intersection cohomologiesperso.numericable.fr/saralegi2/ms/diapo/ny2018.pdf · h dp px;zqand h p...

129
Intersection cohomologies New York, August 2018 Poincar´ e Duality : Two cohomologies Minimal models. Steenrod Squares David Chataur (Amiens, France) Martintxo Saralegi Aranguren (Orator) (Artois, France) Daniel Tanr´ e (Lille, France) 1/ 45

Upload: others

Post on 03-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection cohomologies

New York, August 2018

Poincare Duality : Two cohomologies

Minimal models.

Steenrod Squares

David Chataur (Amiens, France)Martintxo Saralegi Aranguren (Orator) (Artois, France)Daniel Tanre (Lille, France)

1/ 45

Page 2: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

2/ 45

Page 3: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 4: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 5: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links

Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 6: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 7: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 8: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 9: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 10: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 11: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves

or (co)chain complexes

3/ 45

Page 12: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Stratified pseudomanifold : X “ Xn Ą Xn´1 “ Xn´2 Ą Xn´3 Ą ¨ ¨ ¨ Ą X1 Ą X0

Strata : XkzXk´1

Links Link = Torus _ (Torus #Torus)

Perversity : p “ p0, 0, 0, p3, p4, . . . , pk , . . .q with pk`1 “ pk or pk ` 1.

Top perversity t : p0, 0, 0, 1, 2, 3, . . . , k ´ 2, . . .q

Dual perversity Dp “ t ´ p.

Coefficients : Z, Q.

Intersection (co)homology : complexes of sheaves or (co)chain complexes

3/ 45

Page 13: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Program for a Manifold M

C˚pM;Zq

��C˚

pM;Zq“Hom pC˚pM;Zq;Zq

��cup product, cap product

��H˚

pM;Zq – Hn´˚pM;Zq

4/ 45

Page 14: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Program for a Manifold M Program for X

C˚pM;Zq

��

Cp

˚pX ;Zq

��

pM;Zq“Hom pC˚pM;Zq;Zq

��

ppX ;Zq“Hom pC p

˚pX ;Zq;Zq

��cup product, cap product

��

cup product, cap product

��

pM;Zq – Hn´˚pM;Zq H

˚

ppX ;Zq – H

Dp

n´˚pX ;Zq

4/ 45

Page 15: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Program for a Manifold M Program for X

C˚pM;Zq

��

Cp

˚pX ;Zq

��

pM;Zq“Hom pC˚pM;Zq;Zq

��

ppX ;Zq“Hom pC p

˚pX ;Zq;Zq

��cup product, cap product

��

cup product, cap product

��

pM;Zq – Hn´˚pM;Zq H

˚

ppX ;Zq – H

Dp

n´˚pX ;Zq

If X locally p-torsion-free :

TorsHp

ppdim L`1qpLink;Zq “ 0

ppX “ ΣRP3qq4/ 45

Page 16: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Goal of the talk

Construct a cohomology developing the previous program: The blown-upcohomology H

˚

ppX ;Zq.

Present its properties.

Compare both cohomologies: H˚

ppX ;Zq and H

˚

ppX ;Zq

Extend the Sullivan minimal model theory to this context.

Goresky-Pardon’s conjecture.

5/ 45

Page 17: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Goal of the talk

Construct a cohomology developing the previous program: The blown-upcohomology H

˚

ppX ;Zq.

Present its properties.

Compare both cohomologies: H˚

ppX ;Zq and H

˚

ppX ;Zq

Extend the Sullivan minimal model theory to this context.

Goresky-Pardon’s conjecture.

5/ 45

Page 18: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Goal of the talk

Construct a cohomology developing the previous program: The blown-upcohomology H

˚

ppX ;Zq.

Present its properties.

Compare both cohomologies: H˚

ppX ;Zq and H

˚

ppX ;Zq

Extend the Sullivan minimal model theory to this context.

Goresky-Pardon’s conjecture.

5/ 45

Page 19: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Introduction

Goal of the talk

Construct a cohomology developing the previous program: The blown-upcohomology H

˚

ppX ;Zq.

Present its properties.

Compare both cohomologies: H˚

ppX ;Zq and H

˚

ppX ;Zq

Extend the Sullivan minimal model theory to this context.

Goresky-Pardon’s conjecture.

5/ 45

Page 20: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

6/ 45

Page 21: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 22: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 23: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 24: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 25: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 26: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 27: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

σ : ∆ Ñ X .

Perverse degree : ||σ||k “ dimσ´1pXn´kq.

Allowability condition : ||σ||k ď dim ∆´ k ` ppkq.

Intersection chain ξ : ξ and Bξ are allowable chains.

Intersection homology Hp

˚pX ;Zq.

Ht

˚pX ;Zq “ H˚pX ;Zq if X is normal.

0 Ñ Ext pHp

˚´1pX ;Zq,Zq Ñ H

˚

ppX ;Zq Ñ Hom pH

p

˚pX ;Zq,Zq Ñ 0.

