introduction to analytic geometry · introduction to analytic geometry 1.1 the cartesian coordinate...

24
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 1 Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1. Let (x 2 ,y 2 ) = (2, 4) and (x 1 ,y 1 ) = (5, 2). From the distance formula d = p (x 2 - x 1 ) 2 +(y 2 - y 1 ) 2 we get d = p (2 - 5) 2 + (4 - 2) 2 = p (-3) 2 +2 2 = 9+4= 13. 2. Let (x 2 ,y 2 )=(-3 , 2) and (x 1 ,y 1 ) = (5 , -4). From the distance formula d = q (x 2 - x 1 ) 2 +(y 2 - y 1 ) 2 we get d = q (-3 - 5) 2 +[2 - (-4)] 2 = q (-8) 2 +(6) 2 = 64+36 = 10. 3. Let (x 2 ,y 2 )=(-3, -6) and (x 1 ,y 1 ) = (5, -2). Then d = p (-3 - 5) 2 +[-6 - (-2)] 2 = p (-8) 2 +(-4) 2 = 64 + 16 = 16 · 5=4 5. 4. Let (x 2 ,y 2 )= ( - 5 , 2) and (x 1 ,y 1 ) = (0 , 0). Then d = q (- 5 - 0) 2 +(2 - 0) 2 = 5+4 = 3 5. Let (x 2 ,y 2 )=( 3, 4) and (x 1 ,y 1 ) = (0, 2). Then d = q ( 3 - 0) 2 + (4 - 2) 2 = 3+4= 7. 6. d = q ( 2 - 2) 2 +( 5 - 0) 2 = 0+5 = 5 7. d = q [1 - (-1)] 2 +(- 2 - 0) 2 = 4+2= 6 8. d = q [2 - (-2)] 2 + (7 - 3) 2 = 16 + 16 = 2 · 16 = 4 2 9. d = p [-9 - (-11)] 2 +(-1 - 1) 2 = p 2 2 +(-2) 2 = 8= 2 · 4=2 2 10. Distance from (0 , 0) to (4 , 3): q (4 - 0) 2 +(3 - 0) 2 = 16 + 9 = 5. Distance from (0 , 0) to (6 , 0)= 6. Distance from (4 , 3) to (6 , 0): q (6 - 4) 2 +(0 - 3) 2 = 4+9= 13. Perimeter = 5 + 6 + 13 = 11 + 13. 1 Not For Sale © Cengage Learning. All rights reserved. No distribution allowed without express authorization. Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig Full file at https://TestbankDirect.eu/ Full file at https://TestbankDirect.eu/

Upload: others

Post on 01-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 1

Introduction to Analytic Geometry

1.1 The Cartesian Coordinate System

1. Let (x2, y2) = (2, 4) and (x1, y1) = (5, 2). From the distance formula

d =√

(x2 − x1)2 + (y2 − y1)2

we get

d =√

(2− 5)2 + (4− 2)2 =√

(−3)2 + 22 =√

9 + 4 =√

13.

2. Let (x2 , y2) = (−3 , 2) and (x1 , y1) = (5 , −4). From the distance formula

d =

√(x2 − x1)

2+(y2 − y1)

2we get

d =

√(−3− 5)

2+[2− (−4)]

2=

√(−8)

2+(6)

2=√

64+36 = 10.

3. Let (x2, y2) = (−3,−6) and (x1, y1) = (5,−2). Then

d =√

(−3− 5)2 + [−6− (−2)]2 =√

(−8)2 + (−4)2 =√

64 + 16 =√

16 · 5 = 4√

5.

4. Let (x2 , y2) =(−√

5 , 2) and (x1 , y1) = (0 , 0).

Then d =

√(−√

5− 0)2+(2− 0)

2=√

5+4 = 3

5. Let (x2, y2) = (√

3, 4) and (x1, y1) = (0, 2). Then

d =

√(√

3− 0)2 + (4− 2)2 =√

3 + 4 =√

7.

6. d =

√(√

2−√

2)2+(√

5− 0)2=√

0+5 =√

5

7. d =√

[1− (−1)]2 + (−√

2− 0)2 =√

4 + 2 =√

6

8. d =

√[2− (−2)]

2+ (7− 3)2 =

√16 + 16 =

√2 · 16 = 4

√2

9. d =√

[−9− (−11)]2 + (−1− 1)2 =√

22 + (−2)2 =√

8 =√

2 · 4 = 2√

2

10. Distance from (0 , 0) to (4 , 3):

√(4− 0)

2+(3− 0)

2=√

16 + 9 = 5. Distance from (0 , 0) to

(6 , 0)= 6. Distance from (4 , 3) to (6 , 0):

√(6− 4)

2+(0− 3)

2=√

4 + 9 =√

13.

Perimeter = 5 + 6 +√

13 = 11 +√

13.

1Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 2: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

11b. x/y is negative whenever x and y have opposite signs: quadrants II and IV.

