiccostfunction,wefindthat 2 andwehaveasanextraterm

    thesuppliersrewardwith .Inthespecialcasethat weretrievethesolutionfromtheprevioussection:

    2 2

    Time

    Inventory

    0

    T

    ....

    yT/R

    Time

    Cashflows

    0

    s

    T

    wyT

    ....

    ....

    yT/R

    cR

  • 7/23/2019 Integrated Logistic

    25/150

    Integrated Logistics

    25

    andtheholdingcost is then .Note,however, thatwecanalwayswrite 2 ,soinsteadofadoptingaspecialinterpretation ,weseethatwecanequallyadoptthemoregeneralinterpretation(sincevalidforany ofhaving 2 andanextraterm,thesuppliersreward,with .

    WhensettingtheAnchorPointatthestartofsales,wefind:

    1 Thefunctioninbetweenthesquarebracketsisrewrittenas:

    1 2 2 2 2 Thus we can take

    and identify, again, the suppliers reward as an extra term with

    . The special case of is as seen in the previous section and can use the sameinterpretationsforand.Usingthetraditionalinventorymodelingapproach,onewouldonlyfindthefirstpart.Thisisinfact

    whathappenedintheliteraturethathasfollowedMonahans(1984)model,andhencetherearemodels

    intheliteratureforwhichitmaynotbeeasytoseewhethertheywillleadtoinventorypolicieswhichwill

    alsomaximisetheNPVofthefutureprofitsofthefirm.SeealsoBeullens(2014).

    We finishthissectionbyprovidingsome intuitionbehindthesuppliersreward.Asshownabove, it

    indicatesthatthereisapositiverevenuetermintheproducerslinearisedASprofitfunction:

    2 Thesuppliersrewardarisesfromthefactthatthecustomerordersinbatchratherthanoneproductatatime.Anintuitiveexplanationisthefollowing:

    CaseA.Supposeyouhavetwooptionstoreceiveincome:eitherreceiving1,200atthestartofevery

    year, or 100 at the start of every month, what would you choose? The logical answer would be to

    choosethefirstoption.

    Case B. Suppose you have two options to pay expenses: either paying 1,200 at the start of every

    year, or100 at thestartof every month,what wouldyou choose? The logical answer this time is to

    choosethelatteroption.

    The fact that a customer orders in batch will cause inventory costs for this customer. Thedisadvantageforthecustomertoorderinbatchisextrainventoryholdingcoststobevaluedatinvested

    cost , but at the same time this creates an advantage for the supplier as he receives his revenues earlier. The suppliers reward term incorporates this advantage into the suppliers profitfunction.

    Homework

    Derivetheoptimalorderquantityusingtheclassiccostfunctioninwhich andthenderivetheoptimalorderquantityusingthelinearisedannuitystreamfunctionunderthetwoassumptionsoftheAnchorPoint.Comparethethreeresults.

  • 7/23/2019 Integrated Logistic

    26/150

    Integrated Logistics

    26

    2.7 EOQforbatchdemandGoyal(1976)

    Weconsideramodelofadistributorwhoneedstodeliverordersofbatchsizetocustomerswithanaverage demand rate . Customers pay per product to the distributor but the distributor incurs adeliverycost

    perdelivery.Thedistributorcanplaceordersofsize

    toitsownsupplierandhastopay

    per

    product

    and

    has

    an

    order

    cost

    of

    per

    order.

    Itcan

    be

    proven

    that

    it

    is

    optimal

    for

    the

    distributor

    to

    have

    forsomepositiveinteger.Seealsotheabovefigure.Theclassicderivationofthecostfunctionisagainbasedontrigonometryandproducestheresult(Goyal,1976): 12

    ToderivetheASprofitfunction,weusethefollowingcashflows:

    NotethatplacingtheAnchorPointatstartofsalestothecustomersorplacingtheAnchorPointat

    startofthefirstbatcharrivingfromthesupplierproducesthesameboundaryconditionattime0.TheASfunctionis:

    c(/product) (/order) y(products/year)w(/product)(products/order)(/order)distributor

    (products/order)? (cycletime)?

    Time

    Inventory

    0

    ....

    Time

    Cashflows

    0

    s

    wyT ........

    wyT

  • 7/23/2019 Integrated Logistic

    27/150

    Integrated Logistics

    27

    2 1 2 2Comparisonofthisresultwiththeclassiccostfunctionshowsthat

    ,butalsothatthere isan

    extraterm,thesuppliersreward,with

    .

    Exercise

    Derivetheoptimalorderquantity usingtheclassiccost function inwhich andthenderivetheoptimalorderquantityusingthelinearisedannuitystreamfunction.Weillustratetheprocedurefortheclassicfunction.Weneedtominimise:

    12 bychoosingandoptimalintegervalue,say

    .Thisvaluemustsatisfytwoconditions:

    1 1Fromthefirstconditionwecanderive:

    12 1 1 12 Hence

    1 1 1

    2

    Or

    12.Thisinequalityisaquadraticfunctionin.Thenonnegativerootisgivenby:

    12 1 1 8

    But the solution has to be integer: (=the largest integer not larger than always satisfies thequadraticinequality.Fromthesecondconditionwederivesimilarlythat:

    1 2.Andwecanproceedasforthefirstconditiontoderivethesameasalwaysfeasible.Bothconditionstogetherimply .Hence:

    12 1 1 8

  • 7/23/2019 Integrated Logistic

    28/150

    Noteth

    by subs

    depend

    2.8

    E

    We intr

    producti

    producti

    Ifwe

    thefollo

    The

    Setti

    the timi

    (Beullen

    Henc

    Setti

    donot

    d

    tthederiva

    itution of on.PQ

    for

    b

    duce in th

    oncostper

    onlotsizef

    assumetha

    wingfigure(

    lassiccostfu

    gtheAncho

    ng of cash

    sandJansse

    e, ,agtheAnch

    erivethe

    res

    ionoftheo . The

    tchdem

    previous

    roductand

    rasinglepr

    t thisisjustan

    nctionisder

    rPointatst

    lows as in

    s,2014):

    dagainther

    rPointatst

    ulthere.

    c(/produc (/order)R(products

    timalfoeason is tha

    ndJogl

    odel a finitisthesetuductionrun.

    s inthepre

    example).

    ivedinJogle

    rtofsalesa

    he previous

    1 eistheextr

    artofthefir

    )

    year)

    (pr (cyc

    Integrated Logi

    rcanbet the suppli

    ekar(19

    production

    pcostfora

    .

    iousmodel,

    ar(1988):

    sinthefigur

    sections, p

    2 2 termwith

    stproductio

    producer

    ducts/orderletime)?

    sticsderivedfrom

    ers reward

    8)

    rate (witproductionr

    the invento

    1 eabove,an

    roduces the

    1 runwillpr

    y(prodw(/pr

    (pro

    (/o

    )?

    thisresultf

    is a constan

    ). Inun.Thedeci

    y levelover

    2

    2

    whenmaki

    following li

    2 .duceadiffe

    cts/year)oduct)ucts/order)

    der)

    ortheclassic

    t term that

    this model,

    sionvariable

    timemay lo

    gassumpti

    nearised AS

    2

    rent

    fun

    28

    function

    does not

    is theisthe

    ok like in

    nsabout

    function

    2

    tion.We

  • 7/23/2019 Integrated Logistic

    29/150

    Integrated Logistics

    29

    NotethatthemodelofJoglekarincorporatespreviouslyconsideredmodels:

    For ,wegetGoyalsmodel; For 1 ,wegetMonahansmodel; For 1 and ,theEOQmodelwithbatchdemandofGrubbstrm.

