integration of renewable energie sources into the german power supply system in the 2015–2020...

587
CONTENTS EnBW Transportnetze AG EnBW Transportnetze AG Integration of Renewable Energie Sources into the German Power Supply System in the 2015–2020 period with Outlook to 2025 dena Grid Study II Consortium 50Hertz Transmission / Amprion / DEWI / EnBW Transportnetze / EWI / Fraunhofer IWES / TenneT Final report, November 2010 The study was commissioned by the Deutschen Energie-Agentur GmbH (German Energy Agency, dena) and carried out under the control of the Institute of Energy Economics at the University of Cologne (EWI) as the academic consortium manager.

Upload: tdropulic

Post on 10-Nov-2015

219 views

Category:

Documents


2 download

DESCRIPTION

This dena grid study II examines the integration of renewable energies into Germany’s electricitysupply up to the year 2020 and gives a qualified outlook up to 2025. It is drawing onthe findings of the dena grid study I “Planning of the Grid Integration of Wind Energy inGermany Onshore and Offshore up to the Year 2020”, which was published in February 2005and sketches a conceptual perspective for suitable system solutions. Part I of the dena gridstudy II develops geographically differentiated scenarios for installed wind power capacity,on the basis of which time series of the wind power feed-in into high and extra high voltagenodes and offshore wind farms. Part II analyses future requirements for the transmission gridand grid extension options. Part III examines opportunities to introduce more flexibility in thepower system in terms of supply and demand. The study gives a conceptual perspective of theneed for grid extension in inner Germany in order to fully integrate renewable energies, whilstoperating power stations at optimum cost and exchanging electricity with other countries inresponse to market demands within the scope of the specified transmission capacities.

TRANSCRIPT

  • CONTENTS

    EnBW Transpor tnetze AGEnBW Transpor tnetze AG

    Integration of Renewable Energie Sources into the German Power Supply System in the 20152020 period with Outlook to 2025

    dena Grid Study II

    Consortium 50Hertz Transmission / Amprion / DEWI /

    EnBW Transportnetze / EWI / Fraunhofer IWES / TenneT

    Final report, November 2010

    The study was commissioned by the Deutschen Energie-Agentur GmbH (German Energy Agency, dena) and carried out under the control of the Institute of Energy Economics at the University of Cologne (EWI) as the academic consortium manager.

  • CONTENTS

    Part I Part III

    Jens Peter Molly, DEWI Frieder Borggrefe, EWI

    Bernd Neddermann, DEWI Katharina Grave, EWI Till Schorer, DEWI PD Dr. Dietmar Lindenberger, EWI

    Doron Callies, IWES Carina Merz, EWI Kaspar Knorr, IWES Marco Nicolosi, EWI

    Dr. Kurt Rohrig, IWES Ariette Nler, EWI Yves-Marie Saint-Drenan, IWES Jan Richter, EWI

    Moritz Paulus, EWI Part II Hendrik Smisch, EWI Dr. Udo Bachmann, 50HzT Jochen Schwill, EWI Dr. Roland Bauer, 50HzT Ingo Stadler, FH Kln Axel Knnemann, 50HzT Jan Dobschinski, IWES Jochen Mller, 50HzT Kaspar Knorr, IWES Harald Radtke, 50HzT Martin Wolff, IWES Ilja August, Amprion Stefan Faulstich, University of Kassel

    Dr. Eckhard Grebe, Amprion Matthias Puchta, University of Kassel Stefan Grninger, Amprion John Sievers, University of Kassel

    Prof. Dr. Claus Neumann, Amprion Dr. Jrn Runge, Amprion

    Hans Abele, EnBW TNG In collaboration with Stefan Jung, EnBW TNG Dr. Thomas Benz, ABB

    Volkmar Schroth, EnBW TNG Dr. Ervin Spahic, ABB Olaf Sener, EnBW TNG Adrian Amelung, EWI

    Dr. Siew Bopp, TenneT Fritz Crotogino, KBB Dr. Yves Nguegan, TenneT Dr. Holger Mller, Siemens

    Dr. Michael Schmale, TenneT Dr. Ronald Vlzke, Siemens Carsten Siebels, TenneT Prof. Dr. Istvn Erlich, Uni DuE

    Dr. Wilhelm Winter, TenneT Michael Wilch, Uni DuE

    Contacts

    Part I scenarios: Bernd Neddermann, DEWI

    Part I simulations: Kaspar Knorr, IWES

    Part II: Dr. Wilhelm Winter, TenneT

    Part III: PD Dr. Dietmar Lindenberger, EWI

  • CONTENTS

    I

    CONTENTS

    CONTENTS .....................................................................................................................................................I

    LIST OF FIGURES .................................................................................................................................... XII

    LIST OF TABLES ..................................................................................................................................... XIX

    LIST OF ABBREVIATIONS ...................................................................................................................XXII

    SHORT SUMMARY ...................................................................................................................................... 1

    PART I

    GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM WIND POWER AND OTHER RENEWABLE ENERGIES FOR THE YEAR 2020 ............................................................ 19

    1 COMPARISON OF WIND ENERGY DEVELOPMENT UNTIL 2007: SCENARIOS FROM THE DENA GRID STUDY I AND ACTUAL DEVELOPMENT ............................................................... 20

    2 CURRENT MARKET ASSESSMENT WITH REGARD TO PERSPECTIVES FOR WIND ENERGY EXPANSION ............................................................................................................................... 29

    3 REVIEW OF THE SCENARIO REGARDING ONSHORE WIND ENERGY DEVELOPMENT ......................................................................................................................................... 39

    4 REVIEW OF THE SCENARIO FOR OFFSHORE WIND ENERGY DEVELOPMENT ...... 44

    5 REVIEW OF THE SCENARIO FOR OTHER RENEWABLE ENERGIES .......................... 46

    6 GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM WIND POWER FOR THE YEAR 2020 .................................................................................................................. 48

    7 GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM PHOTOVOLTAIC INSTALLATIONS FOR THE YEAR 2020 ............................................................... 111

    8 LIST OF LITERATURE PART I ........................................................................................... 115

    PART II

    EFFECTS ON THE GRID ......................................................................................................................... 121

    9 DEPENDENCY OF EQUIPMENT LOAD CAPACITY ON ENVIRONMENTAL CONDITIONS ............................................................................................................................................ 123

    10 SUITABLE OPTIONS FOR THE TRANSMISSION OF WIND ENERGY POWER FROM THE NORTH AND BALTIC SEAS TO THE LOAD CENTRES ............................................................. 161

    11 UPDATING THE CONNECTION PLAN FOR OFFSHORE WIND FARMS ...................... 202

    12 IDENTIFYING NON-TRANSMISSIBLE POWER ............................................................... 252

  • CONTENTS

    II

    13 DETERMINING THE GRID EXPANSION REQUIREMENT ............................................. 273

    14 SENSITIVITY EXAMINATIONS FOR TECHNOLOGIES ................................................. 306

    15 SYSTEM SERVICES .............................................................................................................. 340

    16 ECONOMIC EVALUATION OF THE GRID EXTENSION ................................................ 361

    17 BIBLIOGRAPHY PART II ..................................................................................................... 367

    PART III

    POTENTIAL FOR INCREASING FLEXIBILITIES IN THE ELECTRICY SYSTEM FOR THE BEST POSSIBLE INTEGRATION OF RENEWABLE ENERGIES .................................................................. 372

    18 BALANCING POWER MARKETS ....................................................................................... 374

    19 CHANGING THE FORECAST QUALITY OF WIND ENERGY INFEED AND THE EFFECT ON BALANCING POWER PROVISION ................................................................................. 376