12. If x2 > x1, then x2 − x1 = P1P3 = |x2 − x1|. If x2 < x1, then x2 − x1 = −P1P3 and

P1P3 = |−P1P3| = |x2 − x1|.

13a. Any point on the y-axis has coordinates of the form (0, y).

14. Distance from (11, 2) to origin:√

(11− 0)2 + (2− 0)2 =√

125

Distance from (−5, 10) to origin:√

(−5− 0)2 + (10− 0)2 =√

125

Distance from (−1,−11) to origin:√

(−1− 0)2 + (−11− 0)2 =√

122

Answer: (−1,−11)

15. Let A = (−2,−5), B = (−4, 1) and C = (5, 4); then AB =√

[−2− (−4)]2 + (−5− 1)2 =√

40, AC =√

(−2− 5)2 + (−5− 4)2 =√

130, and BC =√

(−4− 5)2 + (1− 4)2 =√

90.

Since (AB)2 + (BC)2 = (AC)2, the triangle must be a right triangle.

16. Let A = (−1,−1), B = (−2, 3), and C = (6, 5). After calculating AB =√

17, BC =√

68, and

AC =√

85, we observe that (AB)2 + (BC)2 = (AC)2.

17. The points (12, 0), (−4, 8) and (−1,−13) are all 5√

5 units from (1,−2).

18. Distance from (−2 , 10) to (3 , −2): 13. Distance from (15 , 3) to (3 , −2): 13.

19. Distance from (−1,−1) to (2, 8):√(−1− 2)2 + (−1− 8)2 =

√9 + 81 =

√90 =

√9 · 10 = 3

√10

Distance from (2, 8) to (5, 17):√(5− 2)2 + (17− 8)2 =

√90 = 3

√10

Distance from (−1,−1) to (5, 17):√62 + 182 =

√360 = 6

√10

Total distance 6√

10 = 3√

10 + 3√

10, the sum of the other two distances.

20. Distance from (x , y) to (−1 , 2):

d =√

(x+ 1)2 + (y − 2)2 = 3

(x+ 1)2 + (y − 2)2 = (3)2 squaring both sides

x2 + 2x+ 1 + y2 − 4y + 4 = 9

x2 + y2 + 2x− 4y = 4

21. Distance from (x, y) to y-axis: x units

Distance from (x, y) to (2, 0):√

(x− 2)2 + (y − 0)2 =√

(x− 2)2 + y2

By assumption,√(x− 2)2 + y2 = x

(x− 2)2 + y2 = x2 squaring both sides

x2 − 4x+ 4 + y2 = x2

y2 − 4x+ 4 = 0

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 3: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.2. THE SLOPE 3

22. Let (x1 , y1) = (−3 , −5) and (x2 , y2) = (−1 , 7). Then from the midpoint formula(x1 + x2

2,y1 + y2

2

)=

(−3 + (−1)

2,−5 + 7

2

)= (−2 , 1).

23. Let (x1, y1) = (−2, 6) and (x2, y2) = (2,−4). Then from the midpoint formula(x1 + x2

2,y1 + y2

2

)we get (

−2 + 2

2,

6 + (−4)

2

)= (0, 1).

24.

(x1 + x2

2,y1 + y2

2

)=

(−3 + (−2)

2,

5 + 9

2

)=

(−5

2,7

)25. Let (x1, y1) = (5, 0) and (x2, y2) = (9, 4). Then from the midpoint formula(

x1 + x22

,y1 + y2

2

)we get (

5 + 9

2,

0 + 4

2

)= (7, 2).

26.

(x1 + x2

2,y1 + y2

2

)=

(−4 + (−1)

2,

3 + (−7)

2

)=

(−5

2, − 2

)

27. The center is the midpoint:

(−2 + 6

2,−1 + 11

2

)= (2, 5).

28. Midpoint of given line segment: (2, 6). Midpoint of line segment from (2, 6) to (−2, 4): (0, 5).

1.2 The Slope

1. Let (x2, y2) = (1, 7) and (x1, y1) = (2, 6). Then, by formula (1.4),

m =y2 − y1x2 − x1

we get

m =7− 6

1− 2=

1

−1= −1.

2. Let (x2 , y2) = (−3 , −10) and (x1 , y1) = (−5, 2). Then by formula (1.4)

m =y2 − y1x2 − x1

=−10− 2

−3− (−5)=−12

2= −6.

3. Let (x1, y1) = (0, 2) and (x2, y2) = (−4,−4). Then

m =−4− 2

−4− 0=−6

−4=

3

2.

4. Let (x2 , y2) = (6 , −3) and (x1 , y1) = (4, 0). Then m =y2 − y1x2 − x1

=−3− 0

6− 4=−3

2= −3

2.

