integration of chip-based sample preconcentration into the ... of chip-based sample.pdfdan yee....

18
Integration of Chip-based Sample Preconcentration into the μChemLab TM /CB Analysis Platform Victoria A. VanderNoot, Boyd Wiedenman, Yolanda Finstchenko and Julia Fruetel Sandia National Laboratories P.O. Box 969, Livermore, CA 94551-0969 HPCE 2003 San Diego, CA Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Integration of Chip-based Sample Preconcentration into the µChemLabTM/CB

    Analysis Platform

    Victoria A. VanderNoot, Boyd Wiedenman, YolandaFinstchenko and Julia Fruetel

    Sandia National Laboratories

    P.O. Box 969, Livermore, CA 94551-0969

    HPCE 2003San Diego, CA

    Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,for the United States Department of Energy under contract DE-AC04-94AL85000.

    dmlollSAND2003-8005P

  • µChemLab™ Separation PlatformAerosol

    Collector

    WaterAnalysis

    SamplePrep

    µChemLab™/CBLiquid Analysis

    Module

    Dual Channel Microchip Separations

    Laser Induced Fluorescence

    Detection

    Microfluidic Delivery

    •Application of electric fields moves fluids

  • µChemLab™ Separation Platform

    Two Channel DeviceCapillary Gel Electrophoresis (CGE) Channel

    Beckman 14-200 SDS GelReversed polarity

    Capillary Zone Electrophoresis (CZE) Channel10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)Normal polarity

    Fluorescamine labelingFluorogenic dyeFast-reacting, amine specificEx/Em 390 nm/480nm

    Detection limitsnM for CGE

  • Approaches to Preconcentration

    • Solid Phase Extraction (on-going efforts for the miniaturization of SPE)

    • Electrokinetic Trapping (P411-T: Novel Miniaturized ProteinPreconcentrator Based On Electrokinetic Trapping, Anup K. Singh; Daniel J. Throckmorton; Brian J. Kirby)

    • Salt-Bridge[1] J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Analytical Chemistry 72 (2000) 2995-3000[2] R. S. Foote, J. Khandurina, S. C. Jacobson, J. M. Ramsey, Preconcentrationof Proteins on Microchips for Enhanced Detection, Poster presentation at HPCE 2001

  • Integration into the µChemLabTM/CB

    Silicate layer Approach:Cover glass

    Conduction via very small bore channels

    Sol-gel silicate layer allows current to pass

    Etched channels

    Large molecules (i.e. proteins) retained

    Cover glassAlternative Approach:

    •Eliminate silicate layer

    •Makes use of narrow gap and natural surface roughness

    Large molecules (i.e. proteins) retained

    Etched channels

    Jean Pierre Alaire, Stephen C. Jacobson, B. Scott Broyles, Timothy E. McKnight, Christopher T. Culbertson and J. Michael Ramsey, ElectroosmoticallyInduced Hydraulic Pumping on Microchips. µTAS 2001. J. Michael Ramsey and A. van den Berg. ed.s, (Kluwer Academic, Amsterdam), (2001), pp. 127-128.

  • Chip Layout

    W

    P1

    P2

    S SW

    B

    Fill

    Close-up of the Preconcentrator

    Region

  • µChemLab™ Separation Platform

    Two Channel DeviceCapillary Gel Electrophoresis (CGE) Channel

    Beckman 14-200 SDS GelReversed polarity

    Capillary Zone Electrophoresis (CZE) Channel10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)Normal polarity

    Fluorescamine labelingFluorogenic dyeFast-reacting, amine specificEx/Em 390 nm/480nm

    Detection limitsnM for CGE

  • Imaging Normal and PreconcentratedInjections in CGE

    P2

    SW S

    P1

    Normal Mode P1 PreconcentrationMode

    S P1

    P2 PreconcentrationMode

    S P2S SW

  • CGE Separations Using Normal and Preconcentrated Injections

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    0 50 100 150 200 250 300

    Time (s)

    Fluo

    resc

    ence

    Sig

    nal (

    AU

    )

    No preconcentration

    60 s preconcentration

    20 nM Lactalbumin,20 nM Ovalbumin

  • Peak Areas in CGE Separations Increase as a Function of Preconcentration Duration

    800

    1300

    1800

    2300

    2800

    3300

    3800

    4300

    4800

    5300

    0 50 100 150 200 250 300 350

    Time (s)