7/ 45

Page 28: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

Filtered simplices : σ : ∆ Ñ X with σ´1pXkq a face of ∆

∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆kloooooomoooooon

σ´1pXk q

˚ ¨ ¨ ¨ ˚∆n

8/ 45

Page 29: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

9/ 45

Page 30: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

Filtered simplices : σ : ∆ Ñ X with σ´1pXkq a face of ∆

∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆kloooooomoooooon

σ´1pXk q

˚ ¨ ¨ ¨ ˚∆n

||σ||k “ dimp∆0 ˚ ¨ ¨ ¨ ˚∆n´kq.

Cp

˚pX ;Zq “ tfiltered p-intersection chainsu computes

Hp

˚pX ;Zq intersection homology and H

˚

ppX ;Zq intersection cohomology

.

10/ 45

Page 31: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Intersection homology

Filtered simplices : σ : ∆ Ñ X with σ´1pXkq a face of ∆

∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆kloooooomoooooon

σ´1pXk q

˚ ¨ ¨ ¨ ˚∆n

||σ||k “ dimp∆0 ˚ ¨ ¨ ¨ ˚∆n´kq.

Cp

˚pX ;Zq “ tfiltered p-intersection chainsu computes

Hp

˚pX ;Zq intersection homology and H

˚

ppX ;Zq intersection cohomology

.

10/ 45

Page 32: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

11/ 45

Page 33: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Blow up of a filtered simplex

∆0

µÐÝÝÝÝÝ

∆1

∆0 ˆ∆1

∆1

c∆0

∆ “ ∆0 ˚∆1 has for blow-up r∆ “ c∆0 ˆ∆1

B r∆ “ ĂB∆` Hidden faces

12/ 45

Page 34: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Blow up of a filtered simplex

∆0

µÐÝÝÝÝÝ

∆1

∆0 ˆ∆1

∆1

c∆0

∆ “ ∆0 ˚∆1 has for blow-up r∆ “ c∆0 ˆ∆1

B r∆ “ ĂB∆` Hidden faces

12/ 45

Page 35: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Blow up of a filtered simplex

The prismc∆0 ˆ ¨ ¨ ¨ ˆ c∆n´1 ˆ∆n

is the blow up of∆0 ˚ ¨ ¨ ¨ ˚∆n

B r∆ “ ĂB∆` Hidden faces

13/ 45

Page 36: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Local cochains

rN˚

p∆q “ N˚

pc∆0q b ¨ ¨ ¨ b N˚

pc∆n´1q b N˚

p∆nq

∆ “ ∆0 ˚∆1 ˚∆2 r∆ “ c∆0 ˆ c∆1 ˆ∆2

µÐÝÝÝÝÝ

∆0

∆1

∆2 ∆2

c∆0

c∆1

14/ 45

Page 37: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Perverse degree of a cochain of rN˚

p∆q

∆ “ ∆0 ˚∆1 r∆ “ c∆0 ˆ∆1

µÐÝÝÝÝÝ

∆0

∆1

11

∆1

c∆0

v = apex

||1vˆ∆1 || “ ´8 Since vˆ∆1 not hidden face

||1∆0ˆ∆1 || “ dim ∆1 Since ∆0 ˆ∆1 hidden face

15/ 45

Page 38: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Perverse degree of a cochain of rN˚

p∆q

∆ “ ∆0 ˚∆1 r∆ “ c∆0 ˆ∆1

µÐÝÝÝÝÝ

∆0

∆1

11

∆1

c∆0

v = apex

||1vˆ∆1 || “ ´8 Since vˆ∆1 not hidden face

||1∆0ˆ∆1 || “ dim ∆1 Since ∆0 ˆ∆1 hidden face

15/ 45

Page 39: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Perverse cochains

rN˚

p∆q “ N˚

pc∆0q b ¨ ¨ ¨ b N˚

pc∆n´1q b N˚

p∆nq

rN˚

pp∆q “

!

ω P rN˚

p∆q{maxp||ω||k , ||dω||kq ď pk

)

rN˚

ppX q is the simplicial sheaf

!

pωσq { σ : ∆ Ñ X filtered simplex, ωσ P rN˚

pp∆q, compatible

)

.

ppX ;Zq blown-up cohomology

0pX ;Zq “ H

˚

pX ;Zq, cohomology, when X is normal.

16/ 45

Page 40: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Perverse cochains

rN˚

p∆q “ N˚

pc∆0q b ¨ ¨ ¨ b N˚

pc∆n´1q b N˚

p∆nq

rN˚

pp∆q “

!

ω P rN˚

p∆q{maxp||ω||k , ||dω||kq ď pk

)

rN˚

ppX q is the simplicial sheaf

!

pωσq { σ : ∆ Ñ X filtered simplex, ωσ P rN˚

pp∆q, compatible

)

.

ppX ;Zq blown-up cohomology

0pX ;Zq “ H

˚

pX ;Zq, cohomology, when X is normal.

16/ 45

Page 41: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Perverse cochains

rN˚

p∆q “ N˚

pc∆0q b ¨ ¨ ¨ b N˚

pc∆n´1q b N˚

p∆nq

rN˚

pp∆q “

!

ω P rN˚

p∆q{maxp||ω||k , ||dω||kq ď pk

)

rN˚

ppX q is the simplicial sheaf

!

pωσq { σ : ∆ Ñ X filtered simplex, ωσ P rN˚

pp∆q, compatible

)

.

ppX ;Zq blown-up cohomology

0pX ;Zq “ H

˚

pX ;Zq, cohomology, when X is normal.