    Homework

    Derivetheoptimalorderquantityusingtheclassiccostfunctioninwhich andthenderivetheoptimalorderquantityusingthelinearisedannuitystreamfunction.Comparethetworesults.2.9 Vendingmachine

    WeillustratetheusefulnessoftheNPVframeworkforderivingtheprofitfunctionofavendingmachine

    operator.Weconsiderasingleproductsoldatapriceinavendingmachineofcapacity.Theproducthasacostpriceforthevendor.Thevendorhasasetupcostfordeliveringabatchofproductstothevendingmachine.Uponthedeliveryofproductstothevendingmachine,theoperatorcollectsthecoins

    of

    the

    customers.

    Assume

    a

    constant

    demand

    rate

    .

    The inventory level over time follows the EOQ sawtooth pattern.The cashflows however differ from

    thatintheEOQmodelandaregiveninthefigurebelow.

    2 2

    Theholdingcostforavendingmachineistobebasedon

    ,i.e.basedonthesumofcost

    priceand

    sales

    price!

    ThereasonwhythisresultdiffersfromtheEOQmodelisthatthecoinsputintoavendingmachinebycustomers iscashthat isnotyetaccessibletothevendoroperator.Onlyuponcollectionofthesecoinscanthevendorhaveaccesstothiscapitalforreinvestment. It isas ifthecustomersonlyexchangethe

    cashwiththeoperatorthemomenttheoperatoremptiesthevendingmachinescoinsregister.

    Itcanbeproventhattheoptimallotsizeis min , .ThisexampleillustratesthattheprofitfunctionintheNPVframeworkwilldependontheassumptions

    wemake

    about

    when

    cash

    is

    exchanged.

    We

    call

    this

    the

    payment

    structure

    and

    it

    is

    further

    discussed

    in

    thenextsection.

    Time

    Cashflows

    0

    s+wyT

    T

    ....

    ....

    pyT

  • 7/23/2019 Integrated Logistic

    30/150

    2.10

    P

    Conside

    product

    thatthe

    If th

    Convent

    buyerp

    Ther

    The

    transact

    We

    ignored.

    Itisnot

    incases

    EOQm

    Assume

    time.assume

    ayments

    thetransfe

    thatthebu

    totalamoun

    paymento

    ional (C). It

    ysatdiffere

    CashInAdv ,withCredit(CR): 0arefurther

    Paymentsin

    with0 atthesuppli

    Transaction

    instrument

    theamount

    igurebelow

    ion costs a.

    illhencefor

    Allpayment

    difficulttoa

    wheretheti

    delwithCR

    thatallcust

    Thecashfl

    thatthefirst

    tructure

    rofabatch

    erhastopa

    t

    ispaid

    ccurs in full

    isnot theo

    tmoments

    ance (CIA): 0 .thebuyerca

    orethefoll

    instalment1,asCIA(ter),andthe

    costsandtr

    sed,thesup

    andtimethe

    illustrates.T

    d delays.

    thassume t

    sfurthercon

    aptallprevi

    eisspeciandCIApa

    merspayw

    wdiagram i

    deliverywill

    ofproducythesuppli

    orthemom

    at the time

    ly reasonab

    intime,inclu

    hebuyerpa

    paythesu

    owingtwoc

    .The

    buyer

    hiscouldbe

    emainder1nsactiondel

    pliermayre

    buyerhasm

    hepayment

    e call the

    at transacti

    sideredare

    ouslyconsid

    ied.Anexa

    mentstru

    ithaCRofti

    sgivenbelo

    occuratsom

    Integrated Logi

    tsbetween

    r. Inthepr

    ent

    thatth

    ofdelivery

    leassumpti

    ding:

    ysat some

    plierlatert

    nsideration

    maypay,

    fo

    adepositpai wiays.Duetoi

    ceiveadiffe

    adeapaym

    oftheamo

    first two p

    oncostsan

    enceredmodels

    plefollows.

    tures

    mebutt.Sincewe

    efuturetim

    sticsbuyerand

    vioussectio

    batcharriv

    then it is s

    nwecanm

    timebefore

    anthetime

    :

    example,a

    dthemome

    haCRarran

    nefficiencies

    entamount

    nt.

    nt isCIA,yments

    delaysare.forsituation

    atyouhave

    havetopay

    ewith

    asupplier.L

    ns,wehave

    satthebuy

    aid that the

    ake. In reali

    thedelivery

    ofdelivery,s

    fractionof

    t

    twhenthe

    gement.

    andcostsch

    andatadiff

    ofisC,a an

    zeroorso s

    swherepay

    topaythe

    thesupplier.

    etbetheconsistently

    er.

    payment st

    y, itmaybe

    ismade, sa

    ayattime

    heamount

    buyerplaces

    argedbythe

    erenttimer

    dofisCd the third

    all that th

    entsoccur

    upplierwith

    inadvance,

    30

    priceper

    assumed

    ucture is

    thatthe

    at time

    ,with

    ue,hisorder

    financial

    lativeto

    andhas

    payment

    ycanbe

    CIAorCR

    CIAwith

    wemust

  • 7/23/2019 Integrated Logistic

    31/150

    Integrated Logistics

    31

    Thisgives:

    2 2

    2 Wealsoget: 2 2 and

    2 2

    Note.ItiseasytoseethatifcustomerswouldpayCIAwecanusetheabovemodelbutconsidernegative

    valuesfor.Likewise,wecanstudytheimpactofreceivingacreditperiodfromthesupplierbytakingintheabovemodelnegativevaluesfor.Numericalexample

    The table below illustrates the impact for an example with 25/, 150/, 2000 /, 0 and 50/. We take 0.2.

    The%gap isacommonmeasureforgetting insightinrelativedifferencesbetweenascenarioanda

    base case scenario. In the table it is calculated as the percentage difference relative to the base case

    scenarioofaconventionalpaymentofthesupplieri.e.for 0.The%gapformeasureis:% 100 00 ,where in the above table is, respectively, , , and. It can be observed that the increase in

    logisticscosts ismuchsmaller thanthecorrespondingprofit loss.Forassessing the impactofdifferent

    timingsofpaymentsitishencemuchsafertoconsidertheprofitfunction.

    Time

    Cashflows

    0

    s

    T

    py ....

    ....

    L

    wyT

  • 7/23/2019 Integrated Logistic

    32/150

    Integrated Logistics

    32

    (months)

    (products/order)

    % gap

    (-)

    (/year)

    % gap

    (-)

    (/year)

    % gap

    (-)

    0 346 0.00 1732 0.00 48253 0.00

    1 344 0.83 1747 0.84 47398 1.77

    2 341 1.65 1761 1.68 46529 3.57

    3 338 2.47 1776 2.53 45646 5.40

    4 335 3.28 1791 3.39 44747 7.27

    5 332 4.08 1806 4.25 43834 9.16

    6 330 4.88 1821 5.13 42906 11.08

    2.11Consignment

    arrangements

    Consignment arrangements are popular payment structures in some industries between suppliers and

    buyers.Thesebuyersarecompaniesthemselvesandmayberetailersorproductioncompanies.Thestockheld at a buyer under this arrangement is called the consignment stock. It is hence inventory that is

    physicallyheldatthepremisesofthebuyer,butfinanciallyitisstillunderthe(partial)ownershipofthe

    supplier.Onlywhenaproductisremovedfromthisconsignmentstock,willthebuyerhavetocompletethepaymentfortheproducttothesupplier.

