interaction of radiation

54
1 Interaction of Radiation with matter Dr. Ibrahim Idris Suliman Sudan Atomic Energy Commission

Upload: wayel-aman

Post on 06-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 1/54

1

Interaction of Radiationwith matter

Dr. Ibrahim Idris Suliman 

Sudan Atomic Energy Commission

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 2/54

2

Interaction of Radiation 

Charged particles (e-, p, ) 

directly ionizing radiationUncharged particles (, n) 

indirectly ionizing radiation

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 3/54

3

1. Light charged particles (electrons)

Excitation and ionization of atoms in absorber material(atomic effects)interaction with electrons in material (collision, scatter)deceleration by Coulomb interaction (Bremsstrahlung)

2. Heavy charged particles (Z>1)

• excitation and ionization of atoms in absorber

material (atomic effects)• Coulomb interaction with nuclei in material (collision,scatter) (long range forces)

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 4/54

4

Interaction electrons 

with matter 

Energy-Loss Mechanisms

(a) Collisions with electrons

Ionization of atoms

Excitation of atoms

(b) Radiative losses

Bremsstrahlung  (c) Could scatter elastically at low energies

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 5/54

5

Interaction electrons 

with matter  Due to a small mass of an electron or positron:

They can transfer large fraction of their energy in a

single collision Can rapidly change their direction after a collision

Rather than Range (difficult to define), keep in mindtheir pathway

After loosing their kinetic energy, positrons willannihilate with electrons and produce 2 gamma rays.

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 6/54

6

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 7/54

Charged particles Stopping power, S

Linear stopping S for a charged particle in agiven absorber is defined as the differentialenergy lost for that particle within the material

divided by the corresponding differential pathlength

(3.1)dE 

Sdl

7

S = linear stopping power

dE = energy lossincluding: electronic, radiative and nucleardl = path lengthunit: J m-1 or MeV cm-1

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 8/54

1  / (3.2)

dE S

dl

  

  

8

Charged particles 

Total mass stopping power

S = linear stopping power = densitydE = energy loss

including: electronic, radiative and nucleardl = path lengthunit: J m2 kg-1 or MeV cm2 g-1

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 9/54

9

STOPPING POWER

The stopping power is defined as the kineticenergy loss by an electron or positron per unitpath length due to collisions or emitted radiation:

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 10/54

10

 electronic stopping ++ 

radiative stopping +

(only for e, for E > 1 MeV)  nuclear stopping  - 

Relative importance 

1 1

  / / / (3.3)el rad   el rad  

dE dE  S S S

dl dl

   

   

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 11/54

11

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 12/54

Collision vs bremsstrahlung

Energy lost is two process, collision and radiative.For heavy charged particles the radiative part hasno contribution and it is only the collision part which

plays and important role. For electrons the relative importance of the both

forms of energy loss can be approximated by theflowing conversion:

( / ) (3.5)( / ) 700

rad 

cl

S EZ S

    

12

Where E is the energy of the electron in MeV And Zthe atomic number of the material.

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 13/54

Bremsstrahlung

When mono-energetic electrons fall on absorbermaterial, a fraction of electron energy is converted toradiation (x-rays). This fraction is denoted with letter

g and it depend on the energy of the falling electronand the atomic number Z of absorber material.

For light materials and E>10 MeV. The fraction g canbe calculated from the empirical relation:

4

06.10 (3.6)g ZE 

13

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 14/54

Bremsstrahlung

42.10 (3.7)ag ZE 

14

Where Z is the atomic number of the absorbermaterial and E0 is the energy of the falling electron inMeV.

For x-rays emitted from radionuclide emittingradiation with maximum β energy Ea, it is valid:

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 15/54

15

High LET radiation: -particlesLow LET radiation: electrons, photons

 LET  LSel

Linear Energy Transfer LET  

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 16/54

Range of electrons There are many formulas for calculation of the

reduced range as a function of energy E ( for β-spectrum, the maximum energy Em is used).

1.265 0.0954ln0.412

E  R E   

0.542 0.133 R E   

16

0.5 R E   

(0.02 ≤ E ≤ 2.0) ----------(2.9)

(0.6 ≤ E ≤ 20) ----------(2.10)

(E > 0.6 MeV) -------------(2.11)

Where the range Rρ is expressed in g cm-2 andthe energy in MeV

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 17/54

17

Interaction of Heavy Charged Particles with Matter 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 18/54

18

Interaction of heavy charged 

particles with matter  «Heavy» charged particles  – all charged particlesother than the electron or positron

Include: muons (M = 207 me), pions (M = 270 me),kaons (M= 967 me), protons (M = 1836 me), alphaparticles, deuterons, tritons, fission fragments,other heavy ions