16/ 45

Page 42: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Cup product

rNi

ppX q b rN

j

qpX q

YÝÝÝÝÝÝÑ rN

i`j

p`qpX q.

pω Y ηqσ “ ωσ Y ησ

This cup product is defined locally in

rN˚

p∆q “ N˚

pc∆q b ¨ ¨ ¨ b N˚

pc∆n´1q b N˚

p∆nq,

where σ : ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n Ñ X is a filtered simplex.

pα1 b ¨ ¨ ¨ b αnqloooooooomoooooooon

ωσ

Ypβ1 b ¨ ¨ ¨ b βnqloooooooomoooooooon

ησ

“ ˘pα1 Y β1q b ¨ ¨ ¨ b pαn Y βnqloooooooooooooooooomoooooooooooooooooon

ωσY ησ

17/ 45

Page 43: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Properties

Cup product: Hi

ppX ;Zq bH

j

qpX ;Zq Y

ÝÝÝÝÝÝÑ Hi`j

p`qpX ;Zq .

Cap product: Hi

ppX ;Zq b H

q

jpX ;Zq X

ÝÝÝÝÝÝÑ Hp`q

j´ipX ;Zq.

ppX ;Zq independent of the stratification.

Poincare Duality: H˚

ppX ;Zq X rγX s

ÝÝÝÝÑ Hp

n´˚pX ;Zq

There is no Universal Coefficient Theorem

18/ 45

Page 44: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Properties

Cup product: Hi

ppX ;Zq bH

j

qpX ;Zq Y

ÝÝÝÝÝÝÑ Hi`j

p`qpX ;Zq .

Cap product: Hi

ppX ;Zq b H

q

jpX ;Zq X

ÝÝÝÝÝÝÑ Hp`q

j´ipX ;Zq.

ppX ;Zq independent of the stratification.

Poincare Duality: H˚

p,cpX ;Zq X rγX s

ÝÝÝÝÑ Hp

n´˚pX ;Zq

There is no Universal Coefficient Theorem

18/ 45

Page 45: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Properties

Cup product: Hi

ppX ;Zq bH

j

qpX ;Zq Y

ÝÝÝÝÝÝÑ Hi`j

p`qpX ;Zq .

Cap product: Hi

ppX ;Zq b H

q

jpX ;Zq X

ÝÝÝÝÝÝÑ Hp`q

j´ipX ;Zq.

ppX ;Zq independent of the stratification.

Poincare Duality: H˚

ppX ;Zq X rγX s

ÝÝÝÝÑ HBM,p

n´˚pX ;Zq

There is no Universal Coefficient Theorem

18/ 45

Page 46: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

Properties

Cup product: Hi

ppX ;Zq bH

j

qpX ;Zq Y

ÝÝÝÝÝÝÑ Hi`j

p`qpX ;Zq .

Cap product: Hi

ppX ;Zq b H

q

jpX ;Zq X

ÝÝÝÝÝÝÑ Hp`q

j´ipX ;Zq.

ppX ;Zq independent of the stratification.

Lefschetz Duality: H˚

ppX , B1X ;Zq X rγX s

ÝÝÝÝÑ Hp

n´˚pX , B2X ;Zq

There is no Universal Coefficient Theorem

18/ 45

Page 47: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

0rdinary Poincare Duality versus intersection homology

HkpX ;Zq

XrγX s //

��

Hn´kpX ;Zq

Hk

ppX ;Zq

XrγX s

–// H

p

n´kpX ;Zq

OO

19/ 45

Page 48: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

0rdinary Poincare Duality versus intersection homology

HkpX ;Zq

XrγX s //

��

Hn´kpX ;Zq

Ht

n´kpX ;Zq

–kk

Hk

0pX ;Zq

XrγX s

–// H

0

n´kpX ;Zq

33

19/ 45

Page 49: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

0rdinary Poincare Duality versus intersection homology

HkpX ;Zq

XrγX s //

��

Hn´kpX ;Zq

Ht

n´kpX ;Zq

–kk

Hk

0pX ;Zq

XrγX s

–// H

0

n´kpX ;Zq

33

Poincare Duality versus intersection homology

Let X be a normal compact oriented n-dimensional pseudomanifold. Then

. H˚

pX ;ZqXrγX s´ ´ÝÑ

–Hn´˚pX ;Zq ðñ H

˚

0pX ;Rq ÝÑ

–H˚

tpX ;Zq. .

19/ 45

Page 50: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

0rdinary Poincare Duality versus intersection homology

HkpX ;Zq

XrγX s //

��

Hn´kpX ;Zq

Ht

n´kpX ;Zq

–kk

Hk

0pX ;Zq

XrγX s

–// H

0

n´kpX ;Zq

33

X “ ΣT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . does not verify Ordinary Poincare Duality

X “ ΣT2 ˆ r0, 1sL

A with A P SL2pZq . . . . . . . . . . . . . . verifies Ordinary Poincare Duality. since A : H2

`

ΣT2;Z˘

“ H1

`

T2;Z˘

ý has no fixed points.