    20 TECHNICAL AND FINANCIAL POTENTIAL OF DEMAND SIDE MANAGEMENT ..... 403

    21 CONTRIBUTION OF WIND POWER PLANTS TO THE BALANCING POWER MARKET 425

    22 STORAGE APPLICATIONS .................................................................................................. 435

    23 MODEL-BASED ANALYSIS OF THE ELECTRICITY MARKET TO THE YEAR 2020 . 446

    24 BIBLIOGRAPHY: PART III .................................................................................................. 485

    25 ECONOMIC EVALUATION .................................................................................................. 495

    ANNEX

    EVALUATION OF TRANSMISSION TECHNOLOGIES ....................................................................... 497

    SUPPLEMENTARY ANALYSIS OF EXPANDED POTENTIAL FOR DEMAND SIDE MANAGEMENT MEASURES .................................................................................................................. 510

    STRUCTURE OF THE DIME MODEL .................................................................................................... 545

    THE DIANA MODEL ................................................................................................................................ 554

    ANALYSIS OF THE IMPACT OF AN EXTENSION OF OPERATIONAL LIFE IN NUCLEAR POWER STATIONS ON THE RESULTS OF THE DENA GRID STUDY II ........................................................ 556

  • CONTENTS

    III

    TABLE OF CONTENTS

    CONTENTS .....................................................................................................................................................I

    LIST OF FIGURES .................................................................................................................................... XII

    LIST OF TABLES ..................................................................................................................................... XIX

    LIST OF ABBREVIATIONS ...................................................................................................................XXII

    SHORT SUMMARY ...................................................................................................................................... 1

    PART I

    GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM WIND POWER AND OTHER RENEWABLE ENERGIES FOR THE YEAR 2020 ............................................................ 19

    1 COMPARISON OF WIND ENERGY DEVELOPMENT UNTIL 2007: SCENARIOS FROM THE DENA GRID STUDY I AND ACTUAL DEVELOPMENT ............................................................... 20

    1.1 WIND POWER EXPANSION SCENARIOS IN THE DENA GRID STUDY I .................................................... 20 1.1.1 dena specialist council scenario ............................................................................................... 20 1.1.2 DEWI scenario......................................................................................................................... 21

    2 CURRENT MARKET ASSESSMENT WITH REGARD TO PERSPECTIVES FOR WIND ENERGY EXPANSION ............................................................................................................................... 29

    2.1 ONSHORE WIND ENERGY UTILISATION ............................................................................................. 29 2.1.1 Improved framework conditions through the RESA amendment 2009 ........................................ 30

    2.2 OFFSHORE WIND ENERGY UTILISATION ............................................................................................ 32 2.2.1 Improved framework conditions for offshore wind power .......................................................... 35 2.2.2 Draft regional planning programme for the North and Baltic Seas ............................................ 36

    2.3 ASSESSMENT OF SCENARIOS IN THE DENA GRID STUDY I................................................................... 37

    3 REVIEW OF THE SCENARIO REGARDING ONSHORE WIND ENERGY DEVELOPMENT ......................................................................................................................................... 39

    3.1 ADDITIONAL INFORMATION IDENTIFIED FOR INDIVIDUAL FEDERAL STATES..................................... 39 3.1.1 Baden-Wrttemberg, Bavaria, Bremen, Hamburg and Saarland ............................................... 40 3.1.2 Thuringia and Saxony .............................................................................................................. 40 3.1.3 Rhineland-Palatinate ............................................................................................................... 40 3.1.4 Brandenburg ............................................................................................................................ 41 3.1.5 Mecklenburg-Western Pomerania............................................................................................. 41 3.1.6 Hessen ..................................................................................................................................... 41 3.1.7 Lower Saxony .......................................................................................................................... 42 3.1.8 North Rhine-Westphalia ........................................................................................................... 42 3.1.9 Schleswig-Holstein ................................................................................................................... 42

    3.2 MODIFIED SCENARIO OF ONSHORE WIND ENERGY DEVELOPMENT ................................................... 42

    4 REVIEW OF THE SCENARIO FOR OFFSHORE WIND ENERGY DEVELOPMENT ...... 44

    5 REVIEW OF THE SCENARIO FOR OTHER RENEWABLE ENERGIES .......................... 46

  • CONTENTS

    IV

    6 GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM WIND POWER FOR THE YEAR 2020 .................................................................................................................. 48

    6.1 BASE DATA ....................................................................................................................................... 49 6.1.1 Weather model data ................................................................................................................. 50 6.1.2 Wind measurement data ........................................................................................................... 52 6.1.3 Reference wind farms ............................................................................................................... 57 6.1.4 Expansion scenarios................................................................................................................. 57 6.1.5 Grid node locations .................................................................................................................. 58 6.1.6 Wind turbine base data............................................................................................................. 58

    6.2 GENERATION METHOD ..................................................................................................................... 59 6.2.1 Common process steps ............................................................................................................. 62 6.2.2 Offshore-specific process steps ................................................................................................. 75 6.2.3 Onshore-specific process steps ................................................................................................. 90

    6.3 ANALYSES ...................................................................................................................................... 100 6.3.1 Offshore wind power time series 2020 .................................................................................... 100 6.3.2 Onshore wind power time series 2020 .................................................................................... 104 6.3.3 Simulated overall wind power feed-in of the German power system 2020 ................................ 106 6.3.4 Simulation of storm cut-off ..................................................................................................... 109

    7 GENERATION OF TIME SERIES FOR THE FEED-IN OF ELECTRICITY FROM PHOTOVOLTAIC INSTALLATIONS FOR THE YEAR 2020 ............................................................... 111

    8 LIST OF LITERATURE PART I ........................................................................................... 115

    PART II

    EFFECTS ON THE GRID ......................................................................................................................... 121

    9 DEPENDENCY OF EQUIPMENT LOAD CAPACITY ON ENVIRONMENTAL CONDITIONS ............................................................................................................................................ 123

    9.1 APPRAISAL OF THE STATE-OF-THE-ART IN AN INTERNATIONAL ENVIRONMENT.............................. 123 9.1.1 Use of conductors in accordance with DIN EN 50182 ............................................................. 124 9.1.2 Use of conductors with permissible conductor temperatures above 80C (TAL cables etc.) ...... 126 9.1.3 Evaluation of high-temperature conductors ............................................................................ 129 9.1.4 Methods for determining overhead conductor temperature (overhead conductor monitoring) .. 130 9.1.5 Summary and evaluation of overhead conductor monitoring technologies ............................... 137 9.1.6 State of national and international technology with regard to the operational consideration of weather-dependent power transmission capacities................................................................................ 138 9.1.7 State of national and international technology with regard to the consideration of weather-dependent power transmission capacities in the field of grid planning .................................................. 140

    9.2 IMPACTS ON THE ENTIRE EQUIPMENT CHAIN OF CIRCUITS (PRIMARY, SECONDARY AND AUXILIARY INSTALLATIONS) ...................................................................................................................................... 140

    9.2.1 Impacts on the operating resources chain of overhead lines .................................................... 140 9.2.2 Impacts on the primary technical equipment chain of substations ............................................ 142 9.2.3 Effects on the safety system..................................................................................................... 144

  • CONTENTS

    V

    9.3 ILLUSTRATION OF TECHNICAL AND LEGAL REQUIREMENTS FOR THE OPERATIONAL USE OF WEATHER-DEPENDENT AMPACITIES ........................................................................................................ 145 9.4 OTHER REQUIREMENTS .................................................................................................................. 146

    9.4.1 Documentation, legal responsibility, liability, solidarity duties, duties in accordance with the Energy Safety Act................................................................................................................................. 146 9.4.2 Further technical requirements .............................................................................................. 146