    Assumethatthepriceforaproductthatabuyerneedstopaytothesupplieris.Wecandistinguishbetweenthefollowingthreecommonconsignmentarrangements:

    FullConsignment(FC):thesupplierretainsownershipofthe inventoryatthebuyerandthis isimplementedbylettingthebuyerpaysthesupplierthepriceforaproductonlyatthemomentthatthisproductisactuallytakenoutoftheconsignmentstockatthebuyer.Thisproductisthentobeused inthebuyersproductionprocess,orinthecaseofthebuyerbeingaretailer,when

    thebuyeractuallysellstheproducttooneofitsowncustomers.

    PartialConsignment(PC):thesupplierispaidanamountforeachproductwhentheproductisdelivered to the buyers consignment inventory, but the remainder is onlypaid out themoment the product is taken out of the consignment stock by the buyer (for reasons asexplained above for the case of full consignment). The price

    can in principle be any agreed

    amount;itdoesnotneedtobethesuppliersowncostprice.

    Graceperiod(GP(z)):ThisissomewhatsimilartoPCinthatthebuyermayfirstpayanamountthemomentthatproducts aredelivered to itsconsignmentstock,but the remainder isthentobepaidbackaccordingtoacreditarrangementthatdependsontheaveragecycletimebetweendeliveries.Thiscreditperiodiscalledthegraceperiodanditsmomentofpaymentisingeneralasfollows: ,where

    isasuitablychosenconstant.The idea isthatwhenabuyerorders in larger lotsizes,

    thatthecreditperiodthesupplieriswillingtoofferalsobecomeslonger.

    Weillustratethethreepaymentstructureswiththefollowingexample.

  • 7/23/2019 Integrated Logistic

    33/150

    Integrated Logistics

    33

    Abuyersuppliermodelwithconsignmentarrangements

    WeconsiderabuyerhavinganEOQproblemandthesupplierdeliveringtothisbuyerthentohavethe

    EOQproblemwithbatchdemand.Bothmodelswerediscussedpreviously.TheASfunctionofthebuyer,

    underconventionalpaymentstructures,was:

    2 2,wherethesubscriptisusedtomakeclearthatitconcernsthebuyer.ThesuppliersASfunctionwas: 2 1 2 2.

    Wenowintroduceageneralisedpaymentstructurewhichhastheabovediscussedthreevariationsof

    consignmentinit:

    Anamount

    ispaidforaproductwhenitisdeliveredtothebuyer;

    Anamountispaidforaproductwhenthebuyersellstheproducttoitsowncustomers; The remainder is paid for with a grace period time units after thedeliveryoftheproducttothebuyer.Hence, for 0 , 0 and this corresponds to FC; for 0 but 0 this

    correspondstoPC;andwith 0but 0 toGP(z).Themoregeneralcasehasallthreeamountsnonzero.Notethat .

    CustomersofthebuyerstillpayaccordingtotheconventionalstructureC,asintheEOQmodel.

    ThebuyersASfunctionchangesto:

    Welinearisetheexponentialtermsinthedecisionvariableandfind:

    2 1 2 2 Note that the holding cost for the buyer is based on

    1 2

    . For

    , the

    holdingcostforthe

    componentiszero.For

    1,theholdingcostforthe

    componentbecomesa

    negativecost

    i.e.

    will

    increase

    the

    buyers

    profit

    function.

    ThesuppliersASfunctionchangesto:

    2 1 2 1 2 2.

    Thesuppliersrewardisaffectedandnowtobebasedon

    1 2 .

  • 7/23/2019 Integrated Logistic

    34/150

    Integrated Logistics

    34

    2.12Theprofitfunctionoftheintegratedsupplychain

    If firms in a supply chain want to identify the optimal way of coordinating, then a commonly used

    benchmarkisassumingthatthefirmswouldoperateasonevirtualorganisation.Thisvirtualorganisationrepresents the integratedsupplychain.Toderive itsoptimalpolicy,wearguablyneedtohaveaprofit

    function

    as

    well.

    We

    illustrate

    with

    an

    example

    what

    can

    be

    done,

    and

    where

    there

    are

    still

    some

    open

    problems.

    Consider the buyersupplier model from the previous section, but assume conventional paymentstructures.Theprofitfunctionsofbothfirmsare,respectively:

    2 2, 2 1 2 2.Itistemptingtopostulatethattheprofitfunctionoftheintegratedsupplychainisfoundastheirsum:

    Thisgives:

    2 1 2 2However,thisfunctionnowmakesuseoftwodifferentopportunitycostsofcapital,and.Would

    an integrated firm not be in a position to use one common opportunity cost of capital instead? If wewouldassumethatbothcapitalcostratesarereplacedbyonecommonrate

    wewouldfind:

    2 1 2 2 2 2Sucharesultwouldalsobefoundifwestartedfromthecashflowdiagramsofbothfirms,andthen

    recognisingthatcashexchangedbetweenthefirmswouldcanceleachotherout.

    Thisconundrumhasnotyetbeenadequatelyaddressedintheliterature.Wewillassumehenceforththat

    ; in this case the problem does not present itself. Under this assumption, we can

    indeedsumtheprofitfunctionsof individualfirmsto findtheprofitfunctionoftheir integratedsupply

    chain.

    Exercise1

    Derivefortheabovebuyersuppliermodelwithconventionalpaymentstructurestheorderquantitiesandthatwillmaximise.

    Wetakethepartialderivativeof, toforaconstant,andfromsettingthistozerowefind:

    2

    Substitutionofthisresultinto :

  • 7/23/2019 Integrated Logistic

    35/150

    Integrated Logistics

    35

    2 2

    2 2 Theoptimalpositiveintegervalueishence 1.Therefore,wealsoget2

    and

    2 2 .Exercise2Considerthebuyersuppliermodelwithconsignmentpaymentstructuresderivedpreviously.Repeattheaboveanalysisforthiscase,i.e:

    a. Findtheprofitfunctionoftheintegratedsupplychain;

    b. Findthevaluesofandthatmaximisethisfunction.Youwillfindthattheprofitfunctionoftheintegratedsupplychainisexactlythesame,andtherefore

    also the optimal values derived above apply. This gives an important insight: the payment structuresbetweenthefirmsinasupplychaindonotaffecttheirintegratedprofitfunction!

    Homework

    Considerthesetofmodelswehave lookedatsofar,andmakeupyourownfeasiblecombinationofa

    singlesuppliersinglebuyermodelandrepeattheaboveanalysis,i.e.determinetheintegratedsupply

    chainprofitfunction,andderivetheoptimalpolicythatwillmaximisethisfunction.

    2.13UsingtheNPVframeworktoincludeothercostcomponents

    TheNPVframeworkalsoallowsfortheconsiderationofothercostcomponents.Weillustratewithafew

    examples,usingtheEOQmodelasourbasecasescenario.

    Materialhandlingandinsurance

    A variable material handling cost e (/product) for each product placed in inventory, paid uponreceivingthebatch

    Acostdirectlyproportionaltotheaverageinventorylevel(e.g.thecostofinsuranceagainstfirefortheaverageamountofinventoryheld),tobepaidase.g.acontinuousstreamattherateof /2(/year).

