intel® curie™ module

49
Intel® Curie™ November 2016 Design Guide rev. 1.2 1 Intel® Curie™ Module Design Guide November 2016 Revision 1.2

Upload: others

Post on 04-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Intel® Curie™ Module

Intel® Curie™November 2016 Design Guiderev. 1.2 1

Intel® Curie™ ModuleDesign Guide

November 2016

Revision 1.2

Page 2: Intel® Curie™ Module

Intel® Curie™Design Guide November 20162 Document number: 567219 rev. 1.2

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

This document contains information on products, services, and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications, and roadmaps.

The products and services described may contain defects or errors known as errata, which may cause deviations from published specifications. Current charac-terized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a nonexclusive, royalty-free license to any patent claim thereafter drafted that includes subject matter disclosed herein.

Forecasts: Any forecasts of requirements for goods and services are provided for discussion purposes only. Intel will have no liability to make any purchase pur-suant to forecasts. Any cost or expense you incur to respond to requests for information or in reliance on any forecast will be at your own risk and expense.

Business Forecast: Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking state-ments that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC fil-ings, including the annual report on Form 10-K.

Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016 Intel Corporation. All rights reserved.

Page 3: Intel® Curie™ Module

Intel® Curie™November 2016 Design Guiderev. 1.2 3

Revision History

§

Revision Description Date1.0 Initial release August 20161.1 Minor fixes September 20161.2 Added reference to the Intel® Curie™ module Application Note - Power Sequencing Considerations in the power on

sequence sectionNovember 2016

Page 4: Intel® Curie™ Module

Intel® Curie™November 2016 Design Guiderev. 1.2 4

1 Introduction ............................................................................................................................................................................. 81.1 Audience and purpose................................................................................................ 81.2 References ............................................................................................................... 81.3 Terminology ............................................................................................................. 9

2 System Fundamentals ......................................................................................................................................................... 102.1 Block diagrams ........................................................................................................102.2 Electrical specifications .............................................................................................132.3 Intel® Curie™ module footprint .................................................................................13

2.3.1 Breakout pitch of module.............................................................................13

3 Power and Energy................................................................................................................................................................. 143.1 Power requirements and distribution ...........................................................................143.2 Power supervisor, reset and voltage regulators ............................................................16

3.2.1 Power supervisor........................................................................................163.2.2 Manual reset logic ......................................................................................163.2.3 AON IO Power............................................................................................163.2.4 VSYS ........................................................................................................163.2.5 Comparator power......................................................................................16

3.3 Battery charging and management .............................................................................163.3.1 Integrated charging device ..........................................................................163.3.2 Charging circuit example .............................................................................183.3.3 Wireless charger ........................................................................................193.3.4 Charing status indicator...............................................................................193.3.5 Charging mode (wired / wireless) selection and indicator .................................19

3.4 No battery configuration............................................................................................203.4.1 ESR1 and ESR2 regulators ...........................................................................203.4.2 ESR3 regulators .........................................................................................213.4.3 USB power and protection circuit ..................................................................24

3.5 Power ON sequencing ...............................................................................................253.5.1 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG ........................................273.5.2 VSYS, OPM_2P6, AON_1P8 and LDO_1P8 ......................................................28

4 Subsystems............................................................................................................................................................................ 294.1 Analog power and input routing..................................................................................29

4.1.1 ADC ground...............................................................................................294.2 Bluetooth® low energy device and antenna .................................................................30

4.2.1 Antenna placement.....................................................................................304.3 I2C interface design guidelines ...................................................................................31

4.3.1 I2C connections on the functional reference circuits .........................................314.3.2 I2C interface signals ....................................................................................31

4.4 LED driver example ..................................................................................................324.5 I2S interface design guidelines...................................................................................33

4.5.1 Signals for the I2S interface.........................................................................334.5.2 I2S interface routing guidelines ....................................................................33

4.6 Sensors ..................................................................................................................334.6.1 Integrated 6-axis sensor interfaces ...............................................................334.6.2 Environmental inputs ..................................................................................33

4.7 Haptics ...................................................................................................................354.7.1 Device driver .............................................................................................354.7.2 Reference Eccentric Rotating Mass (ERM) device.............................................35

4.8 SPI interface............................................................................................................374.8.1 SPI interface signals on the Intel® Curie™ module .........................................38

4.9 Flash memory..........................................................................................................384.10 Display panel and touch controller ..............................................................................394.11 Near Field Communication (NFC) ................................................................................41

4.11.1 NFC controller features................................................................................41

Page 5: Intel® Curie™ Module

Intel® Curie™November 2016 Design Guiderev. 1.2 5

4.11.2 Secur microcontroller features......................................................................414.12 UART0 for Bluetooth® low energy ..............................................................................434.13 UART1 interface signals.............................................................................................434.14 USB interface design considerations............................................................................43

4.14.1 USB 1.1 length matching.............................................................................44

5 Circuit Board Recommendations ...................................................................................................................................... 455.1 Fundamental design rules..........................................................................................455.2 PCB thickness and stackup ........................................................................................45

5.2.1 Two-layer boards .......................................................................................455.2.2 Four-layer stackup......................................................................................455.2.3 Six-layer stackup........................................................................................46

6 Debug and Production Options......................................................................................................................................... 486.1 JTAG connector or test pads ......................................................................................486.2 Power rail test pads ..................................................................................................496.3 UART test pads ........................................................................................................496.4 Bluetooth® low energy test pads ...............................................................................49

Page 6: Intel® Curie™ Module

Intel® Curie™Design Guide November 20166 rev. 1.2

Tables1 References ............................................................................................................ 82 Terminology .......................................................................................................... 93 Formula to calculate resistor for battery charge current ..............................................174 Buck parameters ...................................................................................................255 I2C interface signals ..............................................................................................316 I2S interface signals ..............................................................................................337 I2S routing guidelines ............................................................................................338 Interface signals....................................................................................................339 Intel® Curie™ SPI interface signals .........................................................................3810 UART interface signals............................................................................................4311 USB 1.1 differential pair length matching table ..........................................................4412 USB 1.1 differential pair length matching table ..........................................................4413 Two-layer stackup design .......................................................................................4514 Four-layer stackup design.......................................................................................4515 Six-layer stackup design.........................................................................................46

Page 7: Intel® Curie™ Module

Intel® Curie™November 2016 Design Guiderev. 1.2 7

Figures1 Intel® Curie™ module block diagram..........................................................................112 Conceptual device block diagram................................................................................123 Power distribution inside Intel® Curie™ module ...........................................................154 Battery charging profile example ................................................................................175 Battery application - example circuit ...........................................................................186 Wireless charger - example circuit ..............................................................................197 Example circuits for no battery application...................................................................208 ESR1 and ESR2 regulator ..........................................................................................219 ESR3 regulator ........................................................................................................2210 Example Circuit for Bluetooth operating at 1.8 VDC.......................................................2311 USB power and protection example circuit ...................................................................2412 Intel® Curie™ power sequence ..................................................................................2513 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture.......................2714 AON_1P8, ESR1 and ESR2 - Oscilloscope capture .........................................................2815 Example ADC ground................................................................................................2916 Pad dimensions for chip antenna ................................................................................3017 Example of I2C connection for a typical device..............................................................3118 LED driver block diagram for a tricolor module .............................................................3219 LED driver example circuit for a tricolor module............................................................3220 Extended environmental sensor block diagram .............................................................3421 External environmental sensor example circuit .............................................................3422 Haptic driver block diagram .......................................................................................3523 Haptic driver - example circuit ...................................................................................3624 SPI simplified topology example .................................................................................3725 SPI simplified topology example .................................................................................3826 Flash memory circuit for SPI interface.........................................................................3927 External display topology example..............................................................................4028 NFC connections ......................................................................................................4129 NFC - example circuit................................................................................................4230 UART interface topology............................................................................................4331 USB 1.1 port topology...............................................................................................4432 Thickness of a six layer stackup .................................................................................4733 Block diagram of the debug ports on the Intel® Curie™ module .....................................4834 Debug ports on the Intel® Curie™ module ..................................................................48

