introduction sample preparation (1,4-benzenedimethanethiol (bdmt) )

27
NanoTransport Laboratory Temperature Dependent Molecular Conduc tion measured by the Electrochemical D eposition of Platinum Electrode in Lat eral Configuration (Applied Physics Letters, 2004 (in pre ss)) B. Kim*, S. J. Ahn*, J. G. Park*, S. H. Lee*, E. E. B. Campbell**, Y. W. Park* * School of Physics, Seoul National University, Korea ** Department of Experimental Physics, Gothenburg Univ ersity and Chalmers University of Technology, Sweden

Upload: yorick

Post on 11-Jan-2016

18 views

Category:

Documents


0 download

DESCRIPTION

Temperature Dependent Molecular Conduction measured by the Electrochemical Deposition of Platinum Electrode in Lateral Configuration (Applied Physics Letters, 2004 (in press)) B. Kim*, S. J. Ahn*, J. G. Park*, S. H. Lee*, E. E. B. Campbell**, Y. W. Park* - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Temperature Dependent Molecular Conduction measured by the Electrochemical Deposition of Platinum E

lectrode in Lateral Configuration(Applied Physics Letters, 2004 (in press))

B. Kim*, S. J. Ahn*, J. G. Park*, S. H. Lee*, E. E. B. Campbell**, Y. W. Park*

* School of Physics, Seoul National University, Korea** Department of Experimental Physics, Gothenburg University and Chalmers

University of Technology, Sweden

Page 2: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

I. Introduction

II. Sample preparation

(1,4-benzenedimethanethiol (BDMT) )

III. Result and discussion: Temperature dependent molecular conduction (27K<T<300K) in lateral configuration

IV. Summary

Page 3: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Polyacetylene single nanofiber(PANF) Polyacetylene single nanofiber(PANF)

SEM image

Synthetic Metals 119, 53 (2001)

AFM image

0.8 micron

Poster 24: Bio Kim et al.

Page 4: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Scanning tunneling microscope

M. Dorogi, et al., Phys. Rev. B, 52, 9071 (1995)

S. Datta, et al., Phys. Rev. Lett. 79, 2530 (1997)

Page 5: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Conducting atomic force microscope

X. D. Cui, et al., Science, 294, 571 (2001) D. J. Wold, et al., J. Am. Chem. Soc. 123, 5549 (2001)

Page 6: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Mechanically controlled break junction

M. A. Reed, et al., Science, 278, 252 (1997)

J. Reichert, et al., Phys. Rev. Lett. 88, 176804 (2002)

Page 7: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Electromigration break junction

H. Park, et al., Appl. Phys. Lett. 75, 301 (1999)

J. Park, et al., Nature 417, 722 (2002)

Page 8: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Angle evaporation

J. O. Lee, et al., Nano Lett. 3, 113 (2003)

N. B. Zhitenev, et al., Phys. Rev. Lett. 88, 226801 (2002)

Page 9: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Others

J. G. Kushmerick, et al., Nano Lett. 3, 897 (2003)

J. K. N. Mbindyo, et al., J. Am. Chem. Soc. 124, 4020 (2002)

Page 10: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Molecular conduction measured by the electromigration technique

1. Electromigration

H. Park, et al., Nature 407, 57 (2000) 200 nm

2 ㎛

2. Electrode design

20 nm height of Au electrode without adhesion layer

Page 11: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

3. Breaking of Au line

4. AFM and SEM image of nano gap

Page 12: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport LaboratoryY. V. Kervennic, et al., Appl. Phys. Lett. 80, 321 (2002)

(2) reducing the separation of electrodes using electrochemical deposition of Pt

(1) SAM on top of Au electrode/nanoparticles

Our method: Molecular conduction measured by the electrochemical deposition

David L. Klein et al., APL 68, 2574 (1996)

Page 13: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

A

3. deposit Pt electrochemically

Pt

4. measure IV characteristics

A

this

1. grow self-assembled monolayers (SAMs)

SAMs

pin hole

2. compose circuit and drop solution

A

aqueous solution of 0.1 M of K2PtCl4 and 0.5 M of H2SO4

Our method: (1) + (2)

combination of electrochemical deposition and SAMSchematic diagram

Page 14: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Electrochemical deposition process of Pt

R > 10 G

time

Optical microscope image confirms the deposition of Pt on one side.

After drying electrolyte

In situIn the electrolyte In the electrolyte

In the electrolyte

Page 15: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

100 nm

Pt

Pt

before depositionafter deposition

AFM & FESEM image

height ~ 700 nm

side view (conjecture)

Pt

SiO2

Page 16: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Measurement results & discussion

openR > 10 G

shortR ~ 5 k

samplenon-Ohmic

At Room Temperature

Page 17: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Temperature dependent I-V characteristics (160K<T<300K)

The I-V characteristics are non-Ohmic and asymmetric in all temperature range, and current decreases upon cooling (semiconductor- like temperature dependence) .

The asymmetriccharacteristics are originated by the difference of the two contacts: one Pt electrode is chemisorbed and the other Pt electrode is physisorbed.to the molecule.

sample 1

Page 18: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Temperature dependent I-V characteristics (29K<T<120K)

There is no significant temperature dependence in the I- V characteristics below 40 K. This means that the tunneling conduction is dominant at T< 40K.

sample 1

Page 19: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Tunneling at low temperature (T<40K)

Fowler-Nordheim tunneling: log(I /V2) -1/V∝

sample 1

Page 20: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Temperature dependent I-V characteristics (100K<T<300K)sample 2

Page 21: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Temperature dependent I-V characteristics (27K<T<100K)

I-V curves show very stable behavior below 0.85 V, but the current fluctuates for V> 0.85 V at 50 K < T < 60 K.

sample 2

Page 22: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

I-V characteristics – sample 2

No switching or NDR effect upon voltage sweep at T=27K

After sweeping the voltage, the current is increased ~5 times

At T=27K

At T=27K

Page 23: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

I-V characteristics (30K<T<100K)

And the RTS-like fluctuation at 50 K < T < 60 K is disappeared

sample 2

Page 24: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Tunneling at low temperature (T<40K)

Fowler-Nordheim Tunneling: log(I /V2) -1/V∝

sample 2

Page 25: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Model for the asymmetric I-V characteristics

HOMO

LUMO

Chemisorbed Pt

Physisorbed Pt

positive bias to ‘physisorbed Pt’

negative bias to ‘physisorbed Pt’

eV

eVContact between base Pt and SAM is much better (chemisorbed) than contact between electrochemically grown Pt and SAM (physisorbed).

Page 26: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Summary

· Temperature dependent molecular conduction was measured by the electrochemical deposition of platinum electrode to the self-assembled monolayer of 1,4-benzenedimethanethiol (BDMT) in lateral configuration.

· I-V characteristics are non-Ohmic and asymmetric in all measured temperature range. (27 K < T < 300 K)

· For T>40K, the I-V characteristics are semiconductor-like.· For T40K, the I-V characteristics are temperature independent following the Fowler-Nordheim type Tunneling conduction. ( log (I /V2) -1/V )∝

Page 27: Introduction Sample preparation       (1,4-benzenedimethanethiol (BDMT) )

NanoTransport Laboratory

Acknowledgement:

This work was supported by the National Research Laboratory (NRL) program of the Ministry of Science and Technology (MOST), Korea.

Work done in Sweden was supported by the Sweden Strategic Research Fund (CARAMEL consortium) and STINT.

Partial support for Yung Woo Park was provided by the Royal Swedish Academy of Science.