interacting quantum particles in localizing...

66
Interacting quantum particles in localizing potentials S. Flach New Zealand Institute for Advanced Study Massey University Centre for Theoretical Chemistry and Physics Auckland NZ introduction linear and nonlinear waves in localizing potentials IQP in disordered chains IQP in Wannier Stark ladders IQP in quasiperiodic chains

Upload: others

Post on 10-Mar-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Interacting quantum particles

in localizing potentials S. Flach New Zealand Institute for Advanced Study Massey University

Centre for Theoretical Chemistry and Physics Auckland NZ

• introduction

• linear and nonlinear waves in localizing potentials

• IQP in disordered chains

• IQP in Wannier Stark ladders

• IQP in quasiperiodic chains

Page 2: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

AUCKLAND NEW ZEALAND

Page 3: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 4: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

P. Anghel-Vasilescu T. Lapteva K. Rayanov C. Danieli Xiaoquan Yu J. Bodyfelt

Nonlinear Waves Group (Dresden-Auckland):

Collaborations:

B. Altshuler, I. Aleiner (NY) S. Aubry (Saclay) E. Christodoulidi A. Ponno (Padova)

F. Dalfovo, M. Larcher (Trento) M. Ivanchenko, O. Kanakov (N. Novgorod)

R. Khomeriki (Tbilissi) S. Komineas, G. Tsironis, G. Kopidakis (Heraklion)

D. Krimer (Tuebingen) N. Li (Shanghai) Yu. Rubo (Temixco)

Ch. Skokos (Thessaloniki) JP Nguenang (Douala) K. Kladko (Palo Alto)

P. Haenggi S. Denisov (Augsburg) A. Miroshnichenko Yu. Kivshar (Canberra)

G. Casati G. Benenti (Como) R. Vicencio L MoralesMolina (Santiago)

AV Gorbach (Bath) J. Wiersig (Magdeburg) KH Ahn (Daejeon)

MI Tribelsky (Moscow) JB Gong B Li (Singapore), G. Gligoric (Belgrade)

Page 5: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Introduction

Page 6: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Waves

amplitude and phase in space and time

Linear waves: superposition, interference, phase coherence

e.g.

optical fibres

microwave cavities

atomic Bose-Einstein condensates

quantum billiards

quantum dots

superconducting networks

molecules, solids

Page 7: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Nonlinear waves?

high intensities - qualitatively new properties:

nonlinear response

waves interact with each other

resonances

dynamical chaos

instability

rogue waves ... tsunami ...

Page 8: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Lattice waves

discretize space – introduce lattice

one oscillator per lattice point

oscillator state is defined by amplitude and phase

add interaction between oscillators

anharmonic potential = nonlinear wave equation

intensity increase changes frequency

in quantum world energy levels NOT equidistant

Typical excitations in condensed matter, optics, etc

Page 9: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Linear waves

in localizing potentials

Page 10: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Waves in localizing media

• uncorrelated random potential: Anderson localization

• quasiperiodic potential: Aubry-Andre (Harper) localization

• dc bias ε(l)=E·l : Wannier-Stark localization (Bloch oscillations)

• quantum kicked rotor: localization in momentum space,

loosely similar to quasiperiodic potential case

In all cases all (or almost all) eigenstates are spatially localized,

with finite upper bounds on the localization length / volume.

Page 11: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Wannier-Stark ladder

Bloch oscillations for E=0.05 Eigenfunctions

Localization volume

Krimer,Khomeriki,SF (2009)

Wannier (1960)

Superexponential localization

Page 12: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Aubry-Andre model Aubry,Andre (1980)

Self duality:

adapted from Aulbach et al (2004)

Metal insulator transition:

Exponential localization.

Localization length = 1 / ln[ ζ/2 ]

Page 13: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Eigenvalues:

Width of EV spectrum:

Eigenvectors:

Localization volume of NM: L

l

Localization length:

Anderson localization

in

Krimer,SF (2010)

Anderson (1958)

Page 14: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Eigenvalues:

Width of EV spectrum:

Eigenvectors:

Localization volume of NM: L

l

Localization length:

Anderson localization

in

Anderson (1958)

Krimer,SF (2010)

Page 15: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Anderson

Model

• Lattice - tight binding model

• Onsite energies ei - random

• Hopping matrix elements tij j i

Iij

tij = { -W/2 < ei <W/2 uniformly distributed

t < tc t > tc

Insulator All eigenstates are localized

Metal There appear states extended

all over the whole system

Anderson Transition

t i and j are nearest neighbors

0 otherwise

Page 16: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

DoS DoS

all states are

localized

t < tc

t > tc

Anderson Transition

- mobility edges (one particle)

extended

Page 17: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Localization of single-particle wave-functions.

