integrated microsystems lab. ee372 vlsi system designe. yoon ic fabrication/process lecture 5...

18
Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGN E. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning Process by which layers of integrate d circuit are put together. Forms basis of our understanding of the design rules. Process Parameters: Capacitances, Resistan ces, V TO if igno red, reduced performance. Geometric Constraints: Wire size, Spacing

Upload: gervase-dixon

Post on 17-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

IC Fabrication/ProcessLECTURE 5

Problem(Design Specification)

Fab chipDesign

Patterning Process by which layers of integrated circuit are put together. Forms basis of our understanding of the design rules.Process Parameters: Capacitances, Resistances, VTO

if ignored, reduced performance.Geometric Constraints: Wire size, Spacing if ignored, circuit doesn’t work!(Design rules)

Page 2: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

How do we transfer patterns to the surface of a silicon wafer? Separate pattern for each layer makes a Mask for each pattern. Use photo lithography to transfer to wafer.

1. Oxidation - expose Si wafer to O2 in furnace.

Si + O2 -> SiO2

SiSi

SiO2

Si3N4

44%

Page 3: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

2. Lithography

SiO2

PR

UV light Mask

Si

Organic solvent (developer) Breaks down

Page 4: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

3. Etching

exposed resist faster

etchantDissolves SiO2

but not resist

Page 5: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

4. Ion Implantation (I/I)

5. Diffusion

Page 6: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

NM

OS

Pro

cess

seq

uenc

e

Page 7: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

P-w

ell P

+P

+N

+N

+

P-w

ell

N-s

ub

Bet

ter

PM

OS

N-w

ell P

+P

+N

+N

+

N-w

ell

Bet

ter

NM

OS

CM

OS

Pro

cess

es

P+

P+

N+

N+

N-w

ell

Bot

h N

-, P

-MO

S o

ptim

ized

Tw

in-T

ub

P-w

ell

N+

EP

I

Page 8: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

N-W

ell C

MO

S P

roce

ss

Page 9: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

MO

S P

RO

CE

SS

ING

TE

CH

NO

LOG

Y

Page 10: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Advanced CMOS Process Flow

p-type substrate

Pad oxideNitride

p-type substrate

Pad oxideNitridePhotoresist Photoresist

Grow Pad Oxide. Deposit CVD Nitride

RIE Shallow Trench in Silicon

Page 11: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

p-type substrate

Shallow trench isolation

Grow Pad Oxide. Deposit Thick CVD Oxide

CMP Planarization

p-type substrate

Nitride

CVD oxide

Page 12: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Well Lithography and Implant (also channel doping)

Grow Gate Oxide and Deposit Polysilicon Film

p-type substrate

STI STIp-doping n-dopingSTI

n-well

p-type substrate

STI STIp-doping n-dopingSTI

n-well

polysilicon

Gate oxide

Page 13: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Gate Lithography

Source-Drain Lithography and Implant

p-type substrate

STI STIp-doping n-dopingSTI

n-well

Poly Poly

PR PR

p-type substrate

STIp-doping n-doping

STI

n-well

p+ poly

STI

n+ poly

n+ n+ p+ p+

Page 14: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Oxide Spacer Formation by CVD and RIE

Self-Aligned Silicide Process

p-type substrate

STIp-doping n-doping

STI

n-well

STI n+ n+ p+ p+

n+ poly p+ poly

Oxide spacer

p-type substrate

STIp-doping n-doping

STI

n-well

STI n+ n+ p+ p+

Oxide spacer

n+ poly p+ poly

Silicide Silicide

Page 15: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Why CMOS is superior to NMOS? (in VLSI)

1. Logic level 0/5V depending on ratio, poor noise margins2. Transmission time tI tf tI > tf

3. Transmission Gate pass both logic well only pass “0”, well pass “1” will have VT drop4. Power Dissipation zero in standby when output “0”, power dissipating5. Precharging Scheme Both n p are available only can charge to VDD- VT

for precharging bus to unless use boostrapping VDD / VSS

6. Power Supply May vary from 1.5~15V Fixed VIH/VIL, a fixed per- dependent on VDD

centage of VDD

7. Packing density less dense, 2N device Denser, N+1 device for N inputs for N input8. Load/Drive ratio 1:1 or 2:1 optimize ratio 4:19. Layout more regular irregular

CMOS NMOS

Comparison Table

Page 16: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Well Spacing and Separation Rules

Transistor Rules

NMOS PMOS

Page 17: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon

Well / substrate contacts

n-well

P+

P+

P+

Page 18: Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon IC Fabrication/Process LECTURE 5 Problem (Design Specification) Fab chip Design Patterning

Integrated Microsystems Lab.

EE372 VLSI SYSTEM DESIGN E. Yoon