19/ 45

Page 51: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Blown-up cohomology

0rdinary Poincare Duality versus intersection homology

HkpX ;Zq

XrγX s //

��

Hn´kpX ;Zq

Ht

n´kpX ;Zq

–kk

Hk

0pX ;Zq

XrγX s

–// H

0

n´kpX ;Zq

33

¨ ¨ ¨ // H0

kpX ;Zq // H

t

kpX ;Zq // H

t{0

kpX ;Zq // H

0

kpX ;Zq // ¨ ¨ ¨

FHt{0

˚pX ;Zq b FH

t{0

n`1´˚pX ;Zq Ñ Z non-singular.

TorsHt{0

˚pX ;Zq b TorsH

t{0

n´˚pX ;Zq Ñ Q{Z non-singular.

19/ 45

Page 52: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are different

Hk

DppcM;Zq k H

k

ppcM;Zq

HkpM;Zq ď ppm ` 1q H

kpM;Zq

Ext pHk´1pM;Zq;Zq ppm ` 1q ` 1 0

0 ě ppm ` 1q ` 2 0

with M manifold, v the apex of cM and m “ dimM.

DppcM;Zq –H

˚

ppcM;Zq if cM locally p-free torsion: H

ppdim M`1qpM;Zq “ 0

20/ 45

Page 53: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are different

‚ The intersection cohomology verifies the Universal Coefficient Theorem:

0 Ñ Ext pHp

k´1pX ;Zq,Zq Ñ H

k

ppX ;Zq Ñ Hom pH

p

kpX ;Zq,Zq Ñ 0

‚ The blown-up cohomology verifies Poincare Duality without LTF-condition.

ppX ;Zq X rγX s

ÝÝÝÝÑ Hp

n´˚pX ;Zq

21/ 45

Page 54: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 55: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 56: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 57: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 58: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 59: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

The natural map

χ : rN˚

ppX ;Zq Ñ C

˚

DppX ;Zq “ Hom pC

Dp

˚pX ;Zq,Zq :“ ω ÞÑ pσ ÞÑ εpω X σqq

verifies the following properties.

χ is a quasi-isomorphism over Q.

χ˚ fits into the following exact sequence

¨ ¨ ¨ Ñ Hk

ppX ;Zq χ˚

ÝÝÑ Hk

DppX ;Zq Ñ R

k

ppX ;Zq ÑH

k`1

ppX ;Zq Ñ . . .

where R˚

ppX ;Zq is the cohomology of the Goresky-Siegel’s Peripheral term

ppX ;Zq is a torsion term.

ppX ;Zq bR

n´˚

DppX ;Zq Ñ Q{Z non-singular pairing

22/ 45

Page 60: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

————————–

23/ 45

Page 61: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

————————–

23/ 45

Page 62: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

————————–

23/ 45

Page 63: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

We have LTF ùñ PTA but PTA ­ùñ LTF.

————————–

23/ 45

Page 64: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

We have LTF ùñ PTA but PTA ­ùñ LTF.

————————–

LTF ðñ R˚

ppcLq “ 0,@Lðñ R

˚

ppUq “ 0,@ open chart U ùñ R

˚

ppX q “ 0 ðñ PTA

23/ 45

Page 65: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are not so different

When are they equal?

When X is locally p-torsion free (LTF) . . . . . . . . . . . . TorsHp

ppdim Link`1qpLink;Zq “ 0

When the Peripheral term is acyclic (PTA) . . . . . . . . . . . . . . . . . . . . . . .R˚

ppX ,Zq “ 0

We have LTF ùñ PTA but PTA ­ùñ LTF.

————————–

X “ ΣpRP3 ˆ T2loooomoooon

L

q ˆ r0, 1sL

A with A P SL2pZq

LTF R˚

2pcLq “ R

3

2pcLq “ H

3pLq “ Z2 ‘ Z2 ‰ Hñ X is not LTF.

PTA R˚

2pX q “ 0 since A : R

3

2pΣLq “ R

3

2pcLq ‘R

3

2pcLq ý has no fixed points.

23/ 45

Page 66: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are intertwined

We have the pairing

D : rN˚

ppX ;Zq b C

n´˚

ppX ;Zq Ñ I ˚Z :“ ω b c ÞÑ cpω X γX q

rγX s : Fundamental class of X .

I ˚Z : Injective resolution 0 Ñ ZÑ QÑ Q{ZÑ 0

24/ 45

Page 67: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are intertwined

We have the pairing

D : rN˚

ppX ;Zq b C

n´˚

ppX ;Zq Ñ I ˚Z :“ ω b c ÞÑ cpω X γX q

inducing the pairingsFH

˚

ppX ;Zq b FH

n´˚

ppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

ppX ;Zq Ñ Q{Z

Non-singular pairings

24/ 45

Page 68: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are intertwined

We have the pairing

D : rN˚

ppX ;Zq b C

n´˚

ppX ;Zq Ñ I ˚Z :“ ω b c ÞÑ cpω X γX q

inducing the pairingsFH

˚

ppX ;Zq b FH

n´˚

ppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

ppX ;Zq Ñ Q{Z

Non-singular pairings

Tools:

Poincare Duality

Biduality

24/ 45

Page 69: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are intertwined

We have the pairing

D : rN˚

ppX ;Zq b C

n´˚

ppX ;Zq Ñ I ˚Z :“ ω b c ÞÑ cpω X γX q

Duality in cohomology

If the Peripheral term is acyclic the above pairing induces the two following nonsingular pairings

FH˚

ppX ;Zq b FH

n´˚

DppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

DppX ;Zq Ñ Q{Z

24/ 45

Page 70: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX ;Zq and H

˚

ppX ;Zq are intertwined

We have the pairing

D : rN˚

ppX ;Zq b C

n´˚

ppX ;Zq Ñ I ˚Z :“ ω b c ÞÑ cpω X γX q

Duality in cohomology

If the Peripheral term is acyclic the above pairing induces the two following nonsingular pairings

FH˚

ppX ;Zq b FH

n´˚

DppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

DppX ;Zq Ñ Q{Z

X “ Thom Space of to the unitary tangent bundle of S2.

X “ ΣRP3.

24/ 45

Page 71: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

25/ 45

Page 72: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z–��

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

25/ 45

Page 73: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z–��

k Hk

1pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Z

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

25/ 45

Page 74: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z–��

k Hk

1pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Zfl��

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

k Hk

D1“2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Z

25/ 45

Page 75: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z–��

k Hk

1pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Zfl��

k Hk

2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Zfl��

k Hk

3pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z–��

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

k Hk

D1“2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Z

k Hk

D2“1pX q

0 Z1 Z2 Z2

3 Z2

4 Z5 Z

k Hk

D3“0pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

25/ 45

Page 76: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z–��

k Hk

1pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Zfl��

k Hk

2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Zfl��

k Hk

3pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z–��

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

k Hk

D1“2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Z

k Hk

D2“1pX q

0 Z1 Z2 Z2

3 Z2

4 Z5 Z

k Hk

D3“0pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

H0

´

S1 ˆ RP3¯

free H1

´

S1 ˆ RP3¯

torsion H2

´

S1 ˆ RP3¯

torsion cm H3

´

S1 ˆ RP3¯

free

25/ 45

Page 77: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Z

33

k Hk

D3“0pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

Duality26/ 45

Page 78: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Z

33

k Hk

3pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

kk

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

k Hk

D3“0pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

Duality26/ 45

Page 79: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

DppX q and H

˚

ppX q are intertwined: X “ ΣpS1 ˆ RP3q

k Hk

0pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Z

33

–��

k Hk

1pX q

0 Z1 Z2 0

3 Z2

4 Z‘ Z2

5 Z

��

fl��

k Hk

2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Z

��

fl��

k Hk

3pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

kk

–��

k Hk

D0“3pX q

0 Z1 0

2 Z3 Z2

4 Z‘ Z2

5 Z

k Hk

D1“2pX q

0 Z1 Z2 Z2

3 0

4 Z‘ Z2

5 Z

k Hk

D2“1pX q

0 Z1 Z2 Z2

3 Z2

4 Z5 Z

k Hk

D3“0pX q

0 Z1 Z2 Z2

3 Z‘ Z2

4 0

5 Z

Duality26/ 45

Page 80: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

27/ 45

Page 81: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality: Manifolds (PL)

& : H˚pM;Qq b H

n´˚pM;Qq Ñ Q Non-singular

& : FH˚pM;Zq b FH

n´˚pM;Zq Ñ Z Non-singular

& : TorsH˚pM;Zq b TorsH

n´1´˚pM;Zq Ñ Q{Z Non-singular

28/ 45

Page 82: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality: Manifolds (PL)

& : H˚pM;Qq b H

n´˚pM;Qq Ñ Q Non-singular

& : FH˚pM;Zq b FH

n´˚pM;Zq Ñ Z Non-singular

& : TorsH˚pM;Zq b TorsH

n´1´˚pM;Zq Ñ Q{Z Non-singular

28/ 45

Page 83: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality: Pseudomanifolds (PL)

& : Hp

˚pX ;Qq b H

Dp

n´˚pX ;Qq Ñ Q Non-singular

& : FHp

˚pX ;Zq b FH

Dp

n´˚pX ;Zq Ñ Z Non-degenerate

& : TorsHp

˚pX ;Zq b TorsH

Dp

n`1´˚pX ;Zq Ñ Q{Z ——–

29/ 45

Page 84: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality: Pseudomanifolds (PL)

& : Hp

˚pX ;Qq b H

Dp

n´˚pX ;Qq Ñ Q Non-singular

& : FHp

˚pX ;Zq b FH

Dp

n´˚pX ;Zq Ñ Z Non-degenerate

& : TorsHp

˚pX ;Zq b TorsH

Dp

n`1´˚pX ;Zq Ñ Q{Z ——–

29/ 45

Page 85: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality : Pseudomanifolds

D : rN˚

ppX ;Zq b rN

n´˚

DppX ;Zq Ñ I ˚Z :“ ω b η ÞÑ εppω Y ηq X γX qq

ó

30/ 45

Page 86: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality : Pseudomanifolds

D : rN˚

ppX ;Zq b rN

n´˚

DppX ;Zq Ñ I ˚Z :“ ω b η ÞÑ εppω Y ηq X γX qq

ó

FH˚

ppX ;Zq b FH

n´˚

DppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

DppX ;Zq Ñ Q{Z

ó Poincare Duality

30/ 45

Page 87: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality : Pseudomanifolds