    TheASfunctionfortheEOQmodelisadaptedto:

    2 2 1

  • 7/23/2019 Integrated Logistic

    36/150

    Integrated Logistics

    36

    2 1 2

    2

    2

    Thusthe

    optimal

    lot

    size

    becomes:

    2 andtheholdingcostsaretobecalculatedasfollows: Ingeneral,wecanhenceidentifytwodifferentcomponentsofholdingcosts:

    a. The

    financial

    cost

    of

    keeping

    stock,

    arising

    from

    investments

    made

    into

    products

    stored,

    here

    the

    term ;b. Outofpocketholdingcosts,arisingasrealexpensestobemadewhenplacingproductsinstock;here.Notethatthesecostsneedtobeafunctionofthestockposition i.e.thecorrespondingannualcostneedstovarywith.

    It isgenerallyaccepted that inmanypracticalsituations the financialholdingcostsaremuch largerthan theoutofpocketholdingcosts.That isalsowhy inmanymodelsoutofpocketholdingcostsare

    simplyignored.

    Priceelasticdemandfunctions

    Finaldemand

    foraproductcouldbeafunctionofprice

    .Forexample,onepossible function is (for

    0): where and arepositiveconstants. If the retailer with an EOQ model could decideon theprice,thenthereisthepracticalconstraint: asotherwisetheretailerwouldnotmakeanyprofits.TheretailerthushastheASprofitfunction:

    , 2 2

    Onewaytosolvethisproblemistakingpartialderivativestoandandsolvethenonlinearsystemoftwoequations.Amorepragmaticapproachwouldbetoapplythefollowingalgorithm:1. Input:Valuesfor, ,,andafunctionwithmaximumprice2. Forasequenceofprices , , 2, ,

    2.1.Determine2.2.Usethistocalculate 2

    2.3.Calculate

    ,

    3. Retainthatpricethatgivesthehighestvaluefor ,.

  • 7/23/2019 Integrated Logistic

    37/150

    Integrated Logistics

    37

    Creditelasticdemandfunctions

    Sometimes firms will offer a delay of payments in order to boost demand. In the simplest case, the

    completeamounthastobepaidfortimeunitsafterthepurchase.Assumethatthefunctionisknown.TheASfunctionfortheretailernowbecomes:

    1 , 1 2 , 2 2 TofindtheoptimalvaluesforLandQ,thefollowingpragmaticalgorithmcouldbeused:

    1. Input:Valuesfor, ,,andafunctionwithmaximumcreditperiod.2. Forasequenceofdelayvalues

    0, , 2, ,

    2.1.Determine

    2.2.Usethistocalculate 2 2.3.Calculate ,

    3. RetainthatLthatgivesthehighestvaluefor ,.References

    GRUBBSTRM,R.W.1980.APRINCIPLEFORDETERMININGTHECORRECTCAPITALCOSTSOFWORKINPROGRESSANDINVENTORY.INT.J.OFPRODUCTIONECONOMICS18(2),259271.

    BEULLENS, P. AND JANSSENS, G.K. 2011. HOLDING COSTS UNDER PUSH OR PULL CONDITIONS THEIMPACTOFTHEANCHORPOINT.EUROPEANJOURNALOFOPERATIONALRESEARCH215,(1),115125.

    BEULLENS, P. 2014. REVISITING FOUNDATIONS IN LOT SIZING CONNECTIONS BETWEEN HARRIS,

    CROWTHER,MONAHAN,ANDCLARK.INT.J.OFPRODUCTIONECONOMICS155,6881.

    BEULLENS, P. AND JANSSENS, G.K. 2014. ADAPTING INVENTORY MODELS FOR HANDLING VARIOUS

    PAYMENT STRUCTURES USING NET PRESENT VALUE EQUIVALENCE ANALYSIS. INT. J. OF PRODUCTIONECONOMICS157,190200.

  • 7/23/2019 Integrated Logistic

    38/150

    Integrated Logistics

    38

    3 IL in Buyer-Supplier Supply Chains

    3.1 Onetooneshipping

    ThisstrategyinvolvesshippingproductsfromalocationAtoalocationB,bylettingavehicle(truck,taxi,

    train,ship,airplane)takingafeasibleandoptimalroute,typicallythecheapestorfastest.Let us assume that the vehicle is dedicated to the transaction, i.e. during its trip it will not make

    detours or perform other transportation duties. It is then also called Direct Shipping (DS) or linehaul

    shipping.

    Figure 5: One-to-one shipping (Direct shipping, line-haul shipping, FTL shipping)

    Thetransittimeisthetimethegoodsareunderwayfromthesourcetothedestination.Itisingeneralthesmallestrelativetoothershippingstrategies(discussedlater).

    Becauseavehicleisdedicatedtothissingletransportationjob,itis ingeneralonlyjustifiablefroma

    costperspectivetotransportsmallamountswhentheproducttransportedhasahighvaluedensity(/m3

    or/kg)orwhenitneedstoarrivefast(emergencyshipment).Itisnotunusual,forexample,todispatcha

    privatejetorhelicopterforthetransferofhumantransplantorgansinordertosavealife,ortodelivera

    singlesparepartbytaxiinordertopreventexcessivedelaysforapassengerairflight.

    Forgoods

    with

    lower

    value

    density,

    direct

    shipping

    is

    only

    cost

    effective

    when

    avehicle

    can

    transport

    a large enough amount. Therefore this strategy is sometimes also referred to as FullTruckLoad (FTL)shipping,althoughitisnotrestrictedtoroadtransport,norisitalwaysoptimaltoshipinquantitiesthatfillupthevehiclescapacity.

    3.1.1 ShortestPathProblem

    FindingtheoptimalroutefromAtoBcanbemodelledasaShortestPathProblem(SPP).TheSPPcallsfor

    findingtheshortestpathfromanoriginnodetoadestinationnodeinaconnecteddirectedgraphG=(N,

    A)withnodesetNandarcsetAandwhereeveryarc aAhasanonnegative length.ShortestpathproblemscanbeefficientlysolvedusingDijkstrasalgorithm.

    Figure 6: A shortest path problem

    1

    2

    6

    4

    53

    4

    33

    3

    2

    2

    2

    AB

  • 7/23/2019 Integrated Logistic

    39/150

    Integrated Logistics

    39

    Figure 6 showsan exampleof ashortest path problem. There are sixnodes in thegraph numbered

    from1to6,andsevenarcs,whereeacharcsdirectionandlengthisalsoindicated. Theheadofanarcis

    thenodeadjacenttothearcsarrowhead,andtheotheradjacentnodeofanarciscalledthearcstail.

    DijkstrasAlgorithm

    Tofindtheshortestpathfrom insuchgraphfromsomeoriginnodetosomedestinationnode,wecan

    useDijkstras

    algorithm:

    1. Associatewithallnodesatemporarylabelwithvalue2. Startattheoriginnodebychangingitslabelto0andmakethelabelpermanent.Callit

    thecurrentnode.3. Foreveryarcgoingoutofthecurrentnodethathasaheadnodewithatemporarylabel,

    replacethevalueofthetemporarylabelofthisheadnodewiththevalue:

    min ,

    4. Amongalltemporarylabellednodes,selectonewiththesmallestlabelvalueandmakethe labelpermanent. If thisnode is thedestinationnode,stop,elsecall thisnode thecurrentnodeandgobacktoStep3(iterate).

    Theoptimaltotallengthisnowequaltothelabelvalueofthedestinationnode.Todetermine

    theoptimalpath,startatthedestinationnodeandworkbackwards inthegraphbyfinding

    thearcwhichcostcorrespondstothedifferenceofthelabelsofitsheadandtailnodes.There

    maybemorethanoneoptimalpath.