    9.5 POTENTIAL USE OF WEATHER-DEPENDENT AMPACITIES IN GRID PLANNING ................................... 147 9.5.1 Objectives .............................................................................................................................. 147 9.5.2 Limitations ............................................................................................................................. 147 9.5.3 Methodology .......................................................................................................................... 148 9.5.4 Potential indication maps ....................................................................................................... 153 9.5.5 Further procedure in transitions between potential indication regions .................................... 155

    9.6 POTENTIAL USE OF WEATHER-DEPENDENT AMPACITIES .................................................................... 155 9.6.1 Objectives .............................................................................................................................. 155 9.6.2 Methodology for utilisation in grid operation planning ........................................................... 156 9.6.3 Potential for operational use in the strong and average wind scenarios .................................. 156

    9.7 LIMITATIONS, RECOMMENDED ACTION, OUTLOOK ......................................................................... 157 9.7.1 Limitations ............................................................................................................................. 157 9.7.2 Recommended actions regarding high-temperature conductors ....................................................... 158 9.7.3 Recommended actions for the consideration of overhead line monitoring ................................ 159 9.7.4 Outlook .................................................................................................................................. 159

    10 SUITABLE OPTIONS FOR THE TRANSMISSION OF WIND ENERGY POWER FROM THE NORTH AND BALTIC SEAS TO THE LOAD CENTRES ............................................................. 161

    10.1 DESCRIPTION OF TRANSMISSION TECHNOLOGIES ...................................................................... 162 10.1.1 Transmission tasks............................................................................................................. 162 10.1.2 Transmission technologies ................................................................................................. 162

    10.2 EVALUATION OF TECHNOLOGIES ............................................................................................... 175 10.2.1 Introduction....................................................................................................................... 175 10.2.2 Paired evaluation of criteria groups................................................................................... 178 10.2.3 Paired evaluation of individual criteria within a criteria group .......................................... 180 10.2.4 Evaluation of technologies ................................................................................................. 184 10.2.5 Evaluation of transmission technologies............................................................................. 191 10.2.6 Results of the evaluation of the transmission tasks .............................................................. 196 10.2.7 Summary ........................................................................................................................... 201

    11 UPDATING THE CONNECTION PLAN FOR OFFSHORE WIND FARMS ...................... 202

    11.1 UPDATING THE OFFSHORE CONNECTING PLAN ........................................................................... 202 11.2 TECHNOLOGY DESCRIPTION ...................................................................................................... 202

    11.2.1 Introduction....................................................................................................................... 202 11.2.2 Overview from DENA I ...................................................................................................... 203 11.2.3 Classical HVDC transmission using submarine cable......................................................... 203 11.2.4 HVDC transmission with VSC technology .......................................................................... 211 11.2.5 Multi-terminal operation with classic HVDC and VSC-HVDC ............................................ 223

  • CONTENTS

    VI

    11.2.6 Gas-insulated line (GIL) .................................................................................................... 227 11.2.7 Three-phase cable ............................................................................................................. 231 11.2.8 Connecting technology evaluation ..................................................................................... 232

    11.3 CONNECTING CONCEPT.............................................................................................................. 238 11.3.1 Introduction....................................................................................................................... 238 11.3.2 Overview of current and future wind farm projects in the North Sea. .................................. 238 11.3.3 Overview of current and future wind farm projects in the Baltic Sea. .................................. 243 11.3.4 Multi-terminal operation ................................................................................................... 246

    11.4 SUMMARY .................................................................................................................................. 250

    12 IDENTIFYING NON-TRANSMISSIBLE POWER ............................................................... 252

    12.1 VARIANT DESCRIPTION .............................................................................................................. 252 12.2 DATA BASIS ................................................................................................................................ 253 12.3 REGIONALISATION ..................................................................................................................... 254

    12.3.1 Overview of the regions ..................................................................................................... 254 12.3.2 Customer power requirements and grid losses ................................................................... 256 12.3.3 Photovoltaics ..................................................................................................................... 256 12.3.4 Biomass ............................................................................................................................. 256 12.3.5 Other regenerative generation systems ............................................................................... 256 12.3.6 Energy storage .................................................................................................................. 256 12.3.7 Wind energy ...................................................................................................................... 257 12.3.8 Cogeneration plants and block heat and power plants ........................................................ 257 12.3.9 Thermal power plants ........................................................................................................ 257 12.3.10 Comparison between application situation and new power plant construction .................... 257 12.3.11 Abroad .............................................................................................................................. 257 12.3.12 Regionalisation overview ................................................................................................... 259 12.3.13 Result of regionalisation .................................................................................................... 261

    12.4 USE OF THE PTDF PROCEDURE ................................................................................................. 264 12.4.1 Grid model ........................................................................................................................ 264 12.4.2 PTDF matrix ..................................................................................................................... 265 12.4.3 Procedure for determining approximate power flows ......................................................... 267

    12.5 ESTIMATE OF MAXIMUM CAPACITY VALUES FOR 2015 BETWEEN THE REGIONS ......................... 267 12.5.1 Boundary definition ........................................................................................................... 267 12.5.2 Determination of maximum capacity values between German regions and foreign countries 268

    12.6 DETERMINATION OF NON-TRANSMISSIBLE POWER..................................................................... 270

    13 DETERMINING THE GRID EXPANSION REQUIREMENT ............................................. 273

    13.1 DETERMINING THE ADDITIONAL TRANSMISSION CAPACITIES THAT ARE REQUIRED AT REGIONAL BOUNDARIES AFFECTED BY CONGESTION ................................................................................................. 274

    13.1.1 Circuit load capabilities .................................................................................................... 274 13.1.2 Iterative procedure for determining additional transmission capacities .............................. 276 13.1.3 Performing the PTDF procedure for Germany ................................................................... 277 13.1.4 Effectiveness of energy storage systems .............................................................................. 280

  • CONTENTS

    VII

    13.1.5 Overhead line monitoring (OLM) and TAL cabling ............................................................ 285 13.2 PROCEDURE FOR DETERMINING THE EXTENSION REQUIREMENT FOR CORRIDOR AND CIRCUIT LENGTHS.................................................................................................................................................. 286

    13.2.1 Modelling the existing grid ................................................................................................ 287 13.2.2 Modelling the extension grid for basic variants .................................................................. 288

    13.3 EXTENSION GRID FOR ALL VARIANTS ......................................................................................... 291 13.3.1 Transport task ................................................................................................................... 294 13.3.2 Energy loss requirement of the transmission grid ............................................................... 295 13.3.3 Provision of reactive power ............................................................................................... 296 13.3.4 Voltage angle .................................................................................................................... 298

    13.4 GENERAL TECHNICAL DESIGN OF THE AC OVERHEAD LINE GRID .............................................. 299 13.4.1 Structural description ........................................................................................................ 299 13.4.2 Costs ................................................................................................................................. 299 13.4.3 Operating and loss costs .................................................................................................... 302

    14 SENSITIVITY EXAMINATIONS FOR TECHNOLOGIES ................................................. 306

    14.1 DESCRIPTION OF SENSITIVITY VARIANTS ................................................................................... 307 14.1.1 PSW sensitivity variant ...................................................................................................... 307 14.1.2 HYB sensitivity variant ...................................................................................................... 307 14.1.3 VSC1 sensitivity variant ..................................................................................................... 307 14.1.4 VSC2 sensitivity variant ..................................................................................................... 308 14.1.5 GIL sensitivity variant ....................................................................................................... 308

    14.2 EXTENSION REQUIREMENT ........................................................................................................ 308 14.2.1 Transport task ................................................................................................................... 311 14.2.2 Energy loss requirement of the transmission grid ............................................................... 311 14.2.3 Provision of reactive power ............................................................................................... 312 14.2.4 Voltage angle .................................................................................................................... 314