5. Let (x2, y2) = (7, 8) and (x1, y1) = (−3,−4). Then

m =8− (−4)

7− (−3)=

8 + 4

7 + 3=

12

10=

6

5.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 4: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

4 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

6. m =−4− 0

8− 0= −1

2

7. m =43− (−1)

−1− 1=

44

−2= −22

8. m =31− 1

0− (−1)= 30

9. m =−5− 4

3− 3=−9

0(undefined)

10. m =6− 6

5− (−3)=

0

8= 0

11. m =−3− (−3)

9− 5=

0

4= 0

12. m− 3− (−2)

4− 4=

5

0(undefined)

13. m =3− 2

12− (−2)=

1

14

14. (a) tan 0◦ = 0; (b) tan 30◦ =√33 ; (c) tan 150◦ = −

√33 ; (d) tan 90◦is undefined;

(e) tan 45◦ = 1; (f) tan 135◦ = −1

15. See answer section of book.

16. Slope of AB =0− 2

−2− (−1)=−2

−1= 2; of BC =

5

3; of AC = −3

4.

17. Slope of given line is1− (−5)

−7− 6=

6

−13= − 6

13. Slope of perpendicular is given by the negative

reciprocal and is therefore − 1

(−6/13)=

13

6.

18. Slope of line through (−4, 6) and (−1,−3):−3− 6

−1− (−4)= −3.

Slope of line through (−4, 6) and (1,−9):−9− 6

1− (−4)= −3.

Since the lines have the same slope and pass through (−4, 6), they must coincide.

19. Slope of line through (−4, 6) and (6, 10):6− 10

−4− 6=−4

−10=

2

5

Slope of line through (6, 10) and (10, 0):10− 0

6− 10=

10

−4= −5

2Since the slopes are negative reciprocals, the lines are perpendicular.

20. Slope of line through (−4 , 2) and (−1 , 8): 2;

Slope of line through (9 , 4) and (6 , −2): 2;

Slope of line through (−1 , 8) and (9 , 4): −2/5;

Slope of line through (−4 , 2) and (6 , −2): −2/5;

21. Slope of line through (0,−3) and (−2, 3):−3− 3

0− (−2)=−6

2= −3

Slope of line through (7, 6) and (9, 0):6− 0

7− 9=

6

−2= −3

Slope of line through (−2, 3) and (7, 6):3− 6

−2− 7=−3

−9=

1

3

Slope of line through (0,−3) and (9, 0):−3− 0

0− 9=

1

3

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 5: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.3. THE STRAIGHT LINE 5

Since −3 and 13 are negative reciprocals, adjacent sides are perpendicular and opposite sides

are parallel.

22. Midpoint of line segment:

(−2 + 8

2,−4 + 8

2

)= (3, 2). Point: (6 , −4), m =

−4− 2

6− 3= −2

23. Midpoint:

(−3 + 9

2,−2 + 0

2

)= (3,−1)

Slope of line through (5, 6) and (3,−1):6− (−1)

5− 3=

7

2

24. Let (x , y) be the other end of the diameter. Since the center is the midpoint, we getx+ 4

2= 1

andy − 3

2= 2; solving, x = −2, y = 7.

25. tan θ =rise

run=

10.0 ft

160 ft= 0.0625

θ = 3.6◦

26. tan θ =rise

run=

2.5 m

19.0 m≈ 0.1316; θ = 7.5◦

27. Slope of line through (−1,−1) and (3,−5):−1− (−5)

−1− 3=

4

−4= −1

Slope of line through (x, 2) and (4,−6):2 + 6

x− 4=

8

x− 4Since the two slopes must be equal, we have:

8

x− 4= −1

8 = −x+ 4 multiplying both sides by x− 4

x = −4

28. Slope of line segment (2 , −1) to (−3 , 2): −3

5; Slope of other line segment:

−2 + 7

x− 4; so

5

x− 4=

5

3(negative reciprocals); solving, x = 7.

1.3 The Straight Line

1. Since (x1, y1) = (−7, 2) and m = 1/2, we get

y − 2 = 12 (x+ 7) y − y1 = m(x− x1)

2y − 4 = x+ 7 clearing fractions

0 = x− 2y + 7 + 4

x− 2y + 11 = 0

2. Since (x1 , y1) = (0 , 3) and m = −4, we get

y − 3 = −4(x− 0) y − y1 = m(x− x1)

4x+ y − 3 = 0

3. y − y1 = m(x− x1)

y + 4 = 3(x− 3) (x1, y1) = (3,−4); m = 3

y + 4 = 3x− 9

3x− y − 13 = 0

4. By (1.8), y = 2.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 6: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

6 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

5. y − y1 = m(x− x1)

y − 0 = − 13 (x− 0) (x1, y1) = (0, 0); m = −1/3

3y = −xx+ 3y = 0

6. By (1.9), x = −3.

7. The line y = 1 = 0x+ 1 has slope 0.

y − y1 = m(x− x1)

y − 0 = 0(x+ 4) (x1, y1) = (−4, 0); m = 0

y = 0 x-axis

8. First determine the slope: m = y2−y1‘

x2−x1= 2−6−3−7 = 2

5

Let (x1 , y1) = (−3 , 2), then

y − 2 = 25 (x+ 3)

5y − 10 = 2x+ 6 multiplying by 5

2x− 5y + 16 = 0

9. First determine the slope using m =y2 − y1x2 − x1

to get m =4− (−6)

−3− 3=

10

−6= −5

3.