    AppliedtotheprobleminFigure6,thealgorithmgivesthefollowingsequenceoflabelvaluesforeach

    node

    (note

    that

    permanent

    label

    values

    are

    indicated

    with

    a*,

    and

    the

    position

    in

    the

    sequence

    correspondstothenodenumber):

    [ ][0* ][0* 4 3 ][0* 4 3* ][0* 4 3* 6 ][0* 4* 3* 6 ][0* 4* 3* 7 6 ][0* 4* 3* 7 6* ]

    [0*

    4*

    3*

    7

    6*

    8][0* 4* 3* 7* 6* 8]

    [0* 4* 3* 7* 6* 8*]

    Thelengthoftheoptimalpathisthus8.Theoptimalpathisderivedstartingfromnode6andgoing

    backtonode5sincethelength2ofthatarcisequaltothedifferenceofitsheadlabelandtaillabels,2=

    86.Itistheneitherpossibletogotonode2,sincethearcslength2=64,ortonode3sinceitsarcslength3=63.Fromnode2wegobacktonode1.Fromnode3wewouldalsogobacktonode1.There

    arethustwooptimalpaths:eitherthesequenceofnodes1256orthesequenceofnodes1356.

    Note that all nodes in this examples have permanent labels at the end. This is not always so; ingeneraltherecouldbenodesthatstillcarrytemporarylabels.Notealsothatthealgorithmstillworksif

    theretherearemultiplearcshavingthesametailandheadnodes,aslongasweselectinStep3ofthe

    algorithmthe

    shortest

    arc

    in

    the

    formula.

    Dijkstras

    Algorithm

  • 7/23/2019 Integrated Logistic

    40/150

    Integrated Logistics

    40

    Thealgorithmfindstheoptimalsolutionsinceeverytimewemakealabelofsomenodejpermanent,

    wewillhavefoundtheshortestpathfromtheoriginnodetothatnodejanditspermanentlabelvalueis

    the length of this optimal path. The optimality of this path from origin toj is not depending on any

    decisionsweneedtomake lateron inthealgorithm,andviceversa: iftheoptimalpathfromoriginto

    destinationwouldpassnodej,thentheoptimalpathfromtheorigintojwillbecompletelypartofthe

    optimalsolutionindependentofthedecisionmadeinthepathfromjtothedestination.Wecallthisthe

    principleofoptimality.(Wewillfurtherdiscussconditionsunderwhichthisprincipleisnolongertrueandthereforethealgorithmwouldnotbeapplicable.)

    Differentobjectivefunctions

    Differentobjectivefunctionscanbeusedminimisingtotallength,timeorcostbylettingthelengthofeacharcintheSPPcorrespondtoitsdistance,expectedtransporttimetocrossthearc,ortotalcostto

    useit,respectively.Itiseasytoincorporateanyfixedcostsorfixeddelaysencounteredonarcs,suchas

    ontollroads,attollbridges,andattolltunnels,oratbordercrossings(administration,bordercontrol).

    Tachographlegislation

    Fortrucktransportoverlongerdistances,attentionhastobepaidtothesocalledtachographlegislation

    which requires drivers to take breaks and limits the total number of driving hours per day. Typicalconstraints

    may

    include

    the

    following:

    1. nomorethan2hoursofconsecutivedrivingisallowed;2. 45minutesofresttimeneedstobetakeneitherafter2hoursofconstantdrivingorduringthe2

    hoursofdriving(inbreaksofminimum15minuteseach);

    3. totalnumberofdrivinghoursperdriveranddayisrestrictedto8hours.

    Companiesmayhavethechoicebetweenusingtwodriversreducingtotalroutetimeorusingasingledriver with longer total travel time. To minimise to total costs, one can run the SPP algorithm on the

    graphusingonlytraveltimerelatedcostsforonedriverandthen,alsoknowingthetotaltraveltime,add

    thecostsoftheextradriver,requiredbreaks,andresttimestofindthetotalcostandrealtotaltime.The

    optionthat

    is

    the

    cheapest

    can

    then

    be

    retained.

    Timedependenttraveltimes

    Theproblemofminimisingtotaltraveltimeingraphswithtimedependentexpectedtraveltimesonarcs

    can be adequately modelled as a SPP if the start time at the origin node is given. The algorithm now

    needstouseinStep3theexpectedtraveltimeofanarcbasedonthecalculatedexpectedarrivaltimeat

    itstailnode.

    Undertheassumptionthatvehiclesthatarrivelateratthetailnodeofanarccanneverarriveearlierattheheadofthearcthenvehiclesofthesametypethatarrivedearlieratthetailnode,thealgorithmfindstheoptimalpath.Theassumption is ingeneralrealistic forqueue induced traveldelaysonroadssincevehiclesofsometypeattheendofaqueuewillfind itverydifficulttobeatvehiclesofthesame

    typeatthetopofthequeue.Theassumption isknownasthenoovertakingproperty.Notethatthis

    propertyimplies

    that

    waiting

    at

    any

    node

    in

    the

    graph

    is

    never

    optimal.

    This

    approach

    also

    works

    for

    when a desired arrival time at the destination node is given by letting the algorithm start at the

    destinationnode,workingbacktotheoriginnode,andsubtractingtimesduringthesearch.Tofindminimumcostsolutionsfortimedependenttraveltimesforwhichthenoovertakingproperty

    holds, the travel cost must be monotone increasing with travel time and a given units of driving timemustcostthesameasthesameunitsofwaitingtimeonnodes.Inthatcasethere isalwaysanoptimalsolutioninwhichnowaitingoccurs,andthusthealgorithmwillfindanoptimalsolution.

    If waiting (i.e. resting) is less costly than driving, it may be optimal to wait for times with lesscongestion on roads in order to minimise costs. However, waiting at some tail node means that

    opportunities for faster driving may be lost on arcs closer to the destination. Thus, the principle of

    optimalitynolongerholdsandotheralgorithmsaretobeused.

  • 7/23/2019 Integrated Logistic

    41/150

    Integrated Logistics

    41

    Multimodeltransportation

    MultimodaltransportationproblemscanbemodelledasSPPsbyassociatingwitheacharcinthegraph

    thedatarelevantforaspecificmodeandvehicletype;multimodeltransfernodesareintroducedinthe

    graphwhichconnect thegraphsof thedifferent transportationmodes.Each transfernode willadd its

    transfercostorexpectedtimeoftransfertotherelevantarcleavingthenode.ThenormalSPPalgorithmwillthenbeapplicable.

    However,theremaybeotherconstraintsinpracticemakingthisapproachlessrealistic.Ships,trains,andairplanestypicallytravelaccordingtoprespecifiedschedulesandroutesandsomeshipsortrainsare

    cheaperthanothers. Itmaythusbecheapertowaitatatransfernodeforthecheapestvehicle(train,

    ship)orroute.Thishowever,violatestheprincipleofoptimality.

    Note. For calculating SPP on road networks, various internetbased resources can now be used. For

    example,GooglemapshasafunctiontoallowyoutoseekforthequickestroutefromAtoB,whereyoucanspecifyyourstartingtimeandwhichtakesintoaccounttimedependenttraveltimes.

    3.1.2 EconomicTransportQuantity(ETQ)

    Considerthesituationthatabuyerneedsregularsupplyofsomegood.Weconstructacostmodelforthe

    situationof

    direct

    shipping

    of

    the

    product

    from

    asupplier

    to

    this

    buyer.