FH˚

ppX ;Zq b FH

n´˚

DppX ;Zq Ñ Z

TorsH˚

ppX ;Zq b TorsH

n`1´˚

DppX ;Zq Ñ Q{Z

ó Poincare Duality

FHp

˚pX ;Zq b FH

Dp

n´˚pX ;Zq Ñ Z

TorsHp

˚pX ;Zq b TorsH

Dp

n´1´˚pX ;Zq Ñ Q{Z

30/ 45

Page 88: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality : Pseudomanifolds

FHp

˚pX ;Zq b FH

Dp

n´˚pX ;Zq Ñ Z

TorsHp

˚pX ;Zq b TorsH

Dp

n´1´˚pX ;Zq Ñ Q{Z

Duality in homology

If the Peripheral term is acyclic then the above pairings are non singular.

30/ 45

Page 89: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality defect: Components of the peripheral complex

31/ 45

Page 90: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality defect: Components of the peripheral complex

0 // FHp

˚pX q

pFreeq // Hom pFHDp

n´˚pX q;Zq // Ap

˚pX q

(Free) always non degenerate pairing.

31/ 45

Page 91: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality defect: Components of the peripheral complex

Bp

˚pX q // TorsH

p

˚pX q

pTorq // Hom pTorsHDp

n´1´˚pX q;Q{Zq // Cp

˚pX q

(Tor) degenerate pairing or non singular pairing since Bp

˚pX q – Cp

n´1´˚pX q.

31/ 45

Page 92: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality defect: Components of the peripheral complex

0 // FHp

˚pX q

pFreeq // Hom pFHDp

n´˚pX q;Zq // Ap

˚pX q

Bp

˚pX q // TorsH

p

˚pX q

pTorq // Hom pTorsHDp

n´1´˚pX q;Q{Zq // Cp

˚pX q

(Free) always non degenerate pairing.

(Tor) degenerate pairing or non singular pairing since Bp

˚pX q – Cp

n´1´˚pX q.

31/ 45

Page 93: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to intersection homology

Duality defect: Components of the peripheral complex

0 // FHp

˚pX q

pFreeq // Hom pFHDp

n´˚pX q;Zq // Ap

˚pX q

Bp

˚pX q // TorsH

p

˚pX q

pTorq // Hom pTorsHDp

n´1´˚pX q;Q{Zq // Cp

˚pX q

(Free) always non degenerate pairing.

(Tor) degenerate pairing or non singular pairing since Bp

˚pX q – Cp

n´1´˚pX q.

0 // Ap

˚pX q // R

˚

ppX q{Cp

˚pX q // Bp

˚pX q // 0

31/ 45

Page 94: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to ... intersection cohomologies

We also have ...

0 // FH˚

ppX q

pFreeq // Hom pFHn´˚

DppX q;Zq // Ap

˚pX q

Bp

˚pX q // TorsH

˚

ppX q

pTorq // Hom pTorsHn´1´˚

DppX q;Zq // Cp

˚pX q

and ...

0 // FH˚

ppX q

pFreeq // FH˚

DppX q // Ap

˚pX q

Bp

˚pX q // TorsH

˚

ppX q

pTorq // TorsH˚

DppX q // Cp

˚pX q

32/ 45

Page 95: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Coming back to ... intersection cohomologies

We also have ...

0 // FH˚

ppX q

pFreeq // Hom pFHn´˚

DppX q;Zq // Ap

˚pX q

Bp

˚pX q // TorsH

˚

ppX q

pTorq // Hom pTorsHn´1´˚

DppX q;Zq // Cp

˚pX q

and ...

0 // FH˚

ppX q

pFreeq // FH˚

DppX q // Ap

˚pX q

Bp

˚pX q // TorsH

˚

ppX q

pTorq // TorsH˚

DppX q // Cp

˚pX q

32/ 45

Page 96: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

33/ 45

Page 97: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal models

PLp∆,Qq “ Λpx1, . . . , xm, dx1, . . . , dxmq,

where px0, . . . , xmq are the barycentric coordinates of ∆.

PLpX q is the simplicial sheaf

!

pωσq { σ : ∆ Ñ X singular simplex, ωσ P A˚

PLp∆,Qq, compatible

)

34/ 45

Page 98: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal models

X simply connected and of finite type.

PLpX q is a DGCA computing H

˚

pX ;Qq

There exists a minimal model pΛV , dq–ÝÑ A

˚

PLpX q.

It contains the rational cohomology of X since H˚

pΛV , dq “ H˚

pX ;Qq.

It contains the rational homotopy of X since homQpVk ,Qq “ πkpX q bQ.