Page 8: Intel® Curie™ Module

Introduction

Intel® Curie™Design Guide November 20168 rev. 1.2

1 IntroductionThis document provides design recommendations for the Intel® Curie™ module, which is based on the Intel® Quark™ SE system on a chip. Technical implementation examples provided are derived from the functional reference circuits.

Note: The guidelines provided in this document are based on preliminary simulation work done at Intel while developing systems based on the Intel® Curie™ module and the Intel® Quark™ SE micro-controller. This work is ongoing, and the recommendations are subject to change.

Note: All 3rd party components shown in this document are for reference example purpose only and customers have to evaluate and choose the right components based on their use case.

CAUTION: If the guidelines listed in this document are not followed, it is very important that the designers perform thorough signal integrity and timing simulations. Even when following these guidelines, Intel recommends the critical signals to be simulated to ensure proper signal integrity and flight time.

1.1 Audience and purposeThe Intel® Curie™ Design Guide is provided as an aid for hardware designers and system integrators.

The functional reference circuits were created to provide information and guidance on the following subjects:

· Block diagrams of system level communications and functional reference circuits interface configurations· System mechanicals and board topology, routing requirements; and layout recommendations· Power distribution, reset logic, boot sequencing; and energy management· Factory test, debug, recovery; and troubleshooting· Alternate implementation options

Note: This design guide has been developed to ensure maximum flexibility for board designers while reducing the risk of board-related issues. Design recommendations are based on Intel's simulations and lab experience and are strongly recommended, if not necessary, to meet the timing and signal quality specifications. They should be used as an example but may not be applicable to particular designs. The guidelines recommended in this document are based on experience, simulation, and preliminary validation work done at Intel while developing the Intel® Curie™ processor-based design. This work is ongoing, and recommendations are subject to change.

Metric units are used in some sections in addition to the standard use of U.S. customary system of units (USCS). If there is a discrepancy between the metric and USCS units, assume the USCS unit is most accurate. The conversion factor used is 1 inch (1000 mils) = 25.4 mm.

1.2 References

Table 1 References

Document name

Intel® Curie™ Datasheet

Page 9: Intel® Curie™ Module

Introduction

Intel® Curie™November 2016 Design Guiderev. 1.2 9

1.3 Terminology

Table 2 Terminology

Term Definition

ADC Analog-to-digital converter

ANT Antenna

AON Awake-ON

SoC Intel® Quark™ SE

BALUN Balanced-unbalanced

BLE Bluetooth* low energy

BOM Bill of materials

CPU Central processing unit

CTS Clear to send

Intel® Curie™ Module Intel’s highly integrated module based on the Intel® Quark™ SE SoC

DCCM Closely coupled data memory

DSP Digital signal processor

ERM Eccentric Rotating Mass

FAR False acceptance rate

Finish The material used to protect the exposed copper on the PCB

FRR False rejection rate

FW Firmware

GUI Graphical user interface

Impedance The effective resistance of a trace, circuit or component

NFC Near field communication

OEM Original equipment manufacture

OS Operating system

OTP One-time programmable

PMA Power matters alliance

PCB Printed circuit board

POR Power-on reset

PRU Port replacement unit

PTU Power transmit unit

PWM Pulse width modulation

Qi An interface standard developed by the Wireless Power Consortium for inductive electrical power transfer

RAM Random access memory.

RF Radio Frequency

Soldermask An electrically insulating material covering traces on the external layers of a PCB

SW Software

Space The distance between copper features (such as traces) on the PCB

Trace A copper line on the PCB used to connect components

UART Universal asynchronous receiver transmitter.

VIA Plated hole in the PCB used to connect layers

WPC Wireless Power Consortium.

X-Y The area of a board (the length of each side)

Z The thickness of a board (the Z dimension)

Page 10: Intel® Curie™ Module

System Fundamentals

Intel® Curie™Design Guide November 201610 rev. 1.2

2 System Fundamentals2.1 Block diagrams

The next two block diagrams shows the Intel® Curie™ module and then the module within a typical design.

Page 11: Intel® Curie™ Module

System Fundamentals

Intel® Curie™November 2016 Design Guiderev. 1.2 11

Figure 1 Intel® Curie™ module block diagram

UART_0

SPI1_SS

I2S / GPIO

Nordic* Bluetooth Low Energy Controller

 NRF51822

Bosch BMI160*6‐AXIS SENSOR

BATTERY CHARGER

Texas Instruments*BQ25101H

1.8V/3.3V BUCK REGULATORTI TPS62743*

6‐AXIS_AUX_I2C6AXIS_INT1

32KHz OSC

BLE_RF

BLE_DEBUG

BLE_I2C

VIN

32MHz XTAL VDD_BLE_SEN

PWM / GPIO_SS

JTAG

CLK0_OUT / GPIO_SS

UART_1 / GPIO_SS

I2C0_SS

I2C1_SS

I2C0

I2C1

SPI0_M / GPIO

SPI1_M / GPIO

SPI0_SS

ATP_SPI0_S / GPIO

BATTERY_ISET

CHG_STATUS

BATTERY_TEMP

PV_BATT

VDD_PLAT_1P8

VDD_PLAT_3V3

ESR1_LX

ADC_3P3_VCC

GPIO_AON

32/16/8/4 MHz

GPIO / ANALOG_IN

3V3

1V8

3V3

BUCK_VOUT

INT

VCC_BATT_ESR3_3P7/VCC_BATT_OPM3_3P7

VDD_USB

1.8‐3.3VRST_B

Intel® Quark™ SE

POWER SUPERVISORMaxim*

MAX16074RS29D3+

MRESET_B

VSYS

POR_B

VCC_RTC

VCC_SRAM

LDO 3.3VMicrochip 

MIC5504‐3.3YMT*VCC_USB_3P3

VCC_AON

LDO 1.8VONsemiconductor 

NCP170AMX180TCG*

Balun

Transformer

BUCK_VSEL

CMP_3P3_VCC

32KHz In

32MHz In

16MHz XTAL

IO_AON_VCC

VCCOUT_AVD_OPM_2P6/VCC_AVD_OPM_2P6

POWERCLOCK

SENSOR SUBSYSTEM

ESR2_LX1V8

ESR3_LX1V8

2.0‐3.3V

VDD_HOST_1P81V8

1V8

VCC_HOST_1P8_PG

POWER SUPERVISORRICOH R3117K161C*

VDD_6AXIS

GPIO_SS[15]