    We

    assume

    that

    the

    optimal

    travelroutehasbeendetermined(ase.g.anSPP)andthatitscostandtotaltraveltimeareindependent

    ofthetimeoftheyearatwhichitisundertaken.Wedenotebythetotaltransittime.WeassumeabuyerwithanEOQmodelandasupplierproducinglotforlotatafiniteproductionrate.

    Wenowalsoconsidertheintermediatestagewheretheproductsareonavehicleintransit.WeplacetheAnchorPointatthedeliveryofthefirstbatchtothebuyeratarbitrarytime.

    Time

    Inventorysupplier

    0

    T

    ....

    yT/R

    Time

    Inventoryintransit

    0

    T

    ....

    L

    Time

    Inventorybuyer

    0

    T

    ....

    L

  • 7/23/2019 Integrated Logistic

    42/150

    Integrated Logistics

    42

    Figure 7: Inventory positions and cash-flows in the direct shipping model

    Weassumethatthetransport isundertakenbya3PLandthatthebuyerpaysthiscompanyafixed

    transportcostpershipmentandavariabletransportcostthatdependsonthelotsizebeingshipped.The

    buyerpaysthesupplierfortheproductsthemomentthatabatch isdelivered.Weassumethatnexttosetupcostsforloadingandunloadingthevehicle,the3PLalsoincursatransportcostatarateforthedurationofthejourney.SeealsoFigure7.Thecapacityofthevehicleis

    .

    Weproceed

    by

    deriving

    the

    AS

    profit

    functions

    of

    the

    three

    firms

    involved

    from

    their

    cash

    flow

    functions.Forthebuyer,wehave:

    2 2

    Forthe3PL,wefind:

    1

    Time

    Cashflowssupplier

    0

    s

    T

    wyT

    ....

    yT/R

    cR

    L

    Time

    Cashflows

    3PL

    0

    T

    ....

    L

    Time

    Cashflowsbuyer

    0

    T

    ....

    L

  • 7/23/2019 Integrated Logistic

    43/150

    Integrated Logistics

    43

    Define: 1Then:

    2 2 Forthesupplier,finally,wederive:

    1 Thisleadsto,aftersomealgebraicmanipulation:

    1 2 2 2 2 Optimalthreefirmsolution

    Ifthethreefirmsareinterestedindeterminingtheoptimalshippingstrategyfortheirintegratedsupply

    chain, we can derive this from their supply chain profit function. This function is found from the

    summationoftheirprofitfunctions.(Asalways,assuming

    ).Thisproduces:

    Define: 1 1 1 2

    Then:

    2 1 2 Thisproducesanoptimalunrestrictedlotsize:

    2 1 However,sincethevehiclecapacityis

    ,theoptimalfeasibleEconomicTransportQuantity(ETQ)is:

    min,

  • 7/23/2019 Integrated Logistic

    44/150

    Integrated Logistics

    44

    DeterminingthevalueofTheparameterisanannuitystreamcostrateandhenceneedstobeexpressedin(/year).Weshowhowtoincorporatetworelevantcomponentsincasethatthevehicleisaroadvehicle:driverwagesand

    fuel costs. Driver wages are typically given in (/hr), so if a driver costs (/hr), then it has to beconvertedtoacostrate

    (/year)asfollows:

    8760 ,since there are approximately 24365 8760 hours in one year (i.e. not counting years with anextradayinFebruary).Fuelcostsaretypicallyexpressedin(/km).Therefore,afuelcost(/km)hastobeconvertedintoarate(/year)byassuminganaveragespeedofthevehicleof(km/hr): 8760 .

    Ifthesearetheonlyrelevantcosts,itwouldhenceproduce .Exercise

    Determinethe

    optimal

    lot

    size

    when

    the

    buyer

    would

    independently

    be

    able

    to

    determine

    .Inthatcase,thebuyerwouldaimtomaximise.Thisproduces min , where:2

    Note.Observethattheunrestrictedoptimallotsizefortheintegratedthreefirmsolutionisafunctionof

    thetransitleadtime.However,fortheabovesolutionforthebuyeritisindependentofthisleadtime.

    Optimalsolutionwhentransportisoutsourced

    If

    the

    3PL

    works

    independently

    and

    the

    supplier

    and

    buyer

    want

    to

    determine

    the

    optimal

    shipping

    strategyforthemselvesastwofirms,wecanderivethisfrom: Redefine:

    1 2

    Then:

    2 1 2 Thisproducesanoptimalunrestrictedlotsize:

    2 1

    However,

    since

    the

    vehicle

    capacity

    is

    ,theoptimalfeasibleresultis min , .

  • 7/23/2019 Integrated Logistic

    45/150

    Integrated Logistics

    45

    Note

    Ininternationaltransportbyseaitisoftenthatcasethatbuyerandsupplierneedtorelyona3PLforthe

    shipping.Here, couldbe themaximum load of theproduct intoonecontainer.The 3PLmay chargedifferentratesbetweenshippingafullcontainerversusshippingafractionofacontainerload.

    Homework

    Derivethe

    optimal

    lot

    size

    when:

    (1)

    buyer

    and

    3PL

    would

    seek

    to

    find

    their

    integrated

    optimal

    solution;

    (2)supplierand3PLwouldseektofindtheirintegratedoptimalsolution.

    Note

    Thesituationoflotforlotataninfiniteratecanberetrievedfromtheabovefunctionsbyconsideringthe

    case .ThecasethatthesupplierproducesaccordingtoanEOQwithbatchdemandisretrievedbysetting .3.1.3 MaximumEconomicHaulageRadius(MEHR)

    Thereisalimitastohowfaronecanreasonablytransportacertaintypeofproductusingdirectshipping.Ingeneral,thehigherthevaluedensityofaproductthefurtheritcanbetransportedinsmallquantities.

    This

    makes

    it

    reasonable

    to

    use

    dedicated

    small

    transport

    vehicles

    such

    as

    small

    vans,

    taxis,

    or

    expensive

    vehiclessuchasaeroplanes.Thelowerthevaluedensityofaproduct,theshorterthedistanceoverwhichitcanbeeconomically

    transported.Tocoverlongerdistanceswouldneedshipmentsinlargequantitiessuchaslargetruckswithasecondtrailerorbulktransportinabarge(inlandwaterways),orcontainertransportontrains(rail)orships (sea and ocean transport) where transport costs can be shared with other goods from other

    companies.

    UsingtheprofitfunctiontoderivetheMEHR

    KnowledgeoftheASprofitfunctionallowsustocalculatethemaximumdistanceoverwhichaproduct

    can be transported. Since

    , only strictly positive value for

    will also produce strictly

    positivevaluesforNPV.Asanyproject isnotconsideredworthwhilebyacompany ifitsrespectiveNPV

    wouldbecome

    negative,

    the

    boundary

    condition

    would

    be

    that:

    , 0Note that when, 0, this doesnot mean that the company would not produce a positive

    profitinaccountingterms.Itsimplymeansthatitwouldnotproducemoreprofitthanfromthenextbest

    available alternative! If 0.20 then the firm would still gain a respective 20% of profits from thisactivity.