35/ 45

Page 99: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal models

Example

Hk`

ΣCP2˘

$

&

%

Q if k “ 0Qre ^ dts if k “ 3Qre2 ^ dts if k “ 50 if not

Minimal model:ϕ : Λpa3, b5, c7, . . .q Ñ A

˚

PLpX q

with

36/ 45

Page 100: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal models

Example

Hk`

ΣCP2˘

$

&

%

Q if k “ 0Qre ^ dts if k “ 3Qre2 ^ dts if k “ 50 if not

Minimal model:ϕ : Λpa3, b5, c7, . . .q Ñ A

˚

PLpX q

with

da3 “ 0 db5 “ 0 dc7 “ a3b5

ϕpa3q “ e ^ dt ϕpb5q “ e2 ^ dt ϕpc7q “ 0 ¨ ¨ ¨

36/ 45

Page 101: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal models

Example

Hk`

ΣCP2˘

$

&

%

Q if k “ 0Qre ^ dts if k “ 3Qre2 ^ dts if k “ 50 if not

Minimal model:ϕ : Λpa3, b5, c7, . . .q Ñ A

˚

PLpX q

with

da3 “ 0 db5 “ 0 dc7 “ a3b5

Minimality: dV Ă Λ`V ¨ Λ`V

36/ 45

Page 102: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Local differential forms

ÐÝÝÝÝ

∆ “ ∆0 ˚∆1 r∆ “ c∆0 ˆ∆1

t

s

t “ 0

rA˚

PLp∆q “ tP0ps, tq ` P1ps, tq ds ` P2ps, tq dt ` P3ps, tq ds ^ dtu

||tPps, tq|| “ ´8 ||Ppsq|| “ 0 ||Pps, tq dt|| “ ´8 ||Ppsq ds|| “ 1

||Pps, tq ds ^ dt|| “ ´8

37/ 45

Page 103: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Local differential forms

ÐÝÝÝÝ

∆ “ ∆0 ˚∆1 r∆ “ c∆0 ˆ∆1

t

s

t “ 0

rA˚

PLp∆q “ tP0ps, tq ` P1ps, tq ds ` P2ps, tq dt ` P3ps, tq ds ^ dtu

||tPps, tq|| “ ´8 ||Ppsq|| “ 0 ||Pps, tq dt|| “ ´8 ||Ppsq ds|| “ 1

||Pps, tq ds ^ dt|| “ ´8

37/ 45

Page 104: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Local differential forms

ÐÝÝÝÝ

∆ “ ∆0 ˚∆1 r∆ “ c∆0 ˆ∆1

t

s

t “ 0

rA˚

PLp∆q “ tP0ps, tq ` P1ps, tq ds ` P2ps, tq dt ` P3ps, tq ds ^ dtu

||tPps, tq|| “ ´8 ||Ppsq|| “ 0 ||Pps, tq dt|| “ ´8 ||Ppsq ds|| “ 1

||Pps, tq ds ^ dt|| “ ´837/ 45

Page 105: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Global differential forms

PLp∆q“Λpx1,. . ., xm, dx1,. . ., dxmq, with px0,. . ., xmq barycentric coordinates of ∆

rA˚

PLp∆q “ A

˚

PLpc∆0q b ¨ ¨ ¨ b A

˚

PLpc∆n´1q b A

˚

PLp∆nq, with ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n.

rA˚

PL,pp∆q “ tω P rA

˚

PLp∆q{maxp||ω||k , ||dω||kq ď pku.

rA˚

PL,ppX q is the simplicial sheaf

!

pωσq { ωσ P rA˚

PL,pp∆q, σ : ∆ Ñ X filtered simplex compatible

)

.

H˚´

rA¨

PL,ppX q

¯

“ H˚

ppX ;Qq “ H

˚

ppX ;Qq

38/ 45

Page 106: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Global differential forms

PLp∆q“Λpx1,. . ., xm, dx1,. . ., dxmq, with px0,. . ., xmq barycentric coordinates of ∆

rA˚

PLp∆q “ A

˚

PLpc∆0q b ¨ ¨ ¨ b A

˚

PLpc∆n´1q b A

˚

PLp∆nq, with ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n.

rA˚

PL,pp∆q “ tω P rA

˚

PLp∆q{maxp||ω||k , ||dω||kq ď pku.

rA˚

PL,ppX q is the simplicial sheaf

!

pωσq { ωσ P rA˚

PL,pp∆q, σ : ∆ Ñ X filtered simplex compatible

)

.

H˚´

rA¨

PL,ppX q

¯

“ H˚

ppX ;Qq “ H

˚

ppX ;Qq

38/ 45

Page 107: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Global differential forms

PLp∆q“Λpx1,. . ., xm, dx1,. . ., dxmq, with px0,. . ., xmq barycentric coordinates of ∆

rA˚

PLp∆q “ A

˚

PLpc∆0q b ¨ ¨ ¨ b A

˚

PLpc∆n´1q b A

˚

PLp∆nq, with ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n.

rA˚

PL,pp∆q “ tω P rA

˚

PLp∆q{maxp||ω||k , ||dω||kq ď pku.

rA˚

PL,ppX q is the simplicial sheaf

!

pωσq { ωσ P rA˚

PL,pp∆q, σ : ∆ Ñ X filtered simplex compatible

)

.

H˚´

rA¨

PL,ppX q

¯

“ H˚

ppX ;Qq “ H

˚

ppX ;Qq

38/ 45

Page 108: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Algebra?