VSYS

GPIO_AON[5]

GPIO_AON[4]

BLE_ATP_INT

GPIO[5]ATP_BLE_INT

GPIO[28]

BUCK_EN

VUSB_EN

GPIO[7]/AIN[7] 5V_BUS_SENSE

ATP_RST_B

6AXIS_INT2

CHG_STATUSGPIO_SS[7]/AIN[15]

LDO1P8_VOUT

OPM2P6_VOUT

Page 12: Intel® Curie™ Module

System Fundamentals

Intel® Curie™Design Guide November 201612 rev. 1.2

Figure 2 Conceptual device block diagram

Intel® CurieTM Module

HAPTICSTI DRV2605*

COMPASSBosch BMM150*

I2C1_M_SCL

PRESSURE ,TEMP & HUMIDITY SENSOR

Bosch BME280*

I2C0_SS_SCL

COMPASS_INT

HAPTICS_IN/TRG/PWM

I2C1_M_SDA

I2C0_SS_SDA

NFC

STMicroelectronicsST54D*

I2C1_M_SCL

I2C1_M_SDA

SPI1_M_CS2

SPI1_M_SCK

SPI1_M_MOSI

SPI1_M_MISO

NFC_INT

SPI FLASH

MacronixMX25U12835F*

SPI0_M_CS2

SPI0_M_SCK

SPI0_M_MOSI

SPI0_M_MISO

FLASH_WP

Wireless ChargerBroadcom BQ51003*

GPS

FILTER

SPI0_M_SCK

SPI0_M_MOSI

SPI0_M_MISO

GPS_ON

GPS_HOST_WAKE

CONNECTOR

LNA

SPI0_M_CS1

GPS_HOST_REQ

DISPLAY /TOUCHHEADER

  SENSOR HEADER

I2C1_SCL

I2C1_SCA

SPI1_M_CS2

SPI1_M_SCK

SPI1_M_MOSI

SPI1_M_MISO

GPIO[2] / AIN[2] / SPI_S_SCK

SPI0_M_CS2

SPI0_M_SCK

SPI0_M_MOSI

SPI0_M_MISO

GPIO[14] / SPI1_M_CS_B[3]

SPI0_M_CS1

SPI0_M_SCK

SPI0_M_MOSI

SPI0_M_MISO

GPIO[16] / I2S_RSCK

ATP_INT1

GPIO[18] / I2S_TSCK

I2C1_SCL

I2C1_SDA

GPIO[1] / AIN[1] / SPI_S_MISO

I2C0_SS_SCL

I2C0_SS_SDA

GPIO_SS[3] / AIN[11]

GPIO[24] / SPI0_M_CS_B[0]

ATP_INT3WC_CHG_STATUS

WC_EN

SPI1_M_CS1

SPI1_M_SCK

SPI1_M_MOSI

GPIO[19] / I2S_TWS

DISPLAY_GPIO/LCD_EXTCOMIN

SPI0_SS_CS0

SPI0_SS_SCK

SPI0_SS_MOSI

SPI0_SS_MISO

I2C1_SS_SCL

I2C1_SS_SDA

GPIO_SS[14]/PLT_CLK[0]

THERMISTORTEMP_ADC

GPIO_SS[2] / AIN[10]

LED DRIVER

TI LP5562*I2C1_SCL

I2C1_SDA

HOST

SECURE ELEMENT

GPIO

GPIO[3] / AIN[3] / SPI_S_MOSIFLASH_RESET

SW_FUEL_GAUGE_EN/TEMP_EN

ATP_INT0ON‐OFF SWITCH

NFC_RSTGPIO[15] / I2S_RXD

TOUCH_INTATP_INT2

GPIO[11] / SPI1_M_CS_B[0]BATTERY_CTRL

JTAG/DEBUG/BLE(3 separate headers)

JTAG,UART,BLE

GPIO[17] / I2S_RWSDISPLAY_ON/OFF

GPIO[20] / I2S_TXDNFC_GPIO

I2C GPIO EXPANDER

I2C0_SCL

I2C0_SDAI2C0_M_SCL

I2C0_M_SDAGPIO_EXP_INTGPIO[0] / AIN[0] / SPI_S_CS_B

TOUCH_RESETGPIO_SS[12] / PWM[2]

6

PUSH_BUTTON

3

SEN_GPIO_14 OPTIONAL GPIO’s TO SENSOR HEADER

GPIO_SS[6]/AIN_14SEN_GPIO_2

SEN_GPIO_3

SEN_GPIO_4

GPIO_SS[3]/AIN_11

UART1_RTS/AIN[9]/GPIO_SS[1]

UART1_CTS/AIN[8]/GPIO_SS[0]

shared GPIO (not available default)

BLE_RFW3008C

Page 13: Intel® Curie™ Module

System Fundamentals

Intel® Curie™November 2016 Design Guiderev. 1.2 13

2.2 Electrical specificationsRefer to the Intel® Curie™ Module datasheet for complete specification.

2.3 Intel® Curie™ module footprintRefer to the Intel® Curie™ module manufacturing guide for more information.

2.3.1 Breakout pitch of moduleDue to the lateral pitch (0.0224” or 0.57 mm) on the Intel® Curie™ module package, there is a space of 0.0124” between the pads that requires a Trace and Space of 0.004” / 0.1” for breakout of the package on the external layer.

Page 14: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201614 rev. 1.2

3 Power and EnergyThe power input of the Intel® Curie™ module is intended to be supplied by direct USB power, a charging device; or a battery as selected from a priority basis of those available.

3.1 Power requirements and distributionThe Intel® Curie™ module requires a clean and stable power supply. Poorly designed regulators or filters that drift at low loads or that do not handle transit changes with precision can impact module performance and reliability.

Refer to the Intel® Curie™ module datasheet for power numbers.

Page 15: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 15

Note: The above diagram is for reference only; power connections within the module cannot be modified.

Figure 3 Power distribution inside Intel® Curie™ module

VCC_HOST_1P8[1,2]

VCCOUT_HOST_1P8

VCCOUT_QLR2_1P8

VCCOUT_QLR1_3P3

VCC_ADC_3P3

VCC_CMP_3P3[1,2]

VCC_PLL_1P8

VCC_BATT_OPM_3P7

VCC_BATT_ESR1_3P7

VCC_BATT_ESR2_3P7

VCC_BATT_ESR3_3P7

VCC_VSENSE_ESR1

VCCOUT_ESR1_3P3

VCC_VSENSE_ESR2

VCCOUT_ESR2_1P8

VCC_VSENSE_ESR3

VCCOUT_ESR3_1P8

Intel® QuarkTM SE

VCCOUT_AVD_OPM_2P6

VCC_AVD_OPM_2P6

VCC_AON_1P8[1,2]

VCCOUT_AON_1P8

VCC_IO_AON[1,2]

VCC_RTC_1P8

VCC_SRAM_1P8

Battery Charger

Texas InstrumentsBQ25101H*

VIN

PV_BATT

BATT_ISET

VDD_USB

VSYS

Power supervisor

MAXIM MAX16074RS29D3+T*

MRESET_B POR_B

LDO 1.8VON semiconductor 

NCP170AMX180TCG*

VSYS

VCC_AON_PWR

NORDIC Bluetooth* Low EnergyNRF51822-CEAA-R_V3*

6-AXIS SensorBOSCH BMI160*

Osclillator

4.7uF

4.7uF

ATP_RESET_B

Enable

BUCK CONVERTER

TI TPS62743*

VSYS

BUCK_VOUT

BUCK_SEL

VDD_BLE_SEN

VCC_AON_PWR

VCC_AON_PWR

LDO1P8_VOUT

LDO_VOUT

BUCK_ENGPIO_SS[15]

USB LDOUSB_3V3

VCC_USB_3P3

Page 16: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201616 rev. 1.2

3.2 Power supervisor, reset and voltage regulators

3.2.1 Power supervisorThe Intel® Curie™ input power is monitored for a threshold level by power supervisor circuit present inside the module.

