introduction to algorithms 6.046j/18.401j/sma5503 lecture 1 prof. charles e. leiserson

63
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Upload: evan-jacobs

Post on 18-Jan-2018

231 views

Category:

Documents


0 download

DESCRIPTION

Why study algorithms and performance? Algorithms help us to understand scalability. Performance often draws the line between what is feasible and what is impossible. Algorithmic mathematics provides a language for talking about program behavior. The lessons of program performance generalize to other computing resources. Speed is fun!

TRANSCRIPT

Page 1: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Introduction to Algorithms

6.046J/18.401J/SMA5503

Lecture 1Prof. Charles E. Leiserson

Page 2: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Analysis of algorithms

The theoretical study of computer-programperformance and resource usage.What’s more important than performance?• modularity • user-friendliness• correctness • programmer time• maintainability • simplicity• functionality • extensibility• robustness • reliability

Page 3: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Why study algorithms andperformance?

• Algorithms help us to understand scalability.• Performance often draws the line between what is feasible and what is impossible.• Algorithmic mathematics provides a language for talking about program behavior.• The lessons of program performance generalize to other computing resources.• Speed is fun!

Page 4: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

The problem of sorting

Input: sequence <a1, a2, …, an> of numbers.Output: permutation <a'1, a'2, …, a'n> such

that a'1 ≤ a'2 ≤ … ≤ a'n

Example:Input: 8 2 4 9 3 6Output: 2 3 4 6 8 9

Page 5: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Insertion sort

Page 6: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Page 7: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Page 8: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 6

Page 9: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 6

Page 10: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 6

Page 11: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 6

Page 12: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 62 4 8 9 3 6

Page 13: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 62 4 8 9 3 6

Page 14: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 62 4 8 9 3 62 3 4 8 9 6

Page 15: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 62 4 8 9 3 62 3 4 8 9 6

Page 16: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 62 8 4 9 3 62 4 8 9 3 62 4 8 9 3 62 3 4 8 9 6

2 3 4 6 8 9 done

Page 17: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Running time

• The running time depends on the input: an already sorted sequence is easier to sort.• Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.• Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Page 18: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Insertion SortInsertion Sort

Statement Statement EffortEffortInsertionSort(A, n) {InsertionSort(A, n) {

for i = 2 to n { for i = 2 to n { cc11nn

key = A[i]key = A[i] cc22(n-1)(n-1)

j = i - 1;j = i - 1; cc33(n-1)(n-1)

while (j > 0) and (A[j] > key) {while (j > 0) and (A[j] > key) { cc44TT

A[j+1] = A[j]A[j+1] = A[j] cc55(T-(n-1))(T-(n-1))

j = j - 1j = j - 1 cc66(T-(n-1))(T-(n-1))

}} 00A[j+1] = keyA[j+1] = keycc77(n-1)(n-1)

}} 00}}T = T = tt22 + t + t33 + … + t + … + tnn where t where tii is number of while expression evaluations for the i is number of while expression evaluations for the ithth for loop iteration for loop iteration

Page 19: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 19 05/05/23

Analyzing Insertion SortAnalyzing Insertion Sort• T(n)T(n) == cc11n + cn + c22(n-1) + c(n-1) + c33(n-1) + c(n-1) + c44T + cT + c55(T - (n-1)) + c(T - (n-1)) + c66(T - (n-1)) + c(T - (n-1)) + c77(n-1) (n-1)

= = cc88T + cT + c99n + cn + c1010

• What can T be?What can T be?• Best case -- inner loop body never executedBest case -- inner loop body never executed

• ttii = 1 = 1 T(n) is a linear function T(n) is a linear function• Worst case -- inner loop body executed for all previous Worst case -- inner loop body executed for all previous

elementselements• ttii = i = i T(n) is a quadratic function T(n) is a quadratic function

• Average caseAverage case• ??????

Page 20: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Kinds of analyses

Worst-case: (usually)• T(n) = maximum time of algorithmon any input of size n.Average-case: (sometimes)• T(n) = expected time of algorithmover all inputs of size n.• Need assumption of statisticaldistribution of inputs.Best-case: (bogus)• Cheat with a slow algorithm thatworks fast on some input.

Page 21: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Machine-independent time

What is insertion sort’s worst-case time?• It depends on the speed of our computer:

• relative speed (on the same machine),• absolute speed (on different machines).

BIG IDEA:• Ignore machine-dependent constants.• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

Page 22: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 22 05/05/23

Asymptotic PerformanceAsymptotic Performance

• In this course, we care most about In this course, we care most about asymptotic performanceasymptotic performance• How does the algorithm behave as the problem How does the algorithm behave as the problem

size gets very large?size gets very large?• Running timeRunning time• Memory/storage requirementsMemory/storage requirements• Bandwidth/power requirements/logic gates/etc.Bandwidth/power requirements/logic gates/etc.