    14.3 INVESTMENT COSTS ................................................................................................................... 314 14.3.1 Cost of offshore connections .............................................................................................. 315 14.3.2 Operating and loss costs .................................................................................................... 316 14.3.3 Overall cost comparison from an annuity perspective ......................................................... 317

    14.4 DC CABLE SOLUTIONS ............................................................................................................... 318 14.4.1 Introduction....................................................................................................................... 318 14.4.2 Technology description ...................................................................................................... 319

    14.5 BASIC DESIGN OF THE DIRECT VOLTAGE GRID ........................................................................... 324 14.5.1 Description of the grid ....................................................................................................... 324 14.5.2 Prerequisites and framework conditions............................................................................. 335

    15 SYSTEM SERVICES .............................................................................................................. 340

    15.1 VOLTAGE SUPPORT AND SHORT-CIRCUIT POWER ....................................................................... 340 15.1.1 Wind power plants ............................................................................................................. 341 15.1.2 Technical grid operating equipment ................................................................................... 348

    15.2 ISLANDING CAPABILITY AND NETWORK RESTORATION IN THE EVENT OF MAJOR FAULTS, AND SYSTEM SAFETY ASPECTS ......................................................................................................................... 350

  • CONTENTS

    VIII

    15.2.1 State of technology and development potential ................................................................... 351 15.2.2 Operation of sub-grids with a high proportion of wind power plants................................... 356 15.2.3 Key issues concerning a network restoration concept with WT participation ....................... 359

    16 ECONOMIC EVALUATION OF THE GRID EXTENSION ................................................ 361

    16.1 ESTIMATION OF THE COST OF THE INTEGRATION SOLUTION THAT IS REQUIRED ........................ 361 16.2 RESULTS OF ONSHORE AND OFFSHORE GRID EXTENSION ........................................................... 362

    17 BIBLIOGRAPHY PART II ..................................................................................................... 367

    PART III

    POTENTIAL FOR INCREASING FLEXIBILITIES IN THE ELECTRICY SYSTEM FOR THE BEST POSSIBLE INTEGRATION OF RENEWABLE ENERGIES .................................................................. 372

    18 BALANCING POWER MARKETS ....................................................................................... 374

    18.1 REQUIREMENTS FOR PROVIDING PRIMARY BALANCING POWER................................................. 374 18.2 REQUIREMENTS FOR PROVIDING SECONDARY BALANCING POWER ............................................ 374 18.3 REQUIREMENTS FOR PROVIDING MINUTE-BASED RESERVE POWER ............................................ 375

    19 CHANGING THE FORECAST QUALITY OF WIND ENERGY INFEED AND THE EFFECT ON BALANCING POWER PROVISION ................................................................................. 376

    19.1 DETERMINING LOAD FORECAST ERROR AND LOAD FLUCTUATION ............................................. 376 19.2 DETERMINING POWER PLANT OUTAGES ..................................................................................... 377 19.3 DETERMINING WIND POWER FORECAST ERROR ......................................................................... 378

    19.3.1 Estimating onshore wind power forecast error ................................................................... 379 19.3.2 Estimating offshore wind forecast error ............................................................................. 391

    19.4 COMBINING FORECAST ERRORS ................................................................................................. 398 19.4.1 Recursive convolution ........................................................................................................ 399 19.4.2 Modelling in this study ....................................................................................................... 401

    20 TECHNICAL AND FINANCIAL POTENTIAL OF DEMAND SIDE MANAGEMENT ..... 403

    20.1 POSSIBLE USES FOR DEMAND SIDE MANAGEMENT ...................................................................... 404 20.1.1 Use of DSM on spot markets .............................................................................................. 404 20.1.2 Use of DSM on reserve markets ......................................................................................... 405 20.1.3 Use of DSM for balancing group compensation ......................................................................... 407

    20.2 POTENTIAL OF DEMAND SIDE MANAGEMENT PROCESSES ........................................................... 407 20.2.1 Potential in the household sector ....................................................................................... 408 20.2.2 Potential in the energy-intensive industrial sector .............................................................. 416

    20.3 COSTS OF DEMAND SIDE MANAGEMENT ..................................................................................... 422

    21 CONTRIBUTION OF WIND POWER PLANTS TO THE BALANCING POWER MARKET 425

    21.1 TECHNICAL FRAMEWORK CONDITIONS OF BALANCING POWER PROVISION BY RENEWABLE ENERGIES................................................................................................................................................. 425 21.2 TECHNICAL POTENTIAL FOR BALANCING POWER PROVISION OFFERED BY WIND POWER PLANTS 425

  • CONTENTS

    IX

    21.3 ECONOMIC ANALYSIS OF THE FLEXIBILITY OF WIND POWER PLANTS ......................................... 427 21.3.1 Positive balancing power ................................................................................................... 427 21.3.2 Negative balancing power ................................................................................................. 429 21.3.3 Flexibility in the case of congestion.................................................................................... 430 21.3.4 Limits of flexibility in conventional power plants ................................................................ 430

    21.4 INCENTIVE COMPATIBILITY OF TARIFF RATES FOR PROVISION OF BALANCING POWER AND BALANCING POWER CALL-UP FOR RENEWABLE ENERGY PLANTS ............................................................. 430

    21.4.1 Balancing power provision in the context of current legislation ................................................... 430 21.4.2 Current policy debate ........................................................................................................ 431

    21.5 OPERATOR'S POINT OF VIEW...................................................................................................... 431 21.6 POTENTIAL FOR BALANCING POWER PROVISION BY BIOMASS PLANTS ....................................... 432

    22 STORAGE APPLICATIONS .................................................................................................. 435

    22.1 DIABATIC COMPRESSED AIR STORAGE EQUIPMENT .................................................................... 435 22.1.1 Costs based on components ............................................................................................... 435 22.1.2 Technical configuration ..................................................................................................... 436 22.1.3 Technical parameters ........................................................................................................ 436 22.1.4 Geographical distribution of potential sites ........................................................................ 436 22.1.5 Evaluation ......................................................................................................................... 437

    22.2 ADIABATIC COMPRESSED AIR STORAGE POWER PLANTS ............................................................ 437 22.2.1 Costs based on components ............................................................................................... 438 22.2.2 Technical configuration ..................................................................................................... 438 22.2.3 Evaluation ......................................................................................................................... 439

    22.3 HYDROGEN STORAGE EQUIPMENT AND FUEL CELLS .................................................................. 440 22.3.1 Costs based on components ............................................................................................... 440 22.3.2 Technical configuration ..................................................................................................... 441

    22.4 PUMPED STORAGE POWER PLANTS ............................................................................................. 441 22.5 FLYWHEELS ............................................................................................................................... 442 22.6 CHEMICAL BATTERIES ............................................................................................................... 442

    22.6.1 Technical and economic properties .................................................................................... 443 22.6.2 Evaluation ......................................................................................................................... 443

    22.7 REDOX FLOW BATTERIES ........................................................................................................... 443 22.7.1 Costs and possible applications ......................................................................................... 443 22.7.2 Technical properties .......................................................................................................... 444 22.7.3 Configuration .................................................................................................................... 444 22.7.4 Evaluation ......................................................................................................................... 444

    22.8 SUPERCAPACITORS .................................................................................................................... 445

    23 MODEL-BASED ANALYSIS OF THE ELECTRICITY MARKET TO THE YEAR 2020 . 446

    23.1 BASIC ASSUMPTIONS RELATING TO ENERGY ECONOMICS........................................................... 446 23.1.1 Expansion of renewable energies ....................................................................................... 446 23.1.2 Development in electricity demand..................................................................................... 447 23.1.3 Prices for primary energy sources and CO2 ....................................................................... 447