If the system voltage falls below 2.9 VDC, the power supervisor will pull the POR_B pin LOW to keep SoC in reset state.

3.2.2 Manual reset logicWhile the Intel® Curie™ does not include a physical reset, it does provide support manual reset switches and it is recommended to design them into your device by pulling the ATP_RST_B line to ground, holding the CPU in reset.

3.2.3 AON IO PowerThis pin powers the AON block of the Intel® Curie™ and must comply with the timing sequence shown in Figure 12

If the IO voltage is 1.8V, it is recommended to use LDO1P8_VOUT to power this pin.

It can be fed by other power supplies also provided it meets the power sequence requirements. If the IO voltage is set to 3.3 VDC, then supplying from the ESR1 regulator is permitted.

3.2.4 VSYSMain power input for the Intel® Curie™. This supplies the OPM regulator, AON block, ESR3 and BUCK regulator.

Use a 0.1uF decoupling capacitor.

3.2.5 Comparator powerCMP_3P3_VCC is the comparator block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good performance. Keep the power supply traces away from high frequency signals, DC-DC converters, and RF.

3.3 Battery charging and management

3.3.1 Integrated charging deviceThe Intel® Curie™ module has a built-in, low-leakage single-path Li-ion / Li-Po battery charger. This battery charger supports 3.8V batteries with charging voltage of 4.35V.

Charge current is hardware configurable from 60mA to 250mA by reference voltage at the BATT_ISET pin.

The minimum battery capacity supported is 120mAH (assuming the standard battery charge current is 0.5C) If the battery charge current is less than 60mA, an external charger should be used and not the internal charger.

The charger has three phases of charging: pre-charge to recover a fully discharged battery, fast-charge constant current to supply the charge safely; and voltage regulation to safely reach full capacity. The fast-charge current is programmable and the pre-charge current is 20% of fast-charge and termination current is 10% of the fast-charge current.

If the battery voltage is below the 2.5V, the battery is considered discharged and a preconditioning cycle begins. The charging happens at the pre-charge current level. Once the battery voltage has charged to the 2.5V threshold, fast-charge is initiated and the fast-charge current is applied.

The typical battery charger circuit is shown below. For low power or smaller size battery application, it is good to use a load switch on the VBATT to VSYS path to implement a ship mode circuit. The ship mode circuit will help increase the shelf life of the product.

VIN should be connected to the charging source (for example USB VBUS). Battery should be connected to the PV_BATT. CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed.

Connect the BATT_TEMP to the NTC of the battery if available. If not, connect it to a 10K resistor and it will disable the temperature monitor. BATT_ISET is used to configure the battery charger current (also called as fast charge current) by connecting an external resistor to GND.

Page 17: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 17

Where:

IOUT is the desired fast charge current

KISET is the gain factor whose value is 135 A ohms Typical. (Min 129 and Max 145)

3.3.1.1 Integrated charger profile

Table 3 Formula to calculate resistor for battery charge current

RISET = KISET / IOUT

Figure 4 Battery charging profile example

Page 18: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201618 rev. 1.2

3.3.2 Charging circuit exampleIn the example circuit shown below:

VIN is connected to the charging source (for example USB VBUS).

PV_BATT is connected to the battery.

CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed.

BATT_TEMP connects to the NTC of the battery if available. If not connect it to a 10K resistor and it will disable the temperature monitor.

BATT_ISET is used to configure the battery charger current (also called as fast charge current) by connecting an external resistor to GND.

Figure 5 Battery application - example circuit

C34.7uF.

U2

NCP334

OUTA1

INA2

ENB2

GNDB1

GREEN

.

12

R61.3k

C20.1uF.

R2100k

R415K

R58.2K

R710K.

R13K

C40.1uF

R310K

C11uF25V

CurieVIN[ 1]

K24

VIN[ 2]N21

BATT_TEMPN22

CHG_STATUSM22

SW_FG_VBATTP21

PV_BATTM1

BATT_ISETL22

GN

D

GPIO

VSYSL4

G

D

S Q1

CSD23381F43

1

2

VBATT

VBATT

VIN_5V

AON_IO_VCC

+

From USB orPower Supply

BATTERY APPLICATION

RISET

OptionalLoad switch

3.8V Li-ionBattery

-

Intel® Curie™

Page 19: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 19

3.3.3 Wireless chargerThis example is based on the Texas Instruments BQ51003* device, a WPC/Qi based wireless with these key features:

· Provides 5 VDC output to charge a battery· WPC v1.1 compliant communication control· 93% overall peak AC-DC efficiency· Full synchronous rectifier· Temperature monitoring inputs

Note: Contact the original device datasheet for latest product information.

3.3.4 Charing status indicatorThe CHG_STATUS pin on Intel® Curie™ is an open drain that indicates charging in progress with a LOW (0) signal and that charge is complete with a HIGH (1) signal. This can drive a simple LED or other indicator circuit.

If BATTERY_TEMP signal is connected to ground, this disables the internal battery charger and makes the CHG_STATUS pin available for other use as GPIO_SS_[7] or AIN[15].

3.3.5 Charging mode (wired / wireless) selection and indicatorWhen an external source, like wired USB power, raises the AD pin above 3.6 VDC then the wireless charger is disabled and the AD_EN output is driven HIGH to switch ON the external P_Channel FET.

Adapter mode can be enabled by providing low to the EN[1:2] control pin. In this mode, wired and wireless power modes are enabled but priority is provided to wired power.

Wired and wireless charging power can be disabled through setting EN[1:2] high.

Figure 6 Wireless charger - example circuit

Texas Instruments

BQ51003*

QI Controller

L1

C1

C2

DUAL RESONANT CIRCUIT

AC1

AC2

OUT

FILTER 

CLAMP 

COMMUNICATION 

BOOTSTRAP

TEMP SENSE 

FOD

5V_VOUT

Intel Curie module

ATP_INT3#CHG

GPIO[24] / SPI0_M_CS_B[0]

EN[1:2]

COIL PAD

COIL PAD

AD AD_EN

P‐CHANNEL FETUSB_VBUS

Page 20: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201620 rev. 1.2

Charging indication pin is provided to AON_GPIO of SoC, through which battery charging can be detected.

The conceptual design can include a green LED to indicate when 5 VDC is available either through wireless charger or USB.

3.4 No battery configurationFor designs that function on direct power sources and without a battery connected, implementing one of the following two circuit schemes is recommended for best results.