Then let (x1, y1) = (−3, 4) to get

y − 4 = − 53 (x+ 3) y − y1 = m(x− x1)

3y − 12 = −5x− 15 multiplying by 3

5x+ 3y + 3 = 0

10. m = 6−3−4−2 = − 1

2

y − 3 = − 12 (x− 2) (x1, y1) = (2, 3)

2y − 6 = −x+ 2 multiplying by 2

x+ 2y − 8 = 0

11. m =−4− 0

9− 5= −1

y − 0 = −1(x− 5) choosing (x1, y1) = (5, 0)

x+ y − 5 = 0

12. m = 5−7−3−1 = 1

2

y − 5 = 12 (x+ 3) (x1, y1) = (−3, 5)

2y − 10 = x+ 3 multiplying by 2

x− 2y + 13 = 0

13. 6x+ 2y = 5

2y = −6x+ 5

y = −3x+ 52 y = mx + b

m = −3, y-intercept = 52 ; see graph in answer section of book.

14. Solving for y, we get y = x− 1. Slope:1, y-intercept :−1

15. Since 2x = 3y, y = 23x. From the form y = mx+ b, m = 2

3 and b = 0. The line passes through

the origin and has slope 23 . See graph in answer section of book.

16. From y = −4x+ 12, we get m = −4 and b = 12.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 7: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.3. THE STRAIGHT LINE 7

17. 2y − 7 = 0

y = 0x+ 72 y = mx + b

m = 0, y-intercept = 72 ; see graph in answer section of book.

18. Solving for y: y = 14x−

32 slope: 1

4 ; y-intercept :− 32

19. 2x− 3y = 1 4x− 6y + 3 = 0

−3y = −2x+ 1 −6y = −4x− 3

y = 23x−

13 y = 4

6x+ 36

y = 23x+ 1

2

From the form y = mx+ b, m = 23 in both cases, so that the lines are parallel.

20. 2x+ 4y + 3 = 0 y − 2x = 2

y = − 12x−

34 y = 2x+ 2

slope = − 12 slope = 2

Answer: The lines are perpendicular.

21. 3x− 4y = 1 3y − 4x = 3

−4y = −3x+ 1 3y = 4x+ 3

y = 34x−

14 y = 4

3x+ 1

The lines are neither parallel nor perpendicular.

22. 7x− 10y = 6 y − 4 = 0

y = 710x−

35 y = 4

slope = 710 slope = 0

Answer: neither

23. x+ 3y = 5 y − 3x− 2 = 0

3y = −x+ 5 y = 3x+ 2

y = − 13x+ 5

3

The slopes are − 13 and 3, respectively. Since the slopes are negative reciprocals, the lines are

perpendicular.

24. 2x+ 5y = 2 6x+ 15y = 1

y = − 25x+ 2

5 y = − 25x+ 1

15

Slope is −2

5in each case; the lines are parallel.

25. 3x− 5y = 6 9x− 15y = 4

−5y = −3x+ 6 −15y = −9x+ 4

y = 35x−

65 y = −9

−15x+ 4−15

y = 35x−

415

From the form y = mx+ b, the slope m is 35 in both cases; so the lines are parallel.

26. 4y − 3x+ 6 = 0 6x− 8y + 1 = 0

4y = 3x− 6 −8y = −6x− 1

y = 34x−

32 y = −6

−8x+ −1−8

y = 34x+ 1

8

slope = 34 slope = 3

4

Answer: the lines are parallel.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 8: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

8 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

27. 2y − 3x = 6 6y + 4x = 5

2y = 3x+ 6 6y = −4x+ 5

y = 32x+ 3 y = −4

6 x+ 56

y = − 23x−

56

The respective slopes are 32 and − 2

3 . Since the slopes are negative reciprocals, the lines are

perpendicular.

28. x− 4y − 2 = 0 2y + 8x− 7 = 0

−4y = −x+ 2 2y = −8x+ 7

y =1

4x− 1

2y = −4x+

7

2The respective slopes are 1

4 and −4. Since the slopes are negative reciprocals, the lines are

perpendicular.

29. 3y − 2x− 12 = 0 2x+ 3y − 4 = 0

3y = 2x+ 12 3y = −2x+ 4

y = 23x+ 4 y = − 2

3x+ 43

The lines are neither parallel nor pependicular.

30. 3x+ 4y − 4 = 0 6x− 8y − 3 = 0

4y = −3x+ 4 −8y = −6x+ 3

y = −3

4x+ 1 y =

3

4x− 3

8The lines are neither parallel nor perpendicular.