  • CONTENTS

    X

    23.1.4 Prices for power plant investments ..................................................................................... 448 23.1.5 Flexibility in the German electricity market........................................................................ 448 23.1.6 Nuclear power phase-out ................................................................................................... 449 23.1.7 Exogenous expansion capacities ........................................................................................ 449

    23.2 METHODOLOGY ......................................................................................................................... 449 23.2.1 Long-term effects/Development of investments ................................................................... 450 23.2.2 Regionalisation of the generation system ............................................................................ 451 23.2.3 Short-term effects/Determining dispatch ............................................................................ 451

    23.3 GENERATION FLEET AND POWER PLANT DISPATCH RESULTS ..................................................... 451 23.4 IMPLEMENTING DSM PROCESSES IN THE DIME ELECTRICITY MARKET MODEL ....................... 455

    23.4.1 Model-based analysis of economically useable DSM potential ............................................ 457 23.4.2 Summary ........................................................................................................................... 461

    23.5 INCREASING FLEXIBILITY BY MEANS OF WIND POWER PLANTS THAT CAN BE BALANCED ........... 461 23.5.1 Illustration of balancing power provision by WTs............................................................... 461 23.5.2 Results............................................................................................................................... 462

    23.6 FLEXIBILITY THROUGH STORAGE .............................................................................................. 464 23.6.1 Economic efficiency of storage facilities ............................................................................. 464 23.6.2 Results............................................................................................................................... 464

    23.7 COSTS OF WIND INTEGRATION ................................................................................................... 465 23.8 ELECTRICITY PRICES FOR END CONSUMERS............................................................................... 467 23.9 STORAGE FACILITIES FOR SUPPLEMENTING GRID EXPANSION MEASURES .................................. 468

    23.9.1 100% integration through construction of storage facilities ......................................................... 472 23.9.2 50% integration through expansion of storage facilities ..................................................... 473 23.9.3 Selecting technology .......................................................................................................... 474 23.9.4 Benefits of storage facilities on the electricity market ......................................................... 475 23.9.5 Economic costs and evaluation of storage facilities ............................................................ 476

    23.10 GEOLOGICAL POTENTIAL FOR STORAGE FACILITIES IN NORTHERN GERMANY .......................... 478 23.10.1 Offshore salt structures ...................................................................................................... 479 23.10.1 Onshore salt structures ...................................................................................................... 481

    24 BIBLIOGRAPHY: PART III .................................................................................................. 485

    25 ECONOMIC EVALUATION .................................................................................................. 495

  • CONTENTS

    XI

    ANNEX

    EVALUATION OF TRANSMISSION TECHNOLOGIES ....................................................................... 497

    A.1 EVALUATION OF TRANSMISSION TECHNOLOGIES FOR TASK: 1,000 MW, 100 KM ...................... 498 A.2 EVALUATION OF TRANSMISSION TECHNOLOGIES FOR TASK: 1,000 MW, 400 KM ...................... 501 A.3 EVALUATION OF TRANSMISSION TECHNOLOGIES FOR TASK: 4,000 MW, 100 KM ...................... 504 A.4 EVALUATION OF TRANSMISSION TECHNOLOGIES FOR TASK: 4,000 MW, 400 KM ...................... 507

    SUPPLEMENTARY ANALYSIS OF EXPANDED POTENTIAL FOR DEMAND SIDE MANAGEMENT MEASURES .................................................................................................................. 510

    B1 BACKGROUND AND AIM OF ANALYSIS ........................................................................................ 510 B2 POTENTIAL OF DEMAND SIDE MANAGEMENT PROCESSES................................................................ 512

    B2.1 Potential in the household sector ........................................................................................... 512 B2.2 Potential in the trade and services sector ............................................................................... 514 B2.3 Potential in the industrial sector ............................................................................................ 519 B2.4 Potential in municipal utilities ............................................................................................... 525

    B3 COSTS OF DEMAND SIDE MANAGEMENT .......................................................................................... 526 B3.1 Costs of demand side management in the household sector ..................................................... 526 B3.2 Costs of demand side management in the trade and services sector .......................................................... 527 B3.3 Costs of demand side management in the industrial sector ...................................................... 528 B3.4 Costs for demand side management in municipal utilities ........................................................ 528

    B4 IMPLEMENTING DSM PROCESSES IN THE DIME ELECTRICITY MARKET MODEL............................ 529 B5 SCENARIO DEFINITION.................................................................................................................... 530 B6 MODEL-BASED ANALYSIS OF ECONOMICALLY USEFUL DSM POTENTIAL ....................................... 531

    B6.1 Average available DSM potential up to 2020 .......................................................................... 532 B6.2 Load shifting by means of DSM processes up to 2020 ............................................................. 532 B6.3 Reserve capacity and securing peak load by means of DSM processes up to 2020 ................... 536 B6.4 Impact of DSM on the conventional generation system ............................................................ 537 B6.5 Impact of DSM in Germany on cumulative system costs .......................................................... 538

    B7 SUMMARY....................................................................................................................................... 539 B8 BIBLIOGRAPHY ............................................................................................................................... 541

    STRUCTURE OF THE DIME MODEL .................................................................................................... 545

    C1 INPUT PARAMETERS OF THE MODEL ............................................................................................... 546 C1.1 Input parameters of the supply side ........................................................................................ 546 C.1.2 Input parameters of the demand side ...................................................................................... 549 C1.3 Output data of the model ........................................................................................................ 551

    THE DIANA MODEL ................................................................................................................................ 554

    ANALYSIS OF THE IMPACT OF AN EXTENSION OF OPERATIONAL LIFE IN NUCLEAR POWER STATIONS ON THE RESULTS OF THE DENA GRID STUDY II ........................................................ 556

  • LIST OF FIGURES

    XII

    LIST OF FIGURES Figure 1-1: Development of newly installed wind power capacity per year in Germany ........................ 22 Figure 1-2: Installed wind power capacity per federal state (as of 31.12.2007) ...................................... 23 Figure 1-3: Regional deviations in wind energy development until 2007 compared to the dena

    specialist council scenario ................................................................................................ 25 Figure 2-1: Development of RESA reimbursement for onshore WTs in the period between 2004 and

    2008 and after the coming into force of the RESA amendment 2009 .................................. 32 Figure 2-2: Approved and planned offshore wind farms in the German North Sea ................................ 33 Figure 2-3: Approved and planned offshore wind farms in the German Baltic Sea ................................ 33 Figure 2-4: Offshore wind energy development in accordance with the dena specialist council

    scenario and the capacity requirement estimate from 2007 ................................................ 35 Figure 5-1: Scenario of expected development of renewable energies for 2015 and 2020 in the dena

    grid study I and the dena grid study II ................................................................................ 47 Figure 6-1: Simulated grid nodes and offshore wind farms 2020 .......................................................... 48 Figure 6-2: Frequency distributions of measured wind speeds and the weather model wind speeds at

    the offshore location Fino1 ................................................................................................ 51 Figure 6-3: Comparison of wind directions at Fino1 location in degrees (180= South) (90 m high) ...... 51 Figure 6-4: Frequency distribution of North Sea wind speed increments ............................................... 54 Figure 6-5: Frequency distribution of offshore wind speed increments ................................................. 55 Figure 6-6: Location of measuring masts and reference wind farms ...................................................... 57 Figure 6-7: Post codes with wind energy 2009 ..................................................................................... 59 Figure 6-8: Procedure for the simulation of wind power time series for 2020 ........................................ 61 Figure 6-9: Example for the adjustment of a transition for used wind speed sequences.......................... 64 Figure 6-10: Measured and simulated wind speed curve ......................................................................... 65 Figure 6-11: Relation and frequency distribution of measured and simulated wind speeds ...................... 66 Figure 6-12: Frequency distribution of measured and simulated wind speed increments ......................... 67 Figure 6-13: Generation of a wind farm power curve ............................................................................. 69 Figure 6-14: Determining process parameters ........................................................................................ 72 Figure 6-15: Simulation of a reference wind farm for the determination of onshore process parameters .. 73 Figure 6-16: Mean frequency distributions of all simulations for the determination of onshore process