Energy-Loss Mechanisms

(a) collisions with electrons (b) radiative

Ionization of atoms Excitation of atoms

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 19/54

19

Sketch of alpha particles paths in a

medium Can transfer only a small fraction of its energy in a

single collision with an electron. Thus, heavycharged particles

travel almost in straight lines (straight line trajectory) lose energy almost continuously in small amounts

have a very small range

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 20/54

20

Ionization

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 21/54

21

Maximum Energy Transfer in a 

Single Collision Before After

Conservation of total kinetic energy and momentum:

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 22/54

22

Maximum Energy Transfer in a 

Single Collision  From the first two equations we obtain

V1 = (M-m)/(M+m) V

and the maximum energy transfer is given byQmax = ½ MV² - ½ MV1

² = E[4mM/(M+m)²]

E = mV2 /2, the initial kinetic energy of incident particle

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 23/54

23

Maximum Energy Transfer in a 

Single Collision  For incoming electron:

Qmax = E, if M = me 

For muon

Qmax = [4me(207 me)/(208 me)2]E

Qmax = 0.0192 E 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 24/54

24

Maximum Energy Transfer in a 

Single Collision 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 25/54

25

STOPPING POWER 

Stopping power is defined as the average energy loss of acharged particle per unit path length:

where µ is the probability of collision per unit pathlength, and Qave is the average energy loss per collision.

The mass stopping power is given as:

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 26/54

26

Bethe Formula 

for stopping power 

Where k o = 8.99 x 109 [N m² C-1]

Z – atomic number of heavy particle e - electron charge

n – number of electron per unit volume m – electron rest mass

c – speed of light in vacuum β – V/c – speed of the particle relative to c

I – mean excitation energy of the medium

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 27/54

27

MEAN EXCITATION ENERGY OF 

THE MEDIUM 

For a compound or mixture, the stopping power can be calculated bysimpling adding the separate contributions from the individual

constituent elements: 

where i corresponds to an individual element.

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 28/54

28

Stopping power of water for 

various heavy charged particles 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 29/54

29

Bragg Curve 

A curve showing the average number of ions per unitdistance along ( or

a specific ionization) a beam of initially monoenergeticionizing

particles, usually alpha particles, passing through a gas.Also known as a

Bragg ionization curve.

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 30/54

30

Energy Deposition of Alpha particles

Specific ionization - SISI = (dE/dx)/EI

Number of ion pairs per unit path length

EI,air = 36 eV/ip

EI,tissue= 22 eV/ip 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 31/54

31

RANGE 

The range of a charged particle is the distance it travelsbefore coming to rest.

For a particles in air, the following approximate empiricalrelations exist:

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 32/54

32

RANGE 

The ranges of two heavy particles with the same initial speedcould be determined from the following ratio:

The range of other charged particles in terms of proton range:

For example, the range of alpha particle from 214Po decay(E=7.69 MeV) is

in air about 6cm

in tissue about 0.007 cm

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 33/54

Range of alpha particles and protons

The range of α-particles in air in standard condition(STP), Ra(α) expressed in cm and for initial energy E(MeV), is given by the following empirical formula.

3( ) (0.005 0.285)a  R E E   

3( ) 0.3a

 R E  

33

(cm) -------------(2.12)

The eq. (2.12) can be written in more simpleform

(cm) --------------------(2.13)

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 34/54

Range of alpha particles and protons

34

The range of α-particles in materials other than aircan be calculated by making use of Bragg- KleemanLaw

4( ) 3.2 10 a

 A

 AR R  

  

(cm) -------------(2.14)

Where ρ in g cm-3 and Ra in cm

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 35/54

Range of alpha particles and protons

For a mixture of atoms with relative atomicmass’s A1, A2, ….. And weighted fractions f1, f2,….√A can be written as: 

The range of protons in air ,Ra(p) can be given by

the following equation:

1 1 2 2 ...mixture  A f A f A

1.8

( ) 1009.3

a

 E  R p

35

-------------(2.15)

(cm) -------------(2.16)

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 36/54

36

Bragg’s curve 

0 5 0 1 00 1 5 0 2 00 2 5 0

Depth (mm )

0

2 0

4 0

6 0

8 0

1 00

   R  e   l

  a   t   i  v  e  e  n  e  r  g  y   i  m

  p  a  r   t  e   d   (   %   )

17 4 M eV pr ot on s in wat er

experiment

calculat ion

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 37/54

37

Irradiation of a tumor in the brain 

12

C particle beams at GSI 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 38/54

Interaction of photons with

matter

38

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 39/54

39

 fluence particle

ninteractioof  y probabilit  

Cross section (1) 

SI unit: m2

special unit: barn (b)1 b = 10-28 m2 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 40/54

40

Alternative definition:

1. Cross section may be bigger/smaller than the cross section ofthe atomic nucleus2. Type of interaction should be specified (σn,p or σ,e)

N partices per cm2 

dx

Cross section (2) 

2m per centresninteractioof number 

ninteractiospecificatosubjected  particlesincident theof  fraction 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 41/54

41

Interactions of photons 

interaction

Energy loss

Atomicelectron

Nucleus Electric fieldof the nucleus

100% FotoelectricEffect

Photonuclearreactions

Pairproduction

0%<E < 100% ComptonEffect

- -

0% Coherent

Scattering

- -

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 42/54

42

Photoelectric effect (1) 

Entire energy transfer fromphoton to an atomic electron

KL 

e- 

3

4

   h

 Z e Cross section

Energy photo-electron:be E h E   

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 43/54

43

KL 

e- 

Fraction emitted X-rays (‘scattered’radiation)

K = cross section photoelectric effect in K shellK = fluorescence yield K shellEK

  = mean bindings energy K electron 

EK 

 

  

  

  

  

 

hh

 E 

h

 E  L

 L LK 

K K  ...

__

Photoelectric effect (2) 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 44/54

44

Compton effect (1) h 

h’ 

Ee- 

 

Energy conservation:

Energy Compton electron:

Angular correlation:

)cos1(1

)cos1()(

2

2

2

  

  

cm

h

cm

h

 E 

e

e

e

'hv E hv e

Partial energy transferto a ‘free’ electron 

 

  

 

 

  

 

2tan1)cot(

2

   

cm

h

e

 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 45/54

45

h’ 

Ee- 

 Angular distribution of thescattered photons

0

90

180

270

0 1 2

1 0M e V

1 M e V0.1 M e V

0.01 M e V

r icht ing invallend

f ot on

Compton effect (2) 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 46/54

46

h’ 

Ee- 

Cross section:

Fraction of the energy h transferred to compton electrons:

  

   

hh

h E  f  e

e

______

','1

5,0',        h

 Z C e

Compton effect (3) 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 47/54

47

Pair production 

Conversion of the photon into an (e-,e+) pair

e-

e+

Threshold energy: 2mc2 = 1,02 MeV

Scattered strongly forwards

Cross section:     

h Z ee

2

,

hv

mc f 

ee

2

,

21  

Fraction of the energy h transferred to (e-,e+) pair

Dependence of cross sections of

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 48/54

48

Dependence of

Type of interaction

Energy

Z

cm2

 /atom

Z

cm2

 /gPhotoelectric Effect E-3.5 Z4 to Z5 Z3 to Z4

Compton Effect E-0.5 to E-1 Z independent

Pair Production E1 to ln E Z2 Z

Dependence of cross sections ofphoton energy and atomic number 

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 49/54

49

Interactions of photons 

10 - 2 10 - 1 10 0 10 1 10 2

Pho ton ene rgy (M eV)

0

20

40

60

80

100

   A   t  o  m   i  c  n  u  m   b  e  r   Z Pho to-Ele c t ric Ef fec t

d o m i n a n tPai r Prod uc t ion

d o m i n a n t

Com pton Ef fec t

d o m i n a n t C      =  

  =   C

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 50/54

50

Attenuation and absorption 

Narrow beam geometry

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 51/54

51

Attenuation of photons

Suppose: parallel beam with fluence: 0

number of interaction centres per volume : N

dx

Probability on absorption per centre:    

Number of centres per cm2

: N dxNumber of absorption per cm2 :    N dxDecrease particle fluentie in dx d = -   N dxIntegration yields:

(x) 

x

 x x N ee x

   00)(

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 52/54

52

Linear attenuation coefficient (cm-1) µ = N :

Mass attenuation coefficient (cm2 g-1): µ/ = N / 

Number of centres (cm-3) N = NA/M

Correlation between micro- and macroscopic cross sections:

µ/ has the following component cross sections:

     M 

 N  A / 

Attenuation of photons

def 

             /  /  /  /  C 

Photoelectric effect Compton effect pair production 

I t ti f h t ith l d

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 53/54

53

Interactions of photons with lead 

10 1 10 2 10 3 10 4 10 5

Energy (k eV)

10 - 3

10- 2

10 - 1

10 0

10 1

10 2

  æ   /    Ò   (  c  m

   2   g

  -   1   )

pa ir p r o duc t ion / 

Coher ent e scat .c o h

 / 

I t ti f h t ith i

8/2/2019 Interaction of Radiation

http://slidepdf.com/reader/full/interaction-of-radiation 54/54

Interactions of photons with air 

10 1 10 2 10 3 10 4 10 5

Energy (keV)

10 - 3

10 - 2

10 - 1

10 0

10 1

  µ   /    (  c  m

   2   g

  -   1   )