31. 3x+ 4y = 5 (given line)

y = − 34x+ 5

4 slope = − 34

y − y1 = m(x− x1) point-slope form

y − 1 = − 34 (x+ 2) point: (−2, 1)

4y − 4 = −3x− 6

3x+ 4y + 2 = 0

32. The given line can be written y = −3

4x+

5

4. So the slope is −3

4. Slope of perpendicular:

4

3.

y − 1 =4

3(x+ 2) y − y1 = m(x− x1)

3y − 3 = 4x+ 8

4x− 3y + 11 = 0

33. To find the coordinates of the point of intersection, solve the equations simultaneously:

2x − 4y = 1

3x + 4y = 4

5x = 5 adding

x = 1

From the second equation, 3(1) + 4y = 4, and y = 14 . So the point of intersection is (1, 14 ).

From the equation 5x+ 7y + 3 = 0, we get

7y = −5x− 3

y = − 57x−

37 slope= −5/7

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 9: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.3. THE STRAIGHT LINE 9

Thus (x1, y1) = (1, 14 ) and m = − 57 . The desired line is y− 1

4 = − 57 (x− 1). To clear fractions,

we multiply both sides by 28:

28y − 7 = −20(x− 1)

28y − 7 = −20x+ 20

20x+ 28y − 27 = 0

34. The first two lines are perpendicular: y =1

3x+ 1 and y = −3x− 25

4

35. See graph in answer section of book.

36. F = 3x, slope = 3, passing through the origin

37. From F = kx, we get 3 = k · 12 . Thus k = 6 and F = 6x.

38. y-intercept : initial value; t-intercept : the year the value becomes zero

39. F = mC + b

212 = m(100) + b F = 212, C = 100

32 = m(0) + b F = 32, C = 0

b = 32 second equation

212 = m(100) + 32 substituting into first equation

m =180

100=

9

5Solution: F = 9

5C + 32

40. C = 1800 + 500t

41. R = aT + b

51 = a · 100 + b R = 51, T = 100

54 = a · 400 + b R = 54, T = 400

−3 = −300a subtracting

a =−3

−300= 0.01

From the first equation, 51 = a · 100 + b, we get

51 = (0.01)(100) + b (a = 0.01)

b = 50

So the formula R = aT + b becomes R = 0.01T + 50.

42. P = kx; let P = 187.2 lb and x = 3.0 ft. Then

187.2 = k(3.0) and k =187.2

3.0= 62.4

So the relationship is P = 62.4x.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 10: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

10 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

1.4 Curve Sketching

In the answers below, the intercepts are given first, followed by symmetry, asymptotes, and extent.

2. y = 2, x = 12 ; none; none; all x

3. Intercepts. If x = 0, then y = −9. If y = 0, then

0 = x2 − 9

x2 = 9 solving for x

x = ±3 x = 3 and x = −3.

Symmetry. If x is replaced by −x, we get y = (−x)2 − 9, which reduces to the given equation

y = x2 − 9. The graph is therefore symmetric with respect to the y-axis. There is no other

type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denom-

inator, there are no asymptotes.

Extent. y is defined for all x.

Graph.

............

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

4. y = 1; y-axis; none; all x

5. Intercepts. If x = 0, then y = 1. If y = 0, then

0 = 1− x2

x2 = 1 solving for x

x = ±1 x = 1 and x = −1.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 11: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 11

Symmetry. If x is replaced by −x, we get y = 1− (−x)2, which reduces to the given equation

y = 1 − x2. The graph is therefore symmetric with respect to the y-axis. There is no other

type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denom-

inator, there are no asymptotes.

Extent. y is defined for all x.

Graph.

............

............

.................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

6. y = 5, x = ±√

5; y-axis; none; all x

7. Intercepts. If x = 0, then y = 0, and if y = 0, then x = 0. So the only intercept is the origin.

Symmetry. If we replace x by −x, we get y2 = −x, which does not reduce to the given equa-

tion. So there is no symmetry with respect to the y-axis.

If y is replaced by −y, we get (−y)2 = x, which reduces to y2 = x, the given equation. It

follows that the graph is symmetric with respect to the x-axis.

To check for symmetry with respect to the origin, we replace x by−x and y by−y: (−y)2 = −x.

The resulting equation, y2 = −x, does not reduce to the given equation. So there is no sym-

metry with respect to the origin.

Asymptotes. Since the equation is not in the form of a fraction with a variable in the denom-

inator, there are no asymptotes.

Extent. Solving the equation for y in terms of x, we get

y = ±√x.

Note that to avoid imaginary values, x cannot be negative. It follows that the extent is x ≥ 0.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 12: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

12 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Graph.

............

............

.................................................................................................................................................................................................................................................................................

................................................................................................................

................................................................................................................................

...................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

8. origin; x-axis; none; x ≥ 0

9. Intercepts. If x = 0, then y = ±1. If y = 0, then x = −1.

Symmetry. If we replace x by −x we get y2 = −x + 1, which does not reduce to the given

equation. So there is no symmetry with respect to the y-axis.