    parameters......................................................................................................................... 74 Figure 6-17: Simulation of a reference wind farm for the determination of offshore process parameters .. 75 Figure 6-18: Simulated offshore wind farms 2020 .................................................................................. 76 Figure 6-19: Ratio of rotor surface to nominal turbine power for various offshore wind turbines ............. 77 Figure 6-20: Offshore model power curve.............................................................................................. 78 Figure 6-21: Calculation scheme of offshore wind farm losses ............................................................... 79 Figure 6-22: Wind farm efficiency of a square 50 MW* offshore wind farm depending on wind speed

    and wind direction ............................................................................................................. 80 Figure 6-23: Total annual efficiency of an offshore wind farm at the Fino1 measurement station

    depending on wind farm size and turbine distances ............................................................ 81 Figure 6-24: Determining non-accessibility of offshore wind farms ........................................................ 83 Figure 6-25: Example of a wind farm availability curve for wind farms with few turbines (20) ............... 85 Figure 6-26: Failure frequency depending on wind speed ....................................................................... 86 Figure 6-27: Repair time for defects after non-accessibility .................................................................... 88 Figure 6-28: Modelled availability of an offshore wind farm in 2004 ..................................................... 88 Figure 6-29: Embedding the onshore scenario ........................................................................................ 90

  • LIST OF FIGURES

    XIII

    Figure 6-30: Determining the nominal power of the grid nodes 2020 ...................................................... 92 Figure 6-31: Hub heights of all German wind turbines built until 2008 ................................................... 94 Figure 6-32: Current and expected wind turbine hub heights .................................................................. 94 Figure 6-33: Onshore model power curve .............................................................................................. 96 Figure 6-34: Model power curves for the sensitivity calculation ............................................................. 97 Figure 6-35: Determining onshore wake losses ...................................................................................... 98 Figure 6-36: Wind farms used to determine wake effects ....................................................................... 99 Figure 6-37: Wind efficiency field of a wind farm and onshore wind efficiency curves ..........................100 Figure 6-38: Duration curves of simulated offshore wind power 2020 for the wind year 2007 ................102 Figure 6-39: Frequency distributions of simulated offshore 15 min mean wind power values 2020 for

    the wind year 2007 ...........................................................................................................102 Figure 6-40: Frequency distributions of increments of simulated offshore 15 min mean wind power

    values 2020 for the wind year 2007...................................................................................103 Figure 6-41: Mean frequency distribution of power increments for simulated onshore wind power time

    series 2020 .......................................................................................................................105 Figure 6-42: Power duration curves for simulated overall wind power feed-in of the German power

    system 2020(onshore & offshore) .....................................................................................107 Figure 6-43: Frequency distribution of power classes of simulated overall wind power feed-in of the

    German power system 2020for the wind year 2007 ...........................................................108 Figure 6-44: Frequency distribution of power increment classes for the simulated overall wind power

    feed-in of the German power system 2020for the wind year 2007 ......................................109 Figure 6-45: Simulation of storm cut-offs .............................................................................................110 Figure 7-1: Determining installed PV capacities 2020 and comparison to the current ...........................111 Figure 7-2: Frequency distribution of module inclination for three power classes ................................112 Figure 7-3: Frequency distribution of module orientation for three power classes ................................113 Figure 7-4: Procedure for generating PV time series............................................................................113 Figure 9-1: Continuous ampacity as a function of ambient temperature (cable type 264-AL1/34-

    ST1A, 80C conductor temperature, 0.6 m/s perpendicular wind flow), I35C=680 A ..........125 Figure 9-2: Ampacity as a function of perpendicular wind flow speed (cable type 264-AL1/34-ST1A,

    80C conductor temperature, 35C ambient temperature), I0,6m/s=680A ..............................125 Figure 9-3: Design of a GTACSR conductor .......................................................................................128 Figure 9-4: Load cell installed between the tension insulator and the crossarm ....................................130 Figure 9-5: Decoupling unit for fibre optic cables ...............................................................................131 Figure 9-6: Measuring device for recording temperatures in a fibre optic cable conductor integrated in

    a overhead conductor with full spatial resolution ...............................................................132 Figure 9-7: Surface wave temperature measuring system ....................................................................133 Figure 9-8: Active temperature sensor ................................................................................................134 Figure 9-9: Conductor-level meteorological measuring station ............................................................136 Figure 9-10: Exemplary data from the weather station network .............................................................136 Figure 9-11: Conductor temperature as a function of atmospheric conditions and current load ...............138 Figure 9-12: Exemplary WT power curve .............................................................................................148 Figure 9-13: Wind feed-in curve in the E.ON Netz contractual zone 2006-2007 ....................................149 Figure 9-14: Overview of determined ampacity potentials at DWD measuring stations in the strong

    wind scenario ...................................................................................................................152 Figure 9-15: Overview of determined ampacity potentials at DWD measuring stations in the average

    wind scenario ...................................................................................................................152 Figure 9-16: Potential indication map for ampacities in the strong wind scenario ...................................153 Figure 9-17: Potential indication map for ampacities in the average wind scenario ................................154

  • LIST OF FIGURES

    XIV

    Figure 10-1: Schematic illustration of transmission using a three-phase overhead line ...........................163 Figure 10-2: Designs of typical 380 kV and 750 kV overhead line masts ...............................................164 Figure 10-3: Cross-section of a single-wire extra high voltage three-phase cable ...................................166 Figure 10-4: Typical arrangement for laying two 380 kV three-phase systems directly in the ground .....167 Figure 10-5: Laying two systems of a 380 kV three-phase cable in a tunnel ...........................................167 Figure 10-6: Schematic illustration of transmission using a three-phase cable ........................................168 Figure 10-7: Longitudinal cut through a GIL component .......................................................................169 Figure 10-8: Schematic illustration of transmission using GIL ..............................................................170 Figure 10-9: Schematic illustration of transmission using classical HVDC technology ..........................171 Figure 10-10: Laying a XLPE-HVDC cable ...........................................................................................173 Figure 10-11: Schematic illustration of transmission using VSC-HVDC technology................................173 Figure 10-12: Comparison of space requirement for a classical HVDC and VSC-HVDC .........................174 Figure 10-13: Schematic illustration of the evaluation method ................................................................177 Figure 10-14: Weighting of criteria groups .............................................................................................179 Figure 10-15: Weighting of criteria in the technical features criteria group...........................................180 Figure 10-16: Weighting of criteria in the environmental impact criteria group ....................................182 Figure 10-17: Weighting of criteria in the system behaviour/system compatibility criteria group ..........183 Figure 10-18: Typical annual load curve for offshore wind farms ............................................................187 Figure 10-19: Simplified offshore wind load curve with 4,200 full load hours .........................................187 Figure 10-20: Result of technology evaluations for 1,000 MW, 100 km task ...........................................196 Figure 10-21: Display of technology evaluations for 1,000 MW, 100 km task .........................................197 Figure 10-22: Result of technology evaluations for 1,000 MW, 400 km task ...........................................197 Figure 10-23: Display of technology evaluations for 1,000 MW, 400 km task .........................................198 Figure 10-24: Result of technology evaluations for 4000 MW, 100 km task ............................................198 Figure 10-25: Display of technology evaluations for 4000 MW, 100 km task ..........................................199 Figure 10-26: Result of technology evaluations for 4000 MW, 400 km task ............................................199 Figure 10-27: Display of technology evaluations for 4000 MW, 400 km task ..........................................200 Figure 11-1: Reactive power intake of a classical HVDC in dependence on the transmission power.......204 Figure 11-2: Schematic diagram of an offshore wind farm connection using classical HVDC

    technology .......................................................................................................................205 Figure 11-3: Detailed depiction of the topology of a classical HVDC ....................................................206 Figure 11-4: NorNed HVDC MI submarine cable .................................................................................206 Figure 11-5: Design of an offshore wind farm connection using classical HVDC technology .................208 Figure 11-6: Example of design of an offshore platform with HVDC converter for transmitting