    Fluo

    resc

    ence

    No preconcentration

    60 s preconcentration

    50 nM Lactalbumin,50 nM Ovalbumin

    120 s preconcentration

    ***

    ***

    ***

  • Sub-Nanomolar Detection Limits Using CGE Separations and Preconcentration

    2100

    2300

    2500

    2700

    2900

    3100

    3300

    3500

    3700

    3900

    4100

    0 100 200 300Time (s)

    Fluo

    resc

    ence

    500 pM LAC500 pM OVA

    LAC

    OVA

  • Characterization of Performance as a Function of Gap Width

    Gap width• Isotropic etch depth used to generate

    gaps of different widths • For comparison purposes, all

    preconcentrations were held to 60s

    Cover glass

    variable etch depth

    00.5

    11.5

    22.5

    33.5

    44.5

    7 9 11 13 15 17 19Gap Width (µm)

    Pre

    conc

    entra

    tion

    Cur

    rent

    A)

    02468

    1012141618

    7 9 11 13 15 17 19Gap Width (µm)

    Appr

    oxim

    ate

    Prec

    once

    ntra

    tion

    Fact

    or

    *Single Batch Data *Single Batch Data

  • µChemLab™ Separation Platform

    Two Channel DeviceCapillary Gel Electrophoresis (CGE) Channel

    Beckman 14-200 SDS GelReversed polarity

    Capillary Zone Electrophoresis (CZE) Channel10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)Normal polarity

    Fluorescamine labelingFluorogenic dyeFast-reacting, amine specificEx/Em 390 nm/480nm

    Detection limitsnM for CGE

  • Preconcentration Using CZE

    Elimination of EOF is required• no bulk flow of fluid through the gap

    ∴residual EOF could lead to pressure generation

    Coating with linear polyacrylamide

    O NH2

    ( )n

    O

    Si

    OO

    O

    O

    Si

    OO O

    Si

    OO O

    ( )m n>>m

    O

    CONH2CONH2CONH2

    O O

    CONH2CONH2CONH2

    O O

    CONH2CONH2

    O

    CONH2 CONH2CONH2CONH2 CONH2CONH2CONH2 CONH2

    SAM applicationUV light polymerization

    •Julie Fruetel, Victoria VanderNoot, Jay West, Brian Kirby, Ernest Hasselbrink and Timothy Shepodd, Laser-polymerized thin-film coating for protein analysis by CGE in a microchip, HPCE 2002

  • Imaging Normal and PreconcentratedInjections in CZE

    P2

    SW S

    P1

    Normal Mode P1 Preconcentration ModeS SW S P1

  • CZE Separations Using Normal and Preconcentrated Injections

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    0 100 200 300 400Time (s)

    Rel

    ativ

    e Fl

    uore

    scen

    ce

    No Preconcentration

    60 s Preconcentration

    Running buffer: 5 mM phosphate, pH 8 containing 5 mM CAS-U zwitterionic detergentReverse polarity

  • Summary

    •Preconcentration has been incorporated in the chip design with no additional processing steps during chip fabrication

    •Successfully demonstrated with both CGE and CZEPreconcentration factors of 10-20x are routinely achievable in only 60s

    Coating and/or elimination of EOF is essential for CZE separations

    Buffer conditions in CZE will need to be optimized to achieve both good separation efficiency and the elimination of EOF

  • AcknowledgementsRobert S. Foote and J. Michael Ramsey at Oak Ridge National Labs for their valuable insights

    &Nicole Baryla and Charles A. Lucy for supplying us with a sample of CAS-U zwitterionic detergent

    Brian HollidayBrent Horn

    Susan JamisonBill Kleist

    Ron RenziGeorge Sartor

    George Schubert

    Isaac ShokairJamie Stamps

    Mary Clare StoddardVictoria VanderNoot

    Jay WestBoyd Wiedenman

    Dan Yee

    FundingDept. of Energy Chemical and Biological National Security Program

    Gabriela ChiricaWen-Yee ChoiMark ClaudnicEvelyn CruzScott Ferko

    Yolanda FintschenkoJulie Fruetel

    The µChemLab Technical Team

    Integration of Chip-based Sample Preconcentration into the µChemLabTM/CB Analysis PlatformµChemLab™ Separation PlatformApproaches to PreconcentrationChip LayoutImaging Normal and Preconcentrated Injections in CGESub-Nanomolar Detection Limits Using CGE Separations and PreconcentrationCharacterization of Performance as a Function of Gap WidthPreconcentration Using CZEImaging Normal and Preconcentrated Injections in CZESummaryAcknowledgements