Leaving BATT_TEMP open puts the charger in NO BATTERY mode, where the charger does not attempt to charge the battery.

The VIN1, VIN2, BATT_ISET, CHG_STATUS and PVT_BATT can be left open if no battery is present in the system.

3.4.1 ESR1 and ESR2 regulators

Do NOT use these regulators. It is highly recommended to connect the pins below to reduce leakage current.

· ESR1_VBAT and ESR2_VBATT - connect to ground· ESR1_LX and ESR2_LX - leave open· VDD_PLAT_3P3 and VDD_PLAT_1P8 - connect using 10k resistor to ground

Figure 7 Example circuits for no battery application

C71uF25V C5

0.1uF.

C84.7uF.

VBATTVIN_5V

NO BATTERY APPLICATION - Option1

C61uF25V

C90.1uF.

C104.7uF.

VIN_5V

NO BATTERY APPLICATION - Option2

C111uF

LDO

VIN_5V

Curie

VIN[1]K24

VIN[2]N21

BATT_TEMPN22

CHG_STATUSM22

SW_FG_VBATTP21

PV_BATTM1

BATT_ISETL22

GN

D

GPIO

VSYSL4

Curie

VIN[1]K24

VIN[2]N21

BATT_TEMPN22

CHG_STATUSM22

SW_FG_VBATTP21

PV_BATTM1

BATT_ISETL22

GN

D

GPIO

VSYSL4

Intel® Curie™ Intel® Curie™

Page 21: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 21

3.4.2 ESR3 regulators

.The purpose of the ESR3 regulator is to power the core of Intel® Curie™ module. Maximum capacity of the ESR3 regulator is 100mA and typical output is 1.8V +/-10%. Use this to power Intel® Curie™ module only and DO NOT use it for any other purpose.

Figure 8 ESR1 and ESR2 regulator

Intel® Curie™

Page 22: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201622 rev. 1.2

Figure 9 ESR3 regulator

Intel® Curie™

Page 23: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 23

3.4.2.1 Bluetooth* and sensor powerThe Bluetooth and sensor block within Intel® Curie™ are powered by a common source, this can be 1.8V or 3.3V.

The voltage levels of VDD_BLE_SEN should match with AON_IO_VCC which is the IO power supply of module.

It is recommended to use the BUCK_OUT of the Intel® Curie™ to power the VDD_BLE_SEN. The Intel® Quark™ SE SoC can disable this converter when not needed; typical 70nA quiescent current consumption.Figure 10 Example Circuit for Bluetooth operating at 1.8 VDC

Curie

BUCK_VSELK22

AON_IO_VCCE21

BUCK_VOUTK1

VDD_BLE_SENH24

BLE_DEC2G23

GN

D

Curie

BUCK_VSELK22

AON_IO_VCCE21

BUCK_VOUTK1

VDD_BLE_SENH24

BLE_DEC2G23

GN

D

1.8V Operation

C130.1uF

VDD_IO_1.8V

REG_OUT

C120.1uF

R80

.

3.3V Operation

VDD_IO_3.3V

REG_OUT

C150.1uF

C140.1uF

R90

VSYS

Pull up toVSYS rail

Intel® Curie™Intel® Curie™

Page 24: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201624 rev. 1.2

3.4.3 USB power and protection circuitVDD_USB powers the USB logic in Intel® Curie™ module. This should be connected to USB VBUS using a RC network. The purpose of the RC network is to suppress any surges in the VBUS. 22 ohm and 0.1uF should be good value for the RC. It is highly recommended to have a protection device on the USB VBUS and the DP/DM lines of USB.

Figure 11 provides a circuit-example of USB filtering and protection.

Figure 11 USB power and protection example circuit

CurieVIN[1]

K24

VIN[2]N21

USB_DPJ24 USB_DMJ23

VDD_USBK4

GN

D

CR3

1

2

CR2

1

2

R17 22

USB_5V

C230.1uF

C242.2uF

R141.07K

R16 22

R15 22

C250.1uF

CONN_USB_1X5_F_6MTAB.

D-2

D+3

ID4

GND5

SH16

SH27

SH38

SH49

VBUS1

SH510

SH611

CR1LFTVS18-1F3

18V

A1

B1 B2

A2

RC to filter transients voltage in VBUS

FB1000600ohm, 0.1A

Intel® Curie™

Page 25: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 25

3.5 Power ON sequencingFigure 12 shows the power sequence diagram of Intel® Curie™ module; timings shown are typical results.

All rails except VSYS and AON_IO_VCC are outputs.

VIN is the system power supply.

AON_IO_VCC has to be supplied externally.

It is recommended to use VCC_AON_PWR to power the AON_IO_VCC. If it is fed by any other source, the design must ensure the timing specifications are met.

The internal TPS62743 buck regulator is fed by VSYS; VSYS enable is controlled by the a module GPIO.

During power on the TPS62743 is enabled and can be turned off if needed by the software.Figure 12 Intel® Curie™ power sequence

Curie Sequence

VSYS

VCCOUT_AON_1P8 (INT)

VCCOUT_ESR3_1P8

AVD_OPM_2P6

VCC_AON_PWR

AON_IO_VCC

VCC_HOST_1P8_PG

tPWR_OPM

tPWR_AON_PWR

tPWR_AON_1P8

tPWR_ESR3

tHOST_1P8_PG

A

B

C

D

E

F

G

tPWR_IO_VCC

BUCK_EN

BUCK_VOUT

tPWR_BUCK_VOUT

TPS62743 Internal Buck Timing

Table 4 Buck parameters

Parameter Min Typ Max Units

tPWR_OPM 20 μs

tPWR_AON_1P8 6 ms

tPWR_AON_PWR 200 μs

tPWR_ESR3 1.125 ms

tPWR_IO_VCC 0 ms

tHOST_1P8_PG 100 μs

tPWR_BUCK_VOUT 10 25 ms

Page 26: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201626 rev. 1.2

Note: If the voltage transition on the power supply pin VSYS causes it to power down and commence a power up sequence before the internal reference voltage OPM2P6_VOUT has dropped below 100mV, an incorrect power sequence may occur. The device may become unresponsive if that happens. Refer to the Intel® Curie™ module Application Note - Power Sequencing Considerations for more information.

Page 27: Intel® Curie™ Module

Power and Energy

Intel® Curie™November 2016 Design Guiderev. 1.2 27

3.5.1 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PGFollowing diagram shows the timing measured between VCCOUT_AON_1P8, VCC_AON_PWR, VCC_HOST_1P8 and VCC_HOST_1P8_PG.

Figure 13 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture

Page 28: Intel® Curie™ Module

Power and Energy

Intel® Curie™Design Guide November 201628 rev. 1.2

3.5.2 VSYS, OPM_2P6, AON_1P8 and LDO_1P8Following diagram shows the timing measured between VIN, AVD_OPM_2P6, VCCOUT_AON_1P8 and VCC_AON_PWR.AON_1P8, ESR1 and ESR2Figure 14 AON_1P8, ESR1 and ESR2 - Oscilloscope capture

Page 29: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 29

4 Subsystems4.1 Analog power and input routing

4.1.1 ADC groundInputs to the Intel® Curie™ module Analog to Digital Converter (ADC) are multiplexed with the IO pins of the Intel® Curie™ module and a separate analog GND plane is highly recommended for return path of analog signals. Follow best practices, which include these analog guidelines:

· Provide dedicated GND planes for analog ground, connected to digital ground at a single point.· Analog signals and analog GND should be kept away from:

− high speed digital signals− switching mode power supplies− crystals and oscillators− other design specific components which can generate noise across traces or through planes

4.1.1.1 ADC PowerADC_3P3_VCC is the ADC block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good performance. Keep the power supply traces away from high frequency signals, DC-DC converters and, RF.