    Wesketch theapproachwith the followingexample.Take the threefirm integratedprofit functionderivedpreviously:

    , 2 1 2 It is sufficient to focus on the function in between the square brackets. Furthermore, we can

    substituteintothisfunction,producingtheboundarycondition: 2 1 2 0,

    where

    1

  • 7/23/2019 Integrated Logistic

    46/150

    Wen

    CaseThelot

    types of

    function

    wher

    The

    express

    CaseSubstitu

    It m

    practicalreduces

    3.1.4

    Figur

    owneedto

    .izeisinoth

    terms in th

    of.

    eworkingo

    righthand s

    din(years).

    tionofther

    y be difficu

    approach

    tozero.(Sim

    Optimalpo

    e 8: Cross-D

    Inbou

    onsidertwo

    rwordsac

    e boundary

    orkingoutt

    ttheactual

    ide of this

    Toconvertt

    .sultfor lt to derive

    ouldbe

    to

    ilartotheal

    licytoorde

    cking Facilit

    ndtransport

    cases.

    nstant.Itca

    condition: t

    hisboundary

    aluesfor

    inequality wistoadista

    derivedp 2an analytic

    sean

    algori

    orithmspre

    rNdiffere

    Cross

    Integrated Logi

    nbeobserv

    erms that a

    condition,

    andisleft

    1 ould be th

    ce,younee

    reviouslywo

    2 result for th

    thmwhere

    sentedatth

    titemsfro

    ockingFacili

    1

    stics1 1

    dfromthe

    re not a fun

    ewillhence

    ,asanexercis

    maximum

    dtoconsider

    uldproduce

    e maximum

    ouwould

    in

    endofSecti

    aCrossD

    Outbound

    ty

    2

    bovefuncti

    ction of ,findaformu

    totheread

    economic h

    thetypeof

    heconditio

    1 possible val

    creaseunon2.13).

    ockingFaci

    transport

    onsthatwe

    and terms t

    laofthesor

    er.Thismea

    aulage radi

    ehicleused.

    :

    0lue of

    . Ho

    ilthe

    right

    lity(CDF)

    2

    46

    havetwo

    at are a

    :

    sthat:

    s

    wever, a

    andside

  • 7/23/2019 Integrated Logistic

    47/150

    Integrated Logistics

    47

    A CrossDocking Facility (CDF) is typically located near the boundaries of a populated area. It receives

    goods in (large) vehicles from various suppliers; these incoming goods are separated and mixed as

    required at the CDF, and subsequently sent out in vehicles without being held in storage to different

    destinationsinthelocalarea.

    Thecrossdockingoperationsmayrequirelargeareasinthewarehousewhereinboundmaterialsare

    sorted,consolidated,andstoreduntiltheoutboundshipmentiscompleteandreadytoship.IfthistakesseveraldaysorevenweeksitisnotconsideredaCDFbutawarehouse.InmostCDFs,goodsdonotstaylongerthan48hours.

    OptimalorderpolicyforNitemsreceivedfromaCDF

    Considertheproblemwhereyourfirmrepresentsstockingpoint2inFigure8.Yourfirmhasademandfor

    N different types of items (i = 1, ..., N). For each item the uniform annual demand rate of yourcustomers is yi and your cost price is . You order each of these items from the CDF. Each time avehiclefromtheCDFvisitsyourfirm,however,youhavetopayafixedtransportcost.Whatwouldbetheoptimallotsize fororderingeachitem?

    Since

    you

    have

    constant

    annual

    demand

    for

    each

    item,

    you

    have

    an

    EOQ

    type

    problem

    for

    each

    item.

    YourASprofitfunctionforitem,wheneachitemisorderedseparately,isthenarguablyofthefollowingform: 2 2 For each delivery, the CDF charges a setup cost , and that is why in the above function wehave .Yourtotalprofitfunctionwouldthenbethesumoverallitems:

    2

    2

    Couldtherebeabetterwayofordering?Isitperhapsworthwhiletoordersomeitemstogetherintoonetrip?Thiswouldsafeontransportationcharges.

    Property.AnoptimalpolicycontainsschedulingperiodsTiofequallength,i.e.Ti=TforalliN.

    Proof. Suppose the theorem does not hold. Let T designate the smallest scheduling period which

    happenstobe for item k, i.e. T=TkTand letthe

    averageinventorycarriedofthisitembeE(Ij) .Nowsupposewedecrease itsschedulingperiodtoTj =T.Theaverage inventorywilldecrease from

    E(Ij) to E(Ij ). Since the replenishment cost is independent of the quantity ordered, no additional

    replenishmentcost

    is

    incurred

    for

    replenishing

    item

    type

    jevery

    Tj

    =Tunits

    of

    time.

    Hence

    the

    global

    costwilldecrease.

    SinceanoptimalpolicycontainsperiodsTofequallength,wehave:

    Andweget:

    2 2

  • 7/23/2019 Integrated Logistic

    48/150

    Integrated Logistics

    48

    Wefind:

    2

    1

    And:

    2 2

    3.2 Onetomanyshipping

    3.2.1 LengthofanoptimalTSPtourvisitingmanycustomers

    Drawonapieceofpaperasquare.Callthisyourserviceregion.Indicatethexandyaxis(see

    Figure9).Wearbitrarilytakethelengthofthesidesequalto1m,sothattheserviceregioncoversanarea

    of1x1=1m2.

    Figure 9: Randomly distr ibut ed points in a rectangle.

    Nowdrawarandomnumberfromtheinterval[0,1]andcallthisx1.Drawasecondrandomnumberfrom the interval [0, 1] and call this y1. Use these coordinates to draw a point (x1, y1) in your serviceregion. Repeat this procedure.Nowyouwill haveasecond point locatedatsomecoordinates (x2, y2).

    Continue until you have generated n points in your service region. Figure 9 shows the exercise at four

    differentstages,i.e.forn=5,n=10,n=15andn=20.WecallthesetofnpointobtainedXn:

    )},(),....,,(),,{( 2211 nnn

    yxyxyxX

    Drawatourthroughyournpoints,visitingeachpointonlyonceandreturningtothefirstcitywhere

    youstartedasinFigure10.Notethateachtimeyouleaveapointyouhavetodecidewhichpointtogoto

    next.Youcanthusconstructseveraldifferenttours,allhavingadifferenttotaldistance.Infact,thereare(n1)!/2differentpossibletoursthroughnpoints.

    x

    100

    1

    (x1,

    y1) (x1,y1) (x1,

    y1)(x1,

    y1)

  • 7/23/2019 Integrated Logistic

    49/150

    Integrated Logistics

    49

    Figure 10: A TSP tour t hrough 9 point s.

    Suppose we are interested in that tour of which the total distance travelled is minimal. If n grows

    large,the

    number

    of

    possible

    tours

    becomes

    excessively

    large

    and

    we

    cant

    just

    find

    the

    best

    tour

    by

    tryingallpossibletoursandretainthebestone.

    Wecallthisproblemof findingtheshortesttourthroughnpointsthe TravellingSalesmanProblem

    (TSP).TheTSPisoneoftheclassicproblemsinOperationalResearch.

    Withoutknowingtheoptimaltour itself, letuscallthe lengthoftheoptimalTSPtour T*(Xn) inourexampleofrandomlydistributedpointsinasquareofarea1.ThenBeardwoodetal.(1959)provedthat

    whenyoumakenverylarge,theratioT*(Xn)/ nbecomesconstant.Inotherwords,forverylargen:

    nXT n )(*

    wheretheconstantisbelievedtobe0.7124.

    Infact,thisalsoholdsforaserviceregionofmore irregularshapes(as inFigure11). IfA isthearea

    (m2)ofaserviceregionofanyfiniteshape,then

    AnXT n )(*

    Figure 11: Locat ions randomly di st r i buted in a serv i ce region.