If y is replaced by −y, we get (−y)2 = x+ 1, which reduces to y2 = x+ 1, the given equation.

It follows that the graph is symmetric with respect to the x-axis.

The graph is not symmetric with respect to the origin.

Asymptotes. Since the equation is not in the form of a fraction with a variable in the denom-

inator, there are no asymptotes.

Extent. Solving the equation for y, we get y = ±√x+ 1. To avoid imaginary values, we must

have x+ 1 ≥ 0 or x ≥ −1. Therefore the extent is x ≥ −1.

Graph.

............

............

...................................................................................................................................

....................................................................................................................................................

.......................................................................................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

10. y = ±√

2; x = 2; x-axis; none; x ≤ 2

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 13: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 13

11. Intercepts. If x = 0, then y = (0− 3)(0 + 5) = −15. If y = 0, then

0 = (x− 3)(x+ 5)

x− 3 = 0 x+ 5 = 0

x = 3 x = −5.

Symmetry. If x is replaced by −x, we get y = (−x − 3)(−x + 5), which does not reduce to

the given equation. So there is no symmetry with respect to the y-axis. Similarly, there is no

other type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denom-

inator, there are no asymptotes.

Extent. y is defined for all x.

Graph.

............

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

(0,-15)

12. y = −24; x = −6, 4; none; none; all x

13. Intercepts. If x = 0, then y = 0. If y = 0, then

0 = x(x+ 3)(x− 2)

x = 0,−3, 2.

Symmetry. If x is replaced by −x, we get y = −x(−x + 3)(−x − 2), which does not reduce

to the given equation. So the graph is not symmetric with respect to the y-axis. There is no

other type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denom-

inator, there are no asymptotes.

Extent. y is defined for all x.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 14: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

14 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Graph.

............

............

.......

........

........

......

.......

.......

.......

........

.......

.......

......

.......

........

.......

.......

......

.......

........

.......

.......

.......

.......

........

........

.......

.......

.......

........

.......

........

.......

........

.......................................................................................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................

x

y

0

14. y = 0; x = 0,1, 4; none; none; all x

15. Intercepts. If x = 0, y = 0; if y = 0, then

x(x− 1)(x− 2)2 = 0

x = 0, 1, 2.

Symmetry. If x is replaced by −x, we get y = −x(−x − 1)(−x − 2)2, which does not reduce

to the given equation. So there is no symmetry with respect to the y-axis. Similarly, there is

no other type of symmetry.

Asymptotes. None (the equation does not have the form of a fraction).

Extent. y is defined for all x.

Graph.

............

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................

x

y

0

16. y = 0; x = −2, 0, 3; none; none; all x

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 15: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 15

17. Intercepts. If x = 0, then y = 0. If y = 0, then

0 = x(x− 1)2(x− 2)

x = 0, 1, 2.

Symmetry. If x is replaced with −x, we get y = −x(−x− 1)2(−x− 2), which does not reduce

to the given equation. Therefore there is no symmetry with respect to the y-axis. There is no

other type of symmetry.

Asymptotes. None (the equation does not have the form of a fraction).

Extent. y is defined for all x.

Graph.

............

...............................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

18. y = 0;x = −2, 0, 3; none; none; all x

............

......................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................

x

y

19. Intercepts. If x = 0, y = 1; if y = 0, we have

0 =2

x+ 2.

This equation has no solution.

Symmetry. Replacing x by −x, we get

y =2

−x+ 2

which does not reduce to the given equation. So there is no symmetry with respect to the

y-axis. Similarly, there is no other type of symmetry.

Asymptotes. Setting the denominator equal to 0, we get

x+ 2 = 0 or x = −2.

It follows that x = −2 is a vertical asymptote. Also, as x gets large, y approaches 0. So the

x-axis is a horizontal asymptote.

Extent. To avoid division by 0, x cannot be equal to −2. So the extent is all x except x = −2.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 16: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

16 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Graph.

............

............

....................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

20. y = −1; none; x = 3; y = 0; x 6= 3

21. Intercepts. If x = 0, then y = 2. If y = 0, then

2

(x− 1)2= 0.

This equation has no solution.

Symmetry. Replacing x by −x, we get

y =2

(−x− 1)2

which does not reduce to the given equation. There are no other types of symmetry.

Asymptotes. Setting the denominator equal to 0 gives

(x− 1)2 = 0 or x = 1.

It follows that x = 1 is a vertical asymptote. Also, as x gets large, y approaches 0. So the

x-axis is a horizontal asymptote.

Extent. To avoid division by 0, x cannot be equal to 1. So the extent is the set of all x except

x = 1.

Graph.

............

............

.......................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................. .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 17: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 17

22. y = − 14 ; none; none; x = −2; y = 0;x 6= −2

..........

..........

x

y

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ...............................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................−6 −4 −2 20

23. Intercepts. If x = 0, then y = 0. If y = 0, then

0 =x2

x− 1.