This image shows a large analog ground around the Intel® Curie™ module ADC input pins and bridge to digital ground.

Figure 15 Example ADC ground

Page 30: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201630 rev. 1.2

4.2 Bluetooth® low energy device and antenna

4.2.1 Antenna placementThe functional reference circuits utilizes a Pulse W3008C ceramic chip antenna that can excite a host circuit board to radiate at 2.4-2.48 GHz frequencies in an omni-directional pattern. Reference to the manufacturer datasheet for more details.

This solution requires a ground clearance of 4.00 mm x 6.25 mm under the SMT antenna with all metalization removed from all circuit board layers under the antenna. EMI shields and rings can limit antenna performance, place battery away from antenna. Example of matching network is shown on Figure 16

Figure 16 Pad dimensions for chip antenna

Page 31: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 31

4.3 I2C interface design guidelinesThere are four I2C ports for Intel® Curie™. Two ports are for generic use and two are dedicated ports for sensor subsystem. These operate in both master and slave mode. Both 7-bit and 10-bit addressing modes are supported and support standard (100 kbps), fast mode(400 kbps) and fast mode plus (1 Mbps).

4.3.1 I2C connections on the functional reference circuits

The following diagram shows an example I2C interface for a Intel® Curie™ module-based design; maximum speeds are listed in Table 5

4.3.2 I2C interface signals

Figure 17 Example of I2C connection for a typical device

Table 5 I2C interface signals

Name Type Max Frequency / Data Rate Description

I2C[0:1]_SCLI2C[0:1]_SDA

I/O 1 MHz Main I2C[0:1] clock and data

I2C_SS[0:1]_CLKI2C_SS[0:1]_DATA

I/O 400 KHz Sensor Subsystem I2C clock and data

COMPASSBosch BMI150*

Intel® Curie™

PRESSURE & HUMIDITY SENSOR

 Bosch BMI280*

I2C0_SS_SCL

I2C0_SS_SDA

6AXIS_I2C1_SS_SCL

6AXIS_I2C_SS_SDA

HAPTICSTexas 

InstrumentsDRV2605*

LED DRIVERTexas Instruments

TI LP5562*

DISPLAY AND TOUCHSUPPORTBOARD

NEAR FIELD COMMUNICATIONS

STMicroelectronics

ST54D*

SENSOR HEADER

I2C1_M_SDA

I2C0_SS

I2C1_M_SCL

Page 32: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201632 rev. 1.2

4.4 LED driver exampleThe diagram below shows the I2C interface connections communicating with an external LED driver module.

The functional reference circuits includes a Texas Instruments LP5562 LED Driver connected through I2C1_M (address 0) to provide the features to Intel® Curie™ module-based devices:

· Four independently programmable LED outputs with 8-bit current setting (from 0mA to 25.5mA with 100uA steps)· Flexible PWM control for LED outputs· SRAM program memory for lighting pattern· Three program execution engines with flexible instruction set· Maximum current draw from Intel® Curie™ module to be less than 25mA

Figure 18 LED driver block diagram for a tricolor module

Figure 19 LED driver example circuit for a tricolor module

TM

Page 33: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 33

4.5 I2S interface design guidelinesThe following I2S interface signals are not implemented on the functional reference circuits; these ports are connected to J1200 connector and can be used externally if needed, and are to be left unconnected if not used.

4.5.1 Signals for the I2S interface

4.5.2 I2S interface routing guidelines

4.6 SensorsIntel® Curie™ has an integrated 6-axis sensor module interfaced with the Intel® Quark™ SE processor by exclusive use of SPI1_SS. This device makes available the 6-AXIS_AUX_I2C port for connection to an external environmental sensor.

Powering sensors with an Awake-ON rail will allow them to generate interrupt based wake events to the processor.

4.6.1 Integrated 6-axis sensor interfacesThe I2C master interface from the six axis sensor can be connected to an external digital compass.

Note: The 6-axis sensor is powered in common with the Bluetooth® low energy device.

4.6.2 Environmental inputs

4.6.2.1 Pressure and Humidity sensorThe concept shows the usage of Bosch* BME280 pressure/humidity/temperature sensor connected with Intel® Curie™ module over I2C0_SS, which support up to 400 kHz. Consult the manufacturer’s datasheet for the latest details on specific features, including:

· I2C digital interface · Operating pressure range of 300-1100hPa and relative humidity of 0 to 100%.· Up to 16 over-sampling rate

Table 6 I2S interface signals

Name Type Maximum Audio Sample Rate Description

I2S_RSCKI2S_TSCK

I/O 48 KHz Clock signal for I2S

I2S_RXDI2S_RWS

I 48 KHz RX Data for I2S

I2S_TXDI2S_TWS

O 48 KHz TX Data for I2S

Table 7 I2S routing guidelines

I2S Interface Max Drive Strength

I2S_RSCK 4mA (1.8V IO), 7.6mA (3.3V IO)

I2S_TSCK 8mA (1.8V IO), 7.6mA (3.3V IO)

I2S_RXD 4mA (1.8V IO), 7.6mA (3.3V IO)

I2S_RWS 4mA (1.8V IO), 7.6mA (3.3V IO)

I2S_TXD 8mA (1.8V IO), 7.6mA (3.3V IO)

I2S_TWS 8mA (1.8V IO), 7.6mA (3.3V IO)

Table 8 Interface signals

Name Type Maximum Frequency / Data Rate Description

6Axis_SCL6Axis_SDA

I/O 1 MHz Clock and Data

6Axis_int2 I/O 400Hz GPIO

Page 34: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201634 rev. 1.2

4.6.2.2 Magnetometer (Geo Compass)The concept shows the usage of Bosch* BME150 3-axis magnetometer connection through the Bosch BMI160 6-axis I2C for synchronized operation with the accelerometer and gyroscope. Consult the manufacturer’s datasheet for the latest details on specific features, including:

· I2C digital interface · On-chip interrupt controller· Magnet field resolution of ~ 0.3uT

.Figure 20 Extended environmental sensor block diagram

Figure 21 External environmental sensor example circuit

COMPASSBosch BMM150*

Intel®

CurieTM

PRESSURE & HUMIDITY Bosch BME280*

I2C0_SS_SCL VDD_IO

VDD_IO

COMPASS_INT

I2C0_SS

6AXIS_I2C

GPIO_SS[3] / AIN[11]

I2C0_SS_SDA

6‐AXIS_AUX_I2C_SCL

6‐AXIS_AUX_I2C_SDA

Page 35: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 35

4.7 Haptics

4.7.1 Device driverThe concept shows the connection to a Texas Instrument* DRV2605 haptic driver using I2C1_M.

Consult the manufacturer’s datasheet for the latest details on specific features, including:

· I2C digital interface · On-chip interrupt controller· Magnet field resolution of ~ 0.3uT

4.7.2 Reference Eccentric Rotating Mass (ERM) deviceThe functional reference circuits is configured with an ERM unit from Precision Microdrives (304-103)*.