  • 7/23/2019 Integrated Logistic

    50/150

    Integrated Logistics

    50

    Finally,theresultisevenmoregeneralthanthat.Thepointsdonotneedtobedrawnfromauniform

    distributionacrosstheservicearea,anydistributionwilldo.TheTheoremofBeardwoodetal.(1959) is

    giveninFigure12.

    Theorem BBH. (Bear dwood et al . , 1959) . I f T*( Xn) i s

    t he l engt h of t he opt i mal t r avel l i ng sal esman t ourt hrough n poi nt s whi ch ar e i ndependent l y dr awn f r om

    an i dent i cal di str i but i on over a bounded regi on aof t he Eucl i dean pl ane, t hen t here exi st s a const ant

    such t hat wi t h pr obabi l i t y one

    dn

    XT

    a

    n

    n

    )(lim

    *,

    wher e the i nt egr ati on i s wi t h r espect t o theLebesgue ( area) measure. For t he uni f ormdi str i but i on over [ 0, 1] 2, the i ntegrat i on term i sequal t o one.

    Note:0.7124(Johnsonetal.,1996,PercusandMartin,1996).

    Figure 12:Theorem of Beardw ood et al . (1959).

    Example1

    Aprintedcircuitboardof20cmby10cmneeds1000littleholesdrilled in it.Drilling isperformedbya

    moving pin. What is the expected distance that the pen needs to travel? Assume that the holes areuniformlydistributedacrosstheboard.

    UsingtheTheorem,wegetforA=200cm2,n=1000

    )1000(20071.0)(* AnXT n 318cm

    Example2

    In his small van, an express courier has small packages destined for 250 customers located acrossHampshire.AssumethatHampshirecovers22500km

    2andcustomersareuniformlydistributed.

    a)Estimatethedistancetobetravelledtodeliverallmail.b)Giveareasonableestimateofhowlongitisgoingtotakethecouriertodeliverthemail.

    c)Whatwillbetheresultofdividingtheworkupinfivevans,eachcoveringanequalpartofHampshire?

    a)UsingtheTheorem,wegetforA=22500km2,n=250

    )250(2250071.0)(* AnXT n 1690km

    b)Takinganaveragedrivingspeedof50km/hour,totaltraveltime=1690km/(50km/hr)=33.8hours.Inaddition, itmaytakeourdriverat leastoneminute foreverycustomertomakethedelivery,which

    addsanother250min=4.2hourstothetotaldeliverytime.

    c)Thedistancetravelledbyeachdriver,sincenowA=22500/5km2andn=250/5

    )5/250)(5/22500(71.0)(* AnXT n 1690/5=338km

    Takinganaveragedrivingspeedof50km/hour,totaltraveltime=338km/(50km/hr)=6.76hours.A

    drivernowvisitsabout50customers,whichshouldkeeptotalworkingtimeperdriverwithin8hours.

  • 7/23/2019 Integrated Logistic

    51/150

    Integrated Logistics

    51

    3.2.2 ExpectedlengthofanoptimalTSPtourvisitingafewcustomers

    ComputationaltestsforuniformlygeneratedrandomcustomersinasquareareafindthattheformulaofBeardwoodetal.alsoservesasagoodpredictionfortheexpectedoraverageoptimalTSPtour lengthevenwhennisrelativelysmall(Eilonetal.,1971,seealsoHaimovichandRinnooyKan,1985).

    Figure 13: Few customers uniformly distributed in a square.

    Figure13showsthreeexamples.Thefirstrowshowsfourdifferentinstancesforn=5.Thelengthof

    theoptimalTSPtourinallfourwillbedifferent,say*iT (i =1,,4).Theaveragelength,however,canbe

    expectedtobe

    571.054

    1 4

    1

    *

    AAnTi

    i

    Example

    A pizza takeaway also makes home deliveries using scooters. On average there are 10 home delivery

    ordersper

    hour,

    randomly

    located

    in

    a50

    km2

    service

    region

    located

    around

    the

    pizza

    restaurant.

    a) Estimate the average total distance a scooter will travel to deliver 3 orders and return to therestaurant.

    b) Estimate the average total time needed for a scooter to deliver 3 orders and return to the pizza

    restaurant.c) Estimate the minimum number of scooters needed when a scooter will deliver on average to 3

    customerspertrip.d)Estimatethetimewhenthescooterarrivesatthethirdcustomeronitstrip(relativetoitsstartingtimeattherestaurant).

    a)With threecustomersplusthe restaurant, n=3+1,andA=50,the formulagivesusanestimated

    averagetimeofvisitingthreecustomersinthebestsequenceastominimisetraveldistance:

  • 7/23/2019 Integrated Logistic

    52/150

    Integrated Logistics

    52

    10)4(5071.0 An km

    b)Assumingtheaveragespeedofascooterisaround35km/hour,totaltraveltimeis10/35=0.28hour=

    17min.Assumingittakes4minutestodeliveratacustomerlocation,itwilltakeintotalonaverage17+

    12=29minutesorabouthalfanhourtomakethedeliverytrip.

    c)It

    takes

    one

    scooter

    half

    an

    hour

    to

    deliver

    to

    3customers

    and

    in

    the

    same

    time

    10/2

    =5new

    orders

    arrive.Thereforeoneneedsminimum2scooters.(Inordertobeabletoperformalldeliverieswithonescooter,theaveragenumberofdeliveryordersneedstodropto6perhour,orsmaller.)d)Thetotaltraveltimeof17minpertrip isdividedover4legs,andthethirdcustomer isreachedat

    theendofthethirdleg.Thescooter isthereforeexpectedtoarriveaftertravellingatotaltimeof

    (17)=12.75min.However,wehavetoaddtothisthetime istakesfordeliveringthe firstandsecond

    order,intotal8min.Thereforethetimeofarrivalatthethirdcustomerisestimatedtobe12.75+821min.afterleavingtherestaurant.

    3.2.3 Continuousapproximationofanoptimalvehicleroutingsolution

    Inphysicaldistribution,goodsneedtobedeliveredusingvehiclesoflimitedcapacity.Intheonetomany

    shipping

    mode,

    a

    vehicle

    will

    deliver

    to

    more

    than

    one

    customer

    during

    one

    trip.

    In

    the

    socalled

    Capacitated Vehicle Routing Problem (CVRP) (Dantzig and Ramser, 1959), all vehicles have the samecapacity.TheCVRPconsistsoffindingasetofvehicleroutesofminimumcostsuchthat:everycustomerisservicedexactlybyonevehicle,eachroutestartsandendsatthedepotandthetotaldemandservicedby a route does not exceed vehicle capacity. The CVRP, like TSP, is a classic problem in Operational

    Research.

    To find an optimal set of routes for the CVRP is a difficult problem that can require a lot of

    computationaltimeforlargeproblems.Oneoftenmakesuseofheuristicsi.e.methodsthatcanfindina

    relativelyshorttimeagood,butnotnecessarilyoptimal,solution.Good(nearoptimal)solutionstypicallylook like in Figure 14 a: the total service region is divided into a number of districts; and customersbelongingtoonedistrictareservedbyoneandthesamevehicle,asindicatedinFigure14b.

    Agoodapproximationforthedistancetravelledbyavehicleservingadistrictiis(Daganzo,1984):

    iiiii nAnrD )(2*

    whereAiisthesizeofthedistrict, ir istheaveragedistancefromacustomerindistrictitothedepot,

    ni isthenumberofcustomers inthedistrict,andthedimensionless factor(ni)dependsonthemetric

    andthenumberofcustomersinthedistrict. Forni6andtheEuclideanmetric,(ni)isaconstant=0.57,andforsmallervalue