    250MW............................................................................................................................209 Figure 11-7: Schematic diagram of an offshore wind farm connection using VSC-HVDC technology ...212 Figure 11-8: Single-phase equivalent circuit diagram of a VSC-HVDC converter ..................................213 Figure 11-9: Possible VSC-HVDC converter design scenarios ..............................................................213 Figure 11-10: Cross-section of a XLPE cable (Cu offshore cable on left, Al onshore cable on right) ........214 Figure 11-11: Weight comparison between XLPE three-phase cable and XLPE direct current cable in

    dependence on capacity ....................................................................................................214 Figure 11-12: Schematic grid connection of an offshore wind farm connection using VSC-HVDC ..........215 Figure 11-13: Typical P/Q diagram of a VSC-HVDC power converter ....................................................216 Figure 11-14: The laying of the VSC-HVDC XLPE land cable ...............................................................217 Figure 11-15: Offshore platform and the laying of the VSC-HVDC XLPE submarine cable ....................218 Figure 11-16: Schematic diagram of VSC-HVDC control .......................................................................219 Figure 11-17: Connecting a wind farm to the grid via VSC-HVDC .........................................................219 Figure 11-18: Control of VSC-HVDC power converter at the grid side ...................................................220

  • LIST OF FIGURES

    XV

    Figure 11-19: Control of VSC-HVDC power converter at the wind farm side ..........................................221 Figure 11-20: Development of VSC-HVDC technology. .........................................................................222 Figure 11-21: Development of the XLPE-HVDC cable since 1997..........................................................222 Figure 11-22: Classic HVDC as multi-terminal with bipolar (a) and hybrid (b) design .............................224 Figure 11-23: VSC-HVDC as multi-terminal examples ...........................................................................224 Figure 11-24: Example of a multi-terminal VSC-HVDC connection .......................................................225 Figure 11-25: Protection concept - variant 1 protection by means of AC circuit breaker ........................225 Figure 11-26: Protection concept - variant 2 protection by means of AC circuit breaker and fast DC

    load interrupter switches ...................................................................................................226 Figure 11-27: Protection concept - variant 3 protection by means of fast DC circuit breakers ................226 Figure 11-28: Schematic overview as combination of drilled tunnel and immersed tunnel .......................228 Figure 11-29: Manufacture of tunnel segments in dry dock .....................................................................228 Figure 11-30: Individual tunnel segment .................................................................................................229 Figure 11-31: Cross-section of a tunnel segment .....................................................................................229 Figure 11-32: Example design of a three-phase submarine cable .............................................................231 Figure 11-33: Schematic diagram of an offshore wind farm connection with three-phase cable ................232 Figure 11-34: Weighting of the individual evaluation criteria in % ..........................................................235 Figure 11-35: Result of technology evaluations ......................................................................................237 Figure 11-36: Connecting the OWFs in the North Sea up to 2015 (blue) and 2015-2020 (green) ..............242 Figure 11-37: Connection of OWFs in Baltic Sea by 2015 (blue) and in 2015-2020 (green) in

    accordance with the modified offshore scenario until 2020 ................................................245 Figure 11-38: Offshore perspectives .......................................................................................................247 Figure 11-39: Transit line between Norway and Germany with intermediate infeed from offshore wind

    farms................................................................................................................................247 Figure 11-40: Possible variants for connecting Kriegers Flak between Denmark, Germany and Sweden ..248 Figure 11-41: Multi-terminal operation advantages of connecting SylWin and HelWin as per

    "Szenario_dena II" ...........................................................................................................249 Figure 12-1: Variant overview of integration options (without taking iterations and interactions into

    consideration)...................................................................................................................253 Figure 12-2: Installed capacity per primary energy source in GW up to the year 2020 ...........................254 Figure 12-3: Region illustration for Germany, region designation in accordance with ENTSO-E ....................255 Figure 12-4: Sorted annual duration curve of bilateral power exchange between Germany (DE) and

    The Netherlands (NL).......................................................................................................258 Figure 12-5: Sorted annual duration curve of bilateral power exchange between Germany (DE) and

    Poland (PL) ......................................................................................................................258 Figure 12-6: Installed capacities 2020 in each region in MW.................................................................259 Figure 12-7: Maximum load in MW per region by 2020 (not simultaneous) ..........................................259 Figure 12-8: Determined installed capacity (all powerplants in each region) ..........................................260 Figure 12-9: Regional balances (Maximum, Average and Minimum in each region) ..............................260 Figure 12-10: summarized balances and aggregation of regions ...................................................................262 Figure 12-11: Example of sorted balances of the regions 21 und 81 showing surplus of generation ......263 Figure 12-12: Example of sorted balances of the regions 75 und 42 showing surplus of demand ..........263 Figure 12-13: Schematic diagram of grid extension at regional borders ...................................................264 Figure 12-14: PTDF transport model ......................................................................................................266 Figure 12-15: Aggregation to gain regions for the PTDF-transport model................................................267 Figure 12-16: Regional boundaries with non-transmissible power (Source: TSOs) ..................................271 Figure 13-1: Example of use of the PTDF method for determining the transmission capacity .................276 Figure 13-2: Storage capacity and non-transmissible power in variant BAS 100 without grid extension .281

  • LIST OF FIGURES

    XVI

    Figure 13-3: Example of effective grid relief by using a storage system.................................................283 Figure 13-4: Examples of storage system use without sufficient grid relief ............................................284 Figure 13-5: Example of load flow change when using OLM ................................................................285 Figure 13-6: Node model with straight-line distances (specified in kilometres) ......................................287 Figure 13-7: Regional boundaries with an expected transmission capability increase by 2015 ................288 Figure 13-8: Modifications to the 380 kV existing grid and the addition of AC circuits..........................292 Figure 13-9: Corridor lengths (380 kV double overhead line) for AC extension grid and modifications

    to the existing grid ............................................................................................................293 Figure 13-10: Anticipated development of the 380 kV circuit length in Germany for the BAS variant .....294 Figure 13-11: Super-regional transport task of the transmission grid in 2020 ...........................................295 Figure 13-12: Energy loss requirement of the super-regional transmission grid in the year 2020 ..............296 Figure 13-13: Provision of reactive power in grid extension status 2020 ..................................................297 Figure 13-14: Maximum voltage angle differences between Denmark and Switzerland in 2020 ...............298 Figure 13-15: Overview of investment costs (excluding storage system costs) .........................................302 Figure 13-16: Annuity of the additional energy losses in the transmission grid in 2020 in Germany .........303 Figure 13-17: BAS1 model grid .............................................................................................................304 Figure 13-18: TAL1 model grid .............................................................................................................304 Figure 14-1: Extension requirement for corridors of the sensitivity variants in the 2020 transmission

    grid ..................................................................................................................................310 Figure 14-2: Super-regional transport task of the transmission grid in 2020 for sensitivity variants ........311 Figure 14-3: Energy loss requirement in the 2020 transmission grid for sensitivity variants ...................312 Figure 14-4: Provision of reactive power in the sensitivity variants for 2020 .........................................313 Figure 14-5: Voltage angle differences between Denmark and Switzerland in 2020 for sensitivity

    variants ............................................................................................................................314 Figure 14-6: Overview of investment costs of the sensitivity variants in comparison to the basic variant 315 Figure 14-7: Additional loss costs of the sensitivity variants .................................................................316 Figure 14-8: Annuities of the sensitivity variants (without loss basis) ....................................................317 Figure 14-9: Single-phase equivalent circuit diagram of a VSC-HVDC converter ..................................320 Figure 14-10: Possible VSC-HVDC converter design scenarios ..............................................................321 Figure 14-11: Parallel operation with active power control of a three-phase connection with a VSC-