Consult the manufacturer’s datasheet for the latest details on specific features, including:

· Rated operating voltage of 2.7V· Rated vibration speed of 14000rpm [+/-3000]· Maximum rated operating current of 75mA

Figure 22 Haptic driver block diagram

TM

Page 36: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201636 rev. 1.2

Figure 23 Haptic driver - example circuit

Page 37: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 37

4.8 SPI interfaceIntel® Curie™ module has four SPI interfaces, three are available externally and only two are used on the functional reference circuits.

Figure 24 shows a simplified block diagram of typical SPI connections for flash memory, display/touch and NFC solutionsFigure 24 SPI simplified topology example

SPI FLASH

SPI0_M_MOSI

FLASH_WP

GPIO[3] / AIN[3] / SPI_S_MOSI

VDD_PLAT_1V8

NFC

NFC_RST

SPI1_M_SCK

SPI1_M_MOSI

SPI1_M_MISO

NFC_GPIOGPIO[20] / I2S_TXD

GPIO[15] / I2S_RXD

FLASH_RST

GPIO[14] / SPI1_M_CS_B[3]

SPI1_M_CS2

NFC_INT

GPIO[2] / AIN[2] / SPI_S_SCK

27.12MHz

ANT

VDD_PLAT_1V8

V_SYSTEM

AFE

VBAT

VPS_IO

Display and Touch system

SPI0_M_CS1

SPI0_M_SCK

SPI0_M_MISO

DISPLAY ON/OFF

DISPLAY GPIO

TOUCH INT

TOUCH RST

GPIO[17] / I2S_RWS

GPIO[19] / I2S_TWS

ATP INT2

GPIO_SS[12] / PWM[2]

NFC use SPI1_M as the secure microcontroller 

communication and Curie mulitplexed GPIO for interrupt signaling

SPI0_M SPI1_M

MACRONIXMX25U12835F*

STMicroelectronicsST54D*

SPI0_M_CS2

Page 38: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201638 rev. 1.2

4.8.1 SPI interface signals on the Intel® Curie™ moduleExamples of SPI signals used in this concept design are outlined below.

4.9 Flash memoryThe functional reference circuits use a Macronix MX25U12835F* serial flash memory for additional storage.

A maximum of 128Mb can be connected with the Intel® Curie™ module SPI0_M interfaces.

Table 9 Intel® Curie™ SPI interface signals

Name Input / Output Maximum Frequency / Data Rate Description

SPI0_M_SCK Output 16 MHz SPI Serial Clock

SPI0_M_CS[2:0]_N Output 8 MHz SPI Chip Select.

SPI0_M_MISO Input 8 Mbps SPI Slave Output Master Input

SPI0_M_MOSI Output 8 Mbps SPI Master Output Slave Input

SPI1_M_SCK Output 16 MHz SPI Serial Clock

SPI1_M_CS[3:0]_N Output 8 MHz SPI Chip Select.

SPI1_M_MISO Input 8 Mbps SPI Slave Output Master Input

SPI1_M_MOSI Output 8 Mbps SPI Master Output Slave Input

Figure 25 SPI simplified topology example

TM

Page 39: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 39

4.10 Display panel and touch controllerAn example showing Sharp S010B7DH02* display panel and a Cypres (I2C) CY8CTST241* capacitive touch screen controller are shown for reference.

Consult the Sharp LS010B7DH02 datasheet for additional information on these features:

· Transflective panel of white and black· Digital SPI interface· 1.02 inch screen with 96 x 150 resolution· 1 bit internal memory for data storage within the panel

Consult the Cypress* CY8CTST241 datasheet for additional information on these features:

· Up to 32 sense pin· Large object detection· Resistant to LCD noise· Wide supply voltage range from 1.71V to 5.5V· Integrated voltage regulator

Figure 26 Flash memory circuit for SPI interface

Page 40: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201640 rev. 1.2

Figure 27 External display topology example

SPI1_M_CS1

I2C0_SCL

I2C0_SDA

SPI1_M_SCK

SPI1_M_MOSI

SPI1_M_MISO

DISPLAY ON/OFF

DISPLAY GPIO

TOUCH INT

TOUCH RST

VDDIO

V_SYSTEM

VDD_PLAT_3V3

5V_ENI2C EXPANDER

Page 41: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 41

4.11 Near Field Communication (NFC)This example is designed around a ST Microelectronics ST54D* NFC controller with in-built secure element.

The NFC controller is connected to Intel® Curie™ module on I2C1-M (NFC Router communication) and SPI1_M (for secure micro-controller communication) interface. The NFC support card emulation mode is supported and a dedicated interrupt pin is connected to Intel® Curie™ module GPIO.

4.11.1 NFC controller features· Integrated AFE· Optimized power consumption modes· I2C slave interface up to 1Mbps· Integrated 36Kb EEPROM· Support up to three external secure element

4.11.2 Secur microcontroller features· ARM SecurCore SC300* 32-bit RISC core· 1280 Kbytes of flash memory available· Single wire protocol (SWP) interface for communications with NFC router in SIM/NFC application· SPI slave interface for non-SIM application

.

Figure 28 NFC connections

Page 42: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201642 rev. 1.2

Figure 29 NFC - example circuit

Page 43: Intel® Curie™ Module

Subsystems

Intel® Curie™November 2016 Design Guiderev. 1.2 43

4.12 UART0 for Bluetooth® low energyIntel® Curie™ contains two instances of a UART controllers within the module, UART0 is dedicated to the integrated Nordic nRF51822* Bluetooth Low Energy controller while UART1 is available for use with mobile data systems and debug tools.

4.13 UART1 interface signalsTable 10 shows the UART1 interface signals available.

Note: UART signals not implemented on a design can be left unconnected.

4.14 USB interface design considerationsConsult these general routing and placement guidelines when laying out a new design to minimize signal quality and EMI:

· Maximum trace length is 4 inches.· Do not route traces under crystals, oscillators, clock synthesizers, magnetic devices, or ICs with strong clocks.· Follow the 20 × h rule by keeping traces at least [20 × (height above the plane)] mils away from the edge of the plane

(VCC or GND, depending on the plane the trace is over).

Figure 30 UART interface topology

Table 10 UART interface signals

Name Type Max Data Rate Description

UART1_RX I 2 MHz High-speed receive data input

UART1_TX O 2 MHz High-speed transmit data

UART1_RTS I 2 MHz High-speed request to send

UART1_CTS O 2 MHz High-speed clear to send

Bluetooth* Low Energy Controller

Nordic nRF51822*

TM

TM

Page 44: Intel® Curie™ Module

Subsystems

Intel® Curie™Design Guide November 201644 rev. 1.2

For an example stackup, the height above the plane is 4.5 mils (0.114 mm). This calculates to a 90-mil (2.286 mm) spacing requirement from the edge of the plane. This helps prevent the coupling of the signal onto adjacent wires and also helps prevent free radiation of the signal from the edge of the PCB.