Page 23: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Analysis of AlgorithmsAnalysis of Algorithms• Analysis is performed with respect to a computational Analysis is performed with respect to a computational

modelmodel• We will usually use a generic uniprocessor random-We will usually use a generic uniprocessor random-

access machine (RAM)access machine (RAM)• All memory equally expensive to accessAll memory equally expensive to access• No concurrent operationsNo concurrent operations• All reasonable instructions take unit timeAll reasonable instructions take unit time

• Except, of course, function callsExcept, of course, function calls• Constant word sizeConstant word size

• Unless we are explicitly manipulating bitsUnless we are explicitly manipulating bits

Page 24: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 24 05/05/23

Input SizeInput Size

• Time and space complexityTime and space complexity• This is generally a function of the input sizeThis is generally a function of the input size

• E.g., sorting, multiplicationE.g., sorting, multiplication• How we characterize input size depends:How we characterize input size depends:

• Sorting: number of input itemsSorting: number of input items• Multiplication: total number of bitsMultiplication: total number of bits• Graph algorithms: number of nodes & edgesGraph algorithms: number of nodes & edges• EtcEtc

Page 25: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 25 05/05/23

AnalysisAnalysis

• SimplificationsSimplifications• Ignore actual and abstract statement costsIgnore actual and abstract statement costs• Order of growthOrder of growth is the interesting measure: is the interesting measure:

• Highest-order term is what countsHighest-order term is what counts• Remember, we are doing asymptotic analysisRemember, we are doing asymptotic analysis• As the input size grows larger it is the high order term that As the input size grows larger it is the high order term that

dominatesdominates

Page 26: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Θ-notation

Math:Θ(g(n)) = { f (n) : there exist positive constants c1,

c2, and n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) for all n ≥ n0 }

Engineering:• Drop low-order terms; ignore leading constants.• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Page 27: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Asymptotic performance

When n gets large enough, a Θ(n2) algorithmalways beats a Θ(n3) algorithm.

• We shouldn’t ignore asymptotically slower algorithms, however.• Real-world design situations often call for a careful balancing of engineering objectives.• Asymptotic analysis is a useful tool to help to structure our thinking.

Page 28: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 28 05/05/23

Practical ComplexityPractical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Page 29: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 29 05/05/23

Practical ComplexityPractical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Page 30: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 30 05/05/23

Practical ComplexityPractical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Page 31: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 31 05/05/23

Practical ComplexityPractical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Page 32: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

David Luebke 32 05/05/23

Practical ComplexityPractical Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

Page 33: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Insertion sort analysis

Worst case: Input reverse sorted.[arithmetic series]

Average case: All permutations equally likely.

Is insertion sort a fast sorting algorithm?• Moderately so, for small n.• Not at all, for large n.

Page 34: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merge sort

Page 35: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merge SortMerge Sort

Page 36: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

MERGEMERGE

Page 37: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 1220 12 13 1113 11 7 97 9 2 12 1

Page 38: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 1220 12 13 1113 11 7 97 9 2 12 1

11

Page 39: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 1220 12 20 12 13 11 13 1113 11 13 11 7 9 7 97 9 7 9 2 1 2 2 1 2

11

Page 40: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 1220 12 20 12 13 11 13 1113 11 13 11 7 9 7 97 9 7 9 2 1 2 2 1 2

1 1 2 2

Page 41: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 12 20 1220 12 20 12 20 12 13 11 13 11 13 1113 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 2 1 2 2 1 2

1 21 2

Page 42: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 1220 12 20 12 20 12 13 11 13 11 13 1113 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 2 1 2 2 1 2

1 1 2 2 7 7

Page 43: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 9 9 2 1 2 2 1 2

1 1 2 2 7 7

Page 44: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 9 9 2 1 2 2 1 2

1 1 2 2 7 7 99

Page 45: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 9 9 2 1 2 2 1 2

1 1 2 2 7 9 7 9

Page 46: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 13 11 7 9 7 9 7 97 9 7 9 7 9 9 9 2 1 2 2 1 2

1 1 2 2 7 9 7 9 11 11

Page 47: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 97 9 7 9 7 9 9 2 1 2 2 1 2

1 1 22 7 9 7 9 11 11

Page 48: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 97 9 7 9 7 9 9 2 1 2 2 1 2

1 1 22 7 9 7 9 11 11 12 12

Page 49: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 97 9 7 9 7 9 9 2 1 2 2 1 2

1 1 22 7 9 7 9 11 11 12 12

Time = Θ(n) to merge a total of n elements (linear time).

Page 50: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Analyzing merge sort

T(n) MERGE-SORT A[1 . . n]Θ(1) 1. If n = 1, done.2T(n/2) 2. Recursively sort A[ 1 . . n/2 ]

Abuse and A[ n/2 +1 . . n ] .Θ(n) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T( n/2 ) + T( n/2 ) ,but it turns out not to matter asymptotically.

Page 51: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recurrence for merge sort

T(n) = Θ(1) if n = 1; 2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the basecase when T(n) = Θ(1) for sufficientlysmall n, but only when it has no effect onthe asymptotic solution to the recurrence.• CLRS and Lecture 2 provide several waysto find a good upper bound on T(n).

Page 52: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Page 53: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Page 54: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/2) T(n/2)

Page 55: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Page 56: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 57: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2h = lg n T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 58: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2h = lg n T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 59: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cnh = lg n T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 60: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cnh = lg n T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(1)

Page 61: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cnh = lg n T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(1) Θ(n)#leaves = n

Page 62: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cnh = lg n T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(n) Θ(1) Θ(n lg n)#leaves = n

Page 63: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Conclusions

• Θ(n lg n) grows more slowly than Θ(n2).• Therefore, merge sort asymptotically beats insertion sort in the worst case.• In practice, merge sort beats insertion sort for n > 30 or so.• Go test it out for yourself!