    HVDC connection ............................................................................................................322 Figure 14-12: Extended control strategies of the VSC-HVDC .................................................................323 Figure 14-13: VSC-HVDC as multi-terminal examples ...........................................................................324 Figure 14-14: Direct voltage grid with converter power and number of connecting cables .......................325 Figure 14-15: Example topology of region 21 with point-to-point connections ........................................326 Figure 14-16: Example of topology of region 21 with direct current grid .................................................327 Figure 14-17: Width of route for transmitting 3,300 MW - direct current cable systems, voltage +/-320

    kV. ...................................................................................................................................328 Figure 14-18: Protection concept variant 1: Protection by means of three-phase circuit breakers ..............331 Figure 14-19: Protection concept variant 2: Protection by means of fast direct current circuit breakers ....332 Figure 15-1: Design and control of modern WTs ..................................................................................342 Figure 15-2: Frequency characteristic curve for WTs from EirGrid .......................................................353 Figure 15-3: Use of kinetic energy of the rotating WT mass ..................................................................354 Figure 15-4: Grid frequency curve after a power plant failure with differing WT generation proportions357 Figure 16-1: Anticipated development of the 380 kV circuit length for the onshore BAS variant ...........363 Figure 16-2: Annuities in year 2020 for the additional grid extension ....................................................366 Figure 19-1: Example: Probability of outages in the generation system .................................................377

  • LIST OF FIGURES

    XVII

    Figure 19-2: Methodology for calculating an improved wind power forecast for the German onshore interconnected system in 2020. .........................................................................................379

    Figure 19-3: Left: Measured (black) and predicted (red) wind power (normalised to nominal power) in relation to predicted wind speed. Right: Observed forecast errors and their mean values in relation to predicted wind speed. .......................................................................................385

    Figure 19-4: N-Q plot of measured wind power. Right: Interval PW/nom. power = 0 1 (no normal distribution); left: PW/nom. power ~ 0.25 0.75 (virtually normal distribution) .................386

    Figure 19-5: Number of measurements (top), mean absolute error (middle) and BIAS (bottom) for each class (example for one wind farm). ...................................................................................386

    Figure 19-6: Schematic representation of calculating grid square wind power feed-in by means of distance-related weighting of reference measurements ......................................................389

    Figure 19-7 Error distributions of current (2007) and optimised (for 2020) onshore wind power forecasts, in relation to forecast horizons of one (left) and two (right) hours for the whole of Germany ......................................................................................................................390

    Figure 19-8: Methodology for generating offshore wind power forecasts and forecast errors, with smoothing effect taken into account ..................................................................................392

    Figure 19-9: Error distributions of non-optimised and optimised wind power forecasts for forecast horizonsof one (left) and two (right) hours for the entire offshore expansion scenario 2020, normalised to the total nominal power of Pn = 14070 MW.......................................395

    Figure 19-10: Error distributions of non-optimised and optimised wind power forecasts for forecast horizonsof one (left) and two (right) hours for the entire onshore and offshore scenario 2020, normalised to nominal power ..................................................................................396

    Figure 19-11: Error distributions in current (2007) wind power forecasts for the German interconnected system (onshore only) and for the expected wind power forecasts for the 2020 onshore and offshore scenario........................................................................................................398

    Figure 19-12: Convolution process for BALANCE-WT ..........................................................................399 Figure 19-13: Determining the capacity provision in accordance with BALANCE-WT ...........................400 Figure 19-14: Wind forecast errors for 1 h and 2 h ahead in the years 2007 and 2020 ..............................401 Figure 20-1: Representation of peak shaving and valley filling measures and their influence on

    electricity prices ...............................................................................................................405 Figure 20-2: Overview of household sector applications under consideration ........................................409 Figure 20-3: Overview of average DSM potential for balancing power in the household sector .............411 Figure 20-4: Positive and negative DSM capacity of refrigerators (left) and freezers (right) in

    households with normally distributed load ........................................................................414 Figure 20-5: Load profile for washing machines, tumble dryers and dishwashers, without load shifting

    by means of DSM taken into account ................................................................................416 Figure 20-6: Overview of industrial sector applications under consideration ..........................................416 Figure 20-7: Overview of average DSM potential of individual energy-intensive processes in the

    industrial sector ................................................................................................................418 Figure 21-1: Provision of balancing power by wind farms .....................................................................427 Figure 21-2: Spot market and balancing market ....................................................................................428 Figure 21-3: Supply of wind energy on the reserve market ....................................................................429 Figure 21-4: Supply of negative reserve ................................................................................................429 Figure 23-1: Developments in renewable energy capacities ...................................................................447 Figure 23-2: Development in net electricity consumption to the year 2020 ............................................447 Figure 23-3: Steps involved in determining non-integrable power .........................................................450 Figure 23-4: Generation mix development in Germany .........................................................................452 Figure 23-5: Electricity generation mix in 2020 ....................................................................................453

  • LIST OF FIGURES

    XVIII

    Figure 23-6: DSM capacities expanded endogenously in the model in industry and households for spot and reserve markets, from 2010 onwards ..........................................................................458

    Figure 23-7: Average reserve capacity supplied by DSM processes in 2020 plus probabilities of balancing power call-up....................................................................................................459

    Figure 23-8: Overview of key changes in market parameters due to DSM in Germany in 2020 ..............460 Figure 23-9: Distribution of cumulative cost savings in the German electricity generation sector as a

    result of DSM between 2007 and 2020 .............................................................................460 Figure 23-10: Limitation of balancing power provision by WTs ..............................................................462 Figure 23-11: Positive balancing power provision, winter 2020...............................................................463 Figure 23-12: Negative balancing power provision, winter 2020 .............................................................463 Figure 23-13: Components of electricity price for household consumers in 2020 (basic scenario) ............468 Figure 23-14: Electricity price for different electricity customers, 2010 to 2025 ......................................468 Figure 23-15: Diagram of regional boundaries in the German transmission grid ......................................470 Figure 23-16: Duration curves for non-transmissible power at the boundaries of the regions ....................471 Figure 23-17: Energy density of storage medium ....................................................................................474 Figure 23-18: Congestion management for a storage facility ...................................................................475 Figure 23-19: Yearly costs for storage facilities ......................................................................................478 Figure 23-20: Salt domes in the coastal region of northern Germany .......................................................480 Figure 25-1: Overall annual costs in 2020 for all nine scenarios ............................................................495 Figure B-0-1: Overview of assumptions in the reference scenario and the supplementary analyses ..........512 Figure B-0-2: Overview of average DSM potential in the household sector .............................................513 Figure B-0-3: Overview of trade and services applications under consideration .......................................515 Figure B-0-4: Overview of average DSM potential in the trade and services sector..................................516 Figure B-0-5: Positive and negative DSM capacity of refrigeration units in food markets in the trade and

    services sector ..................................................................................................................517 Figure B-0-6: Overview of industrial sector applications under consideration .........................................520 Figure B-0-7: Overview of average DSM potential of individual energy-intensive processes in the

    industrial sector ................................................................................................................521 Figure B-0-8: Overview of average DSM potential of cross-sector technologies in th