Hk`

ΣCP2˘

Hk`CP2

˘

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2 ^ dts Qre2 ^ dts 0

39/ 45

Page 109: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, , . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0

k “ 3 a3

k “ 4 0

k “ 5 b5

40/ 45

Page 110: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3

k “ 4 0

k “ 5 b5

dα2 “ a3,40/ 45

Page 111: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3

k “ 4 0

k “ 5 b5 a3α2, a3e

dα2 “ a3,40/ 45

Page 112: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3

k “ 4 0 α4, β4

k “ 5 b5 a3α2, a3e

dα2 “ a3,40/ 45

Page 113: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3

k “ 4 0 α4, β4 α2e, α22, e

2,

k “ 5 b5 a3α2, a3e

dα2 “ a3, dα4 “ a3α2, dβ4 “ a3e,40/ 45

Page 114: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, α4, β4, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3

k “ 4 0 α4, β4 α2e, α22, e

2, β4 ´ α2e, α4 ´ 2α2e

k “ 5 b5 a3α2, a3e

dα2 “ a3, dα4 “ a3α2, dβ4 “ a3e,40/ 45

Page 115: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, α4, β4, . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3 x , y

k “ 4 0 α4, β4 α2e, α22, e

2, β4 ´ α2e, α4 ´ 2α2e

k “ 5 b5 a3α2, a3e

dα2 “ a3, dα4 “ a3α2, dβ4 “ a3e, dx “ β4 ´ α2e , dy “ α4 ´ 2α2e40/ 45

Page 116: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse models

Hk

p

`

ΣCP2˘

p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 0 Q Q Qk “ 1 0 0 0

k “ 2 0 Qres Qresk “ 3 Qre ^ dts 0 0

k “ 4 0 0 Qre2s

k “ 5 Qre2^ dts Qre2

^ dts 0

Minimal perverse model Λpa3, b5, α2, e, α4, β4, x , y . . .q

ΛV p “ 0 “ 1 p “ 2 “ 3 p “ 8

k “ 2 0 α2, e

k “ 3 a3 x , y

k “ 4 0 α4, β4 α2e, α22, e

2, β4 ´ α2e, α4 ´ 2α2e

k “ 5 b5 a3α2, a3e

dα2 “ a3, dα4 “ a3α2, dβ4 “ a3e, dx “ β4 ´ α2e , dy “ α4 ´ 2α2eMinimality: ||a3|| ă ||α2|| ||β4|| ă ||x || ||α4|| ă ||y ||

40/ 45

Page 117: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 118: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 119: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 120: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 121: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 122: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Sullivan minimal perverse model

Regular Perverse

PLpX q DGCA tA

˚

PL,ppX qup DGCA

pΛV , dq pΛV , dq with V “ ‘pVp

dV Ă Λ`V ¨ Λ`V dVp Ă Λ`V ¨ Λ`V `‘qăppΛV qq

pΛV , dq–ÝÑ H

˚

pX ;Qq H˚`

pΛV qďp , d

˘ –ÝÑ H

˚

ppX ;Qq “ H

˚

ppX ;Qq

homQpVk ,Qq ú πkpX q bQ Intersection homotopy ?

Work in progress ...

Any nodal hypersurface of CP4 is intersection-formal.

41/ 45

Page 123: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

42/ 45

Page 124: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Goresky & Pardon conjecture

Hr`i

Lpp,iqpX ;Z2q

��

Hr

ppX ;Z2q

Sqi //

88

Hr`i

2ppX ;Z2q

Lpp, iqp`q “ minp2pp`q, pp`q ` iq

43/ 45

Page 125: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Goresky & Pardon conjecture

Hr`i

Lpp,iqpX ;Z2q

��

Hr

ppX ;Z2q

Sqi //

77

Hr`i

2ppX ;Z2q

Lpp, iqp`q “ minp2pp`q, pp`q ` iq

Effective improvement :

0 ‰ Sq2 P H˚

pp`q`2pX q and 0 “ Sq2 P H

˚

2pp`qpX q.

43/ 45

Page 126: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Goresky & Pardon conjecture: A cone

M manifold and p “ ppdimM ` 1q

ppcM;Z2q

Sq icM //

��

2ppcM;Z2q

��

HďppM;Z2q

Sq iM // H

ď2ppM;Z2q

44/ 45

Page 127: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Goresky & Pardon conjecture: A cone

M manifold and p “ ppdimM ` 1q

ppcM;Z2q

Sq icM //

��

2ppcM;Z2q

��

HďppM;Z2q

Sq iM //

Sq iM

""

Hď2ppM;Z2q

Hďp`i

pM;Z2q

44/ 45

Page 128: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

Goresky & Pardon conjecture: A cone

M manifold and p “ ppdimM ` 1q

ppcM;Z2q

Sq icM //

��

2ppcM;Z2q

��

HďppM;Z2q

Sq iM //

Sq iM

��

Hď2ppM;Z2q

**

Hďminp2p,p`iq

pM;Z2q “ H˚

Lpp,iqpcM;Z2q

Hďp`i

pM;Z2q

44

44/ 45

Page 129: Intersection cohomologiesperso.numericable.fr/saralegi2/MS/Diapo/NY2018.pdf · H Dp pX;Zqand H p pX;Zqare not so di erent When are they equal? When X is locally p-torsion free (LTF)

.

.

45/ 45