Continuous limit:

extended

localized

d=1: All states are localized

d=2: All states are localized

d >2: Anderson transition

Page 18: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Eigenmodes of a periodic lattice, N=99

Page 19: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 20: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Eigenmodes of a disordered lattice, N=99

Page 21: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Pro

pagation d

ista

nce (

AU

)

Position (site number)

100

200

300

400

500

600

700

800

900

80

60

40

20 0

-20

-40

-60

-80

Pro

pagation d

ista

nce (

AU

)

Position (site number)

100

200

300

400

500

600

700

800

900

80

60

40

20 0

-20

-40

-60

-80

Ordered lattice Disordered lattice Disordered lattice - averaged

• Exciting a single site as an initial condition

Wave packet evolution

Page 22: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Experimental Evidence for Wave Localization

Ultrasound: Weaver 1990

Microwaves: Dalichaoush et al 1991, Chabanov et al 2000

Light: Wiersma et al 1997, Scheffold et al 1999, Pertsch et al (1999),

Morandotti et al (1999), Stoerzer et al 2006, Schwartz et al 2007,

Lahini et al 2008

BEC: Moore et al (1994) Anderson et al (1988), Morsch et al (2001),

Billy et al 2008, Roati et al 2008

Page 23: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 24: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 25: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

• Evanescent coupling between waveguides • Light coherently tunnels between neighboring waveguides

• Dynamics is described by the Tight-Binding model

z

111,

nnnnnn

n UUCUz

Ui

βn – waveguide’s refraction index /width

Cn,n±1 – separation between waveguides

An optical one-dimensional waveguide lattice (Silberberg et al ’08)

Page 26: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

• Injecting a narrow beam (~3 sites) at different locations across the lattice

(a) Periodic array – expansion (b) Disordered array - expansion (c) Disordered array - localization

(a)

(b)

(c)

Page 27: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Nonlinear waves

in localizing potentials

Page 28: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Defining the problem

• a disordered medium

• linear equations of motion: all eigenstates are Anderson localized

• add short range nonlinearity (interactions)

• follow the spreading of an initially localized wave packet

Page 29: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Defining the problem

• a disordered medium

• linear equations of motion: all eigenstates are Anderson localized

• add short range nonlinearity (interactions)

• follow the spreading of an initially localized wave packet

Page 30: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Defining the problem

• a disordered medium

• linear equations of motion: all eigenstates are Anderson localized

• add short range nonlinearity (interactions)

• follow the spreading of an initially localized wave packet

Will it delocalize? Yes because of nonintegrability and ergodicity

No because of energy conservation –

spreading leads to small energy density,

nonlinearity can be neglected,

dynamics becomes integrable, and

Anderson localization is restored

Page 31: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Equations in normal mode space:

NM ordering in real space:

Characterization of wavepackets in normal mode space:

Second moment:

Participation number:

Compactness index:

K adjacent sites equally excited:

K adjacent sites, every second empty

or equipartition:

location of tails

number of strongly excited modes

Page 32: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Frequency scales

• Eigenvalue (frequency) spectrum width:

• Localization volume of eigenstate: V ≈ 360/W

• Average frequency spacing inside

localization volume: d = Δ/V

W=4 :

8

~18 (sites)

0.43

• Nonlinearity induced frequency shift:

Three expected evolution regimes:

Weak chaos : δ < d

Strong chaos : d < δ < 2

(partial) self trapping : 2 < δ

2

SF Chem Phys 2010, TV Laptyeva et al EPL 2010

Page 33: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

W=4

Wave packet with 20 sites

Norm density = 1

Random initial phases

Averaging over 1000 realizations

J Bodyfelt et al PRE 2011

Page 34: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

We averaged the measured exponent

over 20 realizations:

α = 0.33 ± 0.02 (DNLS)

α = 0.33 ± 0.05 (KG)

Asymptotic regime of weak chaos SF et al PRL 2009, Ch. Skokos et al PRE 2009

Strong chaos and crossover to weak chaos TV Laptyeva et al EPL 2010

Averaging over 1000 realizations, measuring

DNLS, W=4 KG, W=4 KG

Page 35: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Generalizations: higher dimensions, nonlinearity exponent σ:

SF ChemPhys 2010

Chaos in wave packet generates nonlinear diffusion:

Page 36: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

D=1, 0 < σ < 4 :

Ch Skokos et al PRE 2010

D=2, σ = 2 :

TV Laptyeva et al, EPL 2012

Generalizations: higher dimensions, nonlinearity exponent σ:

Related results by M Mulansky

Page 37: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Restoring Anderson localization? A matter of probability and KAM!