· Avoid stubs on high-speed USB signals because stubs cause signal reflections and affect signal quality. If a stub is unavoidable in the design, the total of all the stubs on a particular line should not be greater than 200 mils (5.08 mm).

· We recommend placing a low ESR 1 μF ceramic cap close to the VDD_USB pin.· If a USB port is not implemented on the design, USB_DP/N[x] signals can be left unconnected.· Protect USB lines are with ESD diodes for safe performance.· A 1.07K bleeding resistor added in USB power line can provide an immediate discharge path for USB power.

4.14.1 USB 1.1 length matching

Table 11 USB 1.1 differential pair length matching table

Signal Name Type Max Frequency / Data Rate Description

USB_DP Input / Output 12 Mbps Universal serial bus port differential (USB Data+)

USB_DM Input / Output 12 Mbps Universal serial bus port differential (USB Data-)

Figure 31 USB 1.1 port topology

Table 12 USB 1.1 differential pair length matching table

Signal Total initra pair screw

USB_DP 150 mils

USB_DM 150 mils

CMC ESD

Page 45: Intel® Curie™ Module

Circuit Board Recommendations

Intel® Curie™November 2016 Design Guiderev. 1.2 45

5 Circuit Board Recommendations5.1 Fundamental design rulesAll of the routing guidelines (W/S, isolation, length requirement) are modeled around a 4-layer, Type II printed circuit board.

If different PCB stackup is implemented, the electrical guidelines (impedance, insertion loss) provided in this design guide must be followed to ensure that the layout meets the design recommendations.

These rules pertain to all the subsystems discussed in this chapter.

· The length values are tested and measured as package-pin-to-package-pin. · The break-out and break-in minimum spacing ratio is 1:1 for all interfaces. · The trace width/intra-spacing for differential pairs and trace width for single-ended signals depend on the impedance.· For analog signals, it is important to keep the analog ground return path clean from digital noise to maintain high signal-

to-noise ratio.· All inputs, tristate buses and signals that are not connected must be pulled up or down by the firmware or hardware to

prevent oscillation. This is especially important for enable or control signals like JTAG TMS signal.· Unused and reserved signals are terminated as no connection, unless specified otherwise.· Power sources and input regulation components must remain stable across the entire operating range of voltage and

device systems.

5.2 PCB thickness and stackupStackup refers to the thickness as comprised of the number of layers, the PCB technology (and via details), the thickness of each layer and the Cu weights on each layer. Fab drawings have a stackup or cross section figure.

The concept referenced in this document uses high density interconnect, Type 3, 4-layer board technology.

Trace width for Radio Frequency and high speed signal driver impedance must be determined per the stackup selected.

5.2.1 Two-layer boardsIntel® Curie™ module can be placed on a two-layer board for simple designs that have limited buses susceptible to interference noise, or when the footprint is not a primary constraint and signals can be physically separated to improve noise tolerance.

5.2.2 Four-layer stackup

Table 13 Two-layer stackup design

Layer Type Material Thickness (mm) Dielectric Constant Trace Width (mm)

Surface Air 1

Solder Mask FR-4 0.02 4.2

Top Conductor Copper 0.036 4.2 0.102

Dielectric FR-4 1.48 4.2

Bottom Conductor Copper 0.036 4.2 0.102

Solder Mask FR-4 0.02 4.2

Surface Air 1

Table 14 Four-layer stackup design

Layer Type Material Thickness (mm) Dielectric Constant Trace Width (mm)

Surface Air 1

Solder Mask FR-4 0.05 4.5

Top Conductor Copper 0.015 1 0.13

Dielectric FR-4 0.068 4.5

Page 46: Intel® Curie™ Module

Circuit Board Recommendations

Intel® Curie™Design Guide November 201646 rev. 1.2

5.2.3 Six-layer stackupThis next example is a 48mil thick, 6-layer, HDI type II board with blind vias from 1-2 and 1-3, with additional thruhole vias.

This board contains 1.4 oz copper (Cu) on the outer layers and 0.25 – 0.50 oz copper on the inners layers, as detailed below.

L2_GND1 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.55 4.5

L3_GND2 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.068 4.5

Bottom Conductor Copper 0.015 1 0.13

Solder Mask FR-4 0.053 4.5

Surface Air 1

Total Thickness: 1.6 mm

Table 14 Four-layer stackup design

Layer Type Material Thickness (mm) Dielectric Constant Trace Width (mm)

Surface Air 1

Table 15 Six-layer stackup design

Layer Type Material Thickness (mm) Dielectric Constant Trace Width (mm)

Surface Air 1

Solder Mask FR-4 0.05 4.5

Top Conductor Copper 0.015 1 0.13

Dielectric FR-4 0.068 4.5

L2_GND1 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.55 4.5

L3_PWR1 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.2 4.5

L4_CLK1 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.55 4.5

L5_GND2 Conductor Copper 0.015 4.5 0.1

Dielectric FR-4 0.068 4.5

Bottom Conductor Copper 0.015 1 0.13

Solder Mask FR-4 0.053 4.5

Surface Air 1

Total Thickness: 1.6 mm

Page 47: Intel® Curie™ Module

Circuit Board Recommendations

Intel® Curie™November 2016 Design Guiderev. 1.2 47

5.2.3.1 Six-layer stack up cross section

§

Figure 32 Thickness of a six layer stackup

Page 48: Intel® Curie™ Module

Debug and Production Options

Intel® Curie™Design Guide November 201648 rev. 1.2

6 Debug and Production Options6.1 JTAG connector or test padsTraditional JTAG connections can be routed to test points or header pins as best suited for the need and design intent.

· JTAG_TDO· JTAG_TDI· JTAG_TCK· JTAG_TMS· JTAG_RST_B

Figure 33 Block diagram of the debug ports on the Intel® Curie™ module

Figure 34 Debug ports on the Intel® Curie™ module

R100310K

.5%

R100510K

.5%

R100910K

.5%

R100810K

NO_STUFF5%

R101010K

NO_STUFF5%

JTAG_TCKJTAG_TMS

JTAG_TDIJTAG_TDO

J1002

10 Pin Header.

13 4

2

579

86

10

R100410K

.5%

R101610K

NO_STUFF

5%

VDD_IO

C10050.1uF10%.0201

JTAG_TRST_B

Page 49: Intel® Curie™ Module

Debug and Production Options

Intel® Curie™November 2016 Design Guiderev. 1.2 49

6.2 Power rail test padsTest points for primary voltage rails, LDO outputs; and a clean ground are very helpful to debug and for device measurements.

6.3 UART test padsIntel® Curie™ module, when in manufacturing mode, sends out messages on the UART right from power up. Thus access to the UART will provide additional access to system functions and information logs.

· AIO_05_UART_RX· AIO_05_UART_TX

6.4 Bluetooth® low energy test padsA Jlink emulator can be sued to program, or reprogram, the Bluetooth® low energy firmware. The board digital ground needs to be connected between the board and Jlink emulator. Also vref from Jlink emulator needs to connect to the same voltage level as the VDD_BLE_SEN, This allows the emulator to communicate to the Bluetooth® low energy with correct logic level.

· BLE_SWDIO· BLE_SW_CLK

Note: Jlink software utility allow the users to program a BLE image in .bin or .hex format. Refer to Jlink users manual and Nordic* website for more information.