The only solution is x = 0.

Symmetry. Replacing x by −x yields

y =(−x)2

−x− 1=

x2

−x− 1

which is not the same as the given equation. So the graph is not symmetric with respect to

the y-axis. Replacing y by −y, we have

−y =x2

x− 1

which does not reduce to the given equation. So the graph is not symmetric with respect to

the x-axis.

Similarly, there is no symmetry with respect to the origin.

Asymptotes. Setting the denominator equal to 0, we get x − 1 = 0, or x = 1. So x = 1 is a

vertical asymptote. There are no horizontal asymptotes.

(Observation: for very large x the 1 in the denominator becomes insignificant. So the graph

gets ever closer to y =x2

x= x; the line y = x is a slant asymptote.)

Extent. To avoid division by 0, x cannot be equal to 1. So the extent is all x except x = 1.

Graph.

............

............

.......................................................................................................................................................................................................................................................................................................

......................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

24. y = 0; x = 0; none; x = −2; y = 1;x 6= −2

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 18: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

18 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

25. Intercepts. If x = 0, then y = −1/2. If y = 0, then

0 =x+ 1

(x− 1)(x+ 2).

The only solution is x = −1.

Symmetry. Replacing x by −x yields

y =−x+ 1

(−x− 1)(−x+ 2)

which is not the same as the given equation. There are no types of symmetry.

Asymptotes. Setting the denominator equal to 0, we get (x − 1)(x + 2) = 0. So x = 1

and x = −2 are the vertical asymptotes. As x gets large, y approaches 0, so the x-axis is a

horizontal asymptote.

Extent. To avoid division by 0, the extent is all x except x = 1 and x = −2.

Graph.

............

............

............................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

x

y

0

26. y = 0, x = 1, 0; none; x = −1, 2, y = 1;x 6= −1, 2

27. Intercepts. If x = 0, then y = 4. If y = 0, then

x2 − 4

x2 − 1= 0

x2 − 4 = 0 multiplying by x2 − 1

x = ±2. solution

Symmetry. Replacing x by −x reduces to the given equation. So there is symmetry with

respect to the y-axis. There is no other type of symmetry.

Asymptotes. Vertical: setting the denominator equal to 0, we have

x2 − 1 = 0 or x = ±1.

Horizontal: dividing numerator and denominator by x2, the equation becomes

y =1− 4

x2

1− 1x2

.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 19: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 19

As x gets large, y approaches 1. So y = 1 is a horizontal asymptote.

Extent. All x except x = ±1 (to avoid division by 0).

Graph.

............

............

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................

.......

.......

.......

........

.......

........

......

.......

.......

........

........

.......

.......

.......

.......

........

......................................................................................................................

.............................................................................................................................................................................................................................................................................................................

x

y

0

28. y = 14 , x = ±1; y-axis; x = ±2, y = 1;x 6= ±2

..........

..........

x

y

.....................................................................................................................................................................................................................................................................

.......

........

......

........

.......

.......

.......

.......

........

........

........

...............................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................

−3−2−1 1 2 3

−3

−2

−1

1

2

3

0

29. Intercepts. If x = 0, then y2 = −4−1 = 4, or y = ±2. If y = 0, then

0 =x2 − 4

x2 − 1

which is possible only if x2 − 4 = 0, or x = ±2.

Symmetry. The even powers on x and y tell us that if x is replaced by −x and y is replaced by

−y, the resulting equation will reduce to the given equation. The graph is therefore symmetric

with respect to both axes and the origin.

Asymptotes. Vertical: setting the denominator equal to 0, we get

x2 − 1 = 0 or x = ±1.

Horizontal: dividing numerator and denominator by x2, we get

y2 =1− 4

x2

1− 1x2

.

The right side approaches 1 as x gets large. Thus y2 approaches 1, so that y = ±1 are the

horizontal asymptotes.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 20: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

20 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Extent. From

y = ±√x2 − 4

x2 − 1

we conclude thatx2 − 4

x2 − 1=

(x− 2)(x+ 2)

(x− 1)(x+ 1)≥ 0.

Since the signs change only at x = 2,−2, 1, and −1, we need to use arbitrary “test val-

ues”between these points. The results are summarized in the following chart.

test

values x− 2 x− 1 x+ 1 x+ 2(x− 2)(x+ 2)

(x− 1)(x+ 1)

x > 2 3 + + + + +

1 < x < 2 3/2 − + + + −−1 < x < 1 0 − − + + +

−2 < x < −1 −3/2 − − − + −x < −2 −3 − − − − +

Note that the fraction is positive only when x > 2, −1 < x < 1 and x < −2. Since y = 0

when x = ±2, the extent is x ≥ 2, −1 < x < 1, x ≤ −2.

Graph.

............

............

............................................................................................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................