MV Ivanchenko et al PRL 2011 E : total energy

L : size of initial wave packet

Generalizing:

d: dimension

V: volume of wave packet

γ : = 2σ

Related results by Aubry,Johansson

Page 38: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

The emerging picture

0

I II III

SF,Krimer,Skokos (2009)

Shepelyansky and Pikovsky (2008)

Molina (1998)

SF (2010)

Bodyfelt,Lapteva,Krimer,

Skokos,SF (2010)

Kopidakis, Komineas,

SF, Aubry (2008)

Weak Chaos Strong Chaos Selftrapping, part of

packet IS spreading

In all cases subdiffusive spreading

d=Δ/V Δ δ

Anderson Localization

//////

KAM

Page 39: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Quasiperiodic potentials (Aubry-Andre): M Larcher et al, arXiv1206.0833

Pecularities:

• spectrum with gaps

• subgaps etc

• fractal properties

• gap selftrapping

• hierarchy of level spacings

• strong and weak chaos

• α = 1/3

Page 40: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Nonlinear Wannier-Stark ladder

E=2, β=8, ...,9

α=0.38

D Krimer et al PRE 2009

Pecularities:

• spectrum is equidistant

• exact resonances

• absence of universality

• exponents depend on E

Page 41: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

1st experimental confirmation from Firenze

Page 42: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Many body localization? (what I will not further talk about)

Page 43: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Localization of one-particle wave functions in disordered potentials

delocalized

lokalisiert

d=1: All states are localized

d=2: All states are localized

d >2: Anderson transition

Disorder strength

Interaction strength

Fermi liquid Wigner crystall

Interacting Fermions:

! – more or less understood

? – not really

?

!

Page 44: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Basko, Aleiner, Altshuler (2006):

• all single particle states are localized

• no phonons

• short range interaction only

Average level spacing of single particle

states within one localization volume:

• critical temperature for MIT

• in the metallic phase fermions

need a minimum number of excited

partner particles

• in the limit of large localization length

and weak disorder:

Tc → 0 , classical MF description?

Page 45: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Interacting quantum particles

in disordered chains

Page 46: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

random uncorrelated from

Model describes interacting bosons in one dimension

Page 47: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 48: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

One particle

Real space basis:

Eigenstates = normal modes:

Eigenvalue problem:

Single quantum particle identical with classical linear wave equation.

Here: Anderson localization

Page 49: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Two particles

Real space basis:

Eigenstates = normal modes:

Eigenvectors:

Indistinguishable particles:

PDF of particle number:

Page 50: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

V=1

Page 51: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

N particles in one dimension are equivalent to one fictuous particle in N dimensions

Page 52: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Unfolding irreducible space into full two-dimensional plane:

Page 53: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Noninteracting eigenstate basis:

Eigenstates = normal modes (NM):

Page 54: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

• The overlap integrals are same as in classical nonlinear wave theory

• connectivity is L*L (instead of L in classical theory)

• phase space is 4*N*N (instead of 2*N in classical theory)

• differential equations are linear (instead of nonlinear in classical theory)

• width of spectrum:

• average spacing of connected eigenstates:

• energy mismatch = effective disorder in NM space:

• effective hopping:

• weak disorder:

• U > W + V : bound states separate into narrow band, loc length small,

separation into strongly localized bound states and spinless fermions

• small U: perturbation regime, strong disorder in NM space:

• relevant regime:

Page 55: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

• Analytics boils down to getting control over the overlap integrals I

• Shepelyansky / Imry: neglecting phase correlations in eigenvectors

• Schreiber / Roemer: depends how to average,

• Krimer / Flach: subset of Is conserving momentum: < I > ~ 1/L

rest of Is :

Inconclusive, needs further and more intelligent studies

Page 56: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Direct computation of the new localization length

Choose eigenstates with centers close to the diagonal, and

maximum NM contribution from state with both single particle energies

close to zero

W=2, U=0; 0.2

W=2.5 , U=0; 2

Exponents

1.3 ... 1.4

Page 57: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Conclusions?

• previous estimates probably wrong

• numerics of direct localziation length calculation is not

getting into the relevant scaling regime so far

• question remains completely open

Page 58: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Two (and more) interacting particles in a Wannier-Stark ladder

Interaction induced fractional Bloch and tunneling oscillations

U=3, E=0.05, N=1,2,3,4

Page 59: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Two particles form a bound state and Bloch oscillate

with double frequency

Page 60: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Effective model for bound state dynamics with n particles:

Page 61: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Resonant tunneling

U=19.8

Two adjacent

Two on top

Page 62: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

basis:

pdf of particle density:

Participation number of density pdf:

Two interacting particles in a quasiperiodic potential

M.V. Ivanchenko

R. Khomeriki

S. Flach

EPL 98 66002 (2012)

Page 63: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Results: eigenfunctions

M.V. Ivanchenko

R. Khomeriki

S. Flach

EPL 98 66002 (2012)

Page 64: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S
Page 65: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Results: PDF of spreading of wave packet with λ=2.5 and N=2500

and two particles initially at adjacent sites

U=2 U=4.5

Page 66: Interacting quantum particles in localizing potentialstheor.jinr.ru/~diastp/winter13/lectures/flach.pdf · 2013. 2. 3. · Interacting quantum particles in localizing potentials S

Results: the complete picture from spreading wave packets:

square rooted 2nd moment for 60 different realizations