................................................................................................................................ .........................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................

x

y

0

30. y = ± 12 , x = ±1; both axes; x = ±2, y = ±1;x < −2,−1 ≤ x ≤ 1, x > 2

31. Intercepts. If x = 0, y2 = (−3)(5) = −15, or y = ±√

15 j, which is a pure imaginary number.

If y = 0,

(x− 3)(x+ 5) = 0

x = 3,−5.

Symmetry. Replacing y by −y, we get (−y)2 = (x − 3)(x + 5), which reduces to the given

equation. Hence the graph is symmetric with respect to the x-axis.

Asymptotes. None (no fractions).

Extent. From y = ±√

(x− 3)(x+ 5), we conclude that (x− 3)(x+ 5) ≥ 0. If x ≥ 3,

(x − 3)(x + 5) ≥ 0. If x ≤ −5, (x − 3)(x + 5) ≥ 0, since both factors are negative (or zero).

If −5 < x < 3, (x − 3)(x + 5) < 0. [For example, if x = 0, we get (−3)(5) = −15.] These

observations are summarized in the following chart.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 21: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.4. CURVE SKETCHING 21

test

values x− 3 x+ 5 (x− 3)(x+ 5)

x > 3 4 + + +

−5 < x < 3 0 − + −x < −5 −6 − − +

Extent: x ≤ −5, x ≥ 3

Graph.

............

............

..................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

• • x

y

0(-5,0) (3,0)

32. y = 0, x = 0;x-axis; x = −2, y = ±1;x < −2, x ≥ 0

33. Intercepts. If x = 0, y = 0; if y = 0, x = 0.

Symmetry. Replacing y by −y leaves the equation unchanged. So there is symmetry with

respect to the x-axis. There is no other type of symmetry.

Asymptotes. Vertical: setting the denominator equal to 0, we get

(x− 3)(x− 2) = 0 or x = 3, 2.

Horizontal: as x gets large, y approaches 0 (x-axis).

Extent. From

y = ±√

x

(x− 3)(x− 2)

we conclude thatx

(x− 3)(x− 3)≥ 0.

Since signs change only at x = 0, 2 and 3, we need to use “test values”between these points.

The results are summarized in the following chart.

test

values x x− 2 x− 3x

(x− 3)(x− 2)

x < 0 −1 − − − −0 < x < 2 1 + − − +

2 < x < 3 5/2 + + − −x > 3 4 + + + +

So the inequality is satisfied for 0 < x < 2 and x > 3. In addition, y = 0 when x = 0.Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 22: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

22 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

So the extent is 0 ≤ x < 2 and x > 3.

Graph.

............

............

.....................................................................................................................................

..................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................

...............................................................................................................................

.................................................................................................................

................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................

................................................................................

...................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................................................................x

y

0

34. x = −1; x-axis; x = −2, 1, y = 0;−2 < x ≤ −1, x > 1

35. C =10−2C1

C1 + 10−2, C1 ≥ 0

The only intercept is the origin. Dividing numerator and denominator by C1, the equation

becomes

C =10−2

1 + 10−2/C1.

As C1 gets large, C approaches 10−2; so C = 10−2 is a horizontal asymptote.

See graph in answer section of book.

37. Intercepts. If t = 0, S = 0; if S = 0, we get

0 = 60t− 5t2

0 = 5t(12− t)or t = 0, 12.

Symmetry. None.

Asymptotes. None.

Extent. t ≥ 0 by assumption.

Graph. See graph in answer section of book.

38.

39. Extent L ≥ 0.

See graph in answer section of book.

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 23: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1.5. CURVES WITH GRAPHING UTILITIES 23

40. 2000 units (x = 2)

1.5 Curves with Graphing Utilities

Graphs are from the answer section of the book.

1. If y = 0, then

x2(x− 1)(x− 2) = 0.

Setting each factor equal to 0, we get

x = 0, 1, 2.

..............................................................................................................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

[−1, 3] by [−2, 2]

2. −2, 0, 1

[−4, 2] by [−4, 2]Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/

Page 24: Introduction to Analytic Geometry · Introduction to Analytic Geometry 1.1 The Cartesian Coordinate System 1.Let (x2;y2) = (2 ;4) and ( x1;y1) = (5 ;2). From the distance formula

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

24 CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

4. −2,−1, 0, 1

[−3, 3] by [−0.5, 0.5]

5. x4 − 2x3 = 0

x3(x− 2) = 0

x = 0, 2..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................

[−1, 3] by [−2, 2]

6. ±√

6

2

[−2, 2] by [−15, 15]

8. 0,1

2

[−1, 1] by [−0.2, 0.2]

Not For Sale

© C

enga

ge L

earn

ing.

All

right

s res

erve

d. N

o di

strib

utio

n al

low

ed w

ithou

t exp

ress

aut

horiz

atio

n.

Solution Manual for Technical Calculus with Analytic Geometry 5th Edition by Kuhfittig

Full file at https://TestbankDirect.eu/

Full file at https://TestbankDirect.eu/