introduction to computer networks sander klous 01 11 010 001 1101 1110 11001 01011 110110 001101...

67
Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101 1111010001 0101111100 111101001111 010110000101 H t W Z 0 Topical lectures June 2007 Acknowledgements : • Cees de Laat • Jan Just Keijser • Oscar Koeroo Reference: Cisco systems –

Upload: emma-tucker

Post on 25-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

Introduction tocomputer networks

Introduction tocomputer networks

Sander Klous

011101000111011110110010101111011000110111111110111000111010100100111011011100100010110111110100010101111100

111101001111010110000101

H

t

W

Z0

Topical lecturesJune 2007

Acknowledgements:• Cees de Laat• Jan Just Keijser• Oscar Koeroo

Reference:• Cisco systems – CCNA ISBN: 1-58720-095-3

Page 2: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

2

Course overviewCourse overview

• Introduction

- ARPA net

- How the web was born

- Standard bodies

• Hardware

- Hubs and Switches

- Collision detection

- OSI Layers

• Topology

- Ethernet (LAN)

- Error discovery

- Wide Area Networks

• Routing

- IP networks

- Address resolution

- Routing protocols

- VLANs

• Protocols

- TCP and UDP

- Sockets and NAT

• Network Security

- Firewalls (briefly)

- (A)symmetric cryptography

- Public Key Infrastructure

Page 3: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

3

ARPA net 1969ARPA net 1969

• Defense Advanced Research Projects Agency (DARPA)

- Military part (MILNET)

- Research part (ARPANET)

• First two IMPs (Interface Message Processors):

- UCLA (August 30, 1969)

- Stanford Research Institute (October 1, 1969)

• Decommissioned in 1989

Page 4: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

4

ARPA net 1977ARPA net 1977

Page 5: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

5

Original proposal of the

WWW

Original proposal of the

WWW• Gopher (University of Minnesota)

• Tim Berners-Lee

- Enquire (HyperText)

- TCP/IP

- DNS

- Uniform Resource Locator (URL)

• Mike Sendall

• Newsgroup announcement:

6 August 1991, 22:37

http://groups.google.com/group/alt.hypertext/msg/395f282a67a1916c

Page 6: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

6

Google hits, August 14 2003Google hits, August 14 2003

• 1.1 Billion internet users in 2007 (± 17% of the world, ± 50% in US and EU)

http://www.internetworldstats.com/stats.htm

• 11.5 Billion web pages (2005)

Page 7: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

7

Standard bodiesStandard bodies

• Institute of Electrical and Electronics Engineers (IEEE)

- Advancement of technology related to electricity

- IEEE 802.X Ethernet standards

• Internet Engineering Task Force (IETF)

- Rob Blokzijl ISOC member

- Develops and promotes internet standards

Requests for Comments (RFCs)

- In close cooperation with W3C

• World Wide Web Consortium (W3C)

- Founded by Tim Berners-Lee, director

- International standards organization for WWW

Page 8: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

8

Internet overviewInternet overview

Page 9: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

9

Simple networkSimple network

Page 10: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

10

Simple network internalsSimple network internals

Page 11: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

11

Collision detectionCollision detection

CSMA:Carrier Sense Multiple Access

Page 12: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

12

Switched networksSwitched networks

• Occupancy < 30%

• Switched Networks

- Half duplex

- 100%

• New network cards

- Full duplex

- 2 x 100%

Page 13: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

13

OSI LayersOSI Layers

Page 14: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

14

OSI Layer 2: EthernetOSI Layer 2: Ethernet

• DIX: DEC, Intel and Xerox

• MAC: Media Access Control = number of your Ethernet card

• FCS: Frame Check Sequence – See CRC

• DSAP: Destination Service Access Point

• SNAP: Sub network Access Protocol

Page 15: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

15

Ethernet Frame SpecificationEthernet Frame Specification

• Note: error discovery error recovery

• Maximum Frame Length = 1500 (see MTU specs)

Page 16: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

16

Check sum – bidirectional parityCheck sum – bidirectional parity

• Works well for single bit errors

Page 17: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

17

• Polynomial division

• Based on Galois Field Theory, GF(2)

- Coefficients either 0 or 1

- Division results in Exclusive OR

Cyclic Redundancy CheckCyclic Redundancy Check

Partially from TanenbaumComputer NetworksISBN 0-13-038488-7

Quotient

Divisor

Remainder

Page 18: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

18

Wide Area NetworksWide Area Networks

Router:

Connecting different OSI layer 2 protocols

PPP: Point to Point Protocol

Page 19: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

19

WAN InternalsWAN Internals

• Channel Service Unit (CSU)

• Customer Premises Equipment (CPE)

• High Level Data Link Control (HDLC)

• Asynchronous Transfer Mode (ATM)

Page 20: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

20

Maximum Transmission Unit (MTU)Maximum Transmission Unit (MTU)

• Fragmentation, equal sized packages

• Jumbo frames Configuration challenge

- Avoid fragmentation and reassembly

- Avoid too much overhead

Page 21: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

21

Multiple links: Frame RelayMultiple links: Frame Relay

• Frame Relay Protocols

• Telecom Operator Agreements

• See also Border Gateway Protocol (BGP)

Page 22: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

22

OSI Layer 3: NetworkingOSI Layer 3: Networking

• Internet Protocol (IP) numbers

• In Europe, policies are managed by RIPE

Originally (1997) from a NIKHEF office, now at Singel 258

• Three classes of networks

Page 23: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

23

IP networkIP network

150.1.0.1

150.1.0.2

150.2.0.1

150.2.0.2

150.3.0.1

150.4.0.2150.4.0.1

6 Class B networks

Page 24: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

24

SubnetsSubnets

• Split host identification in two parts:

- Subnet

- Host ID

• Splitting at bit level

Nr of bits available:

Page 25: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

25

IP network with subnetsIP network with subnets

150.150.1.1

150.150.1.2

1 Class B network

150.150.4.2150.150.4.1150.150.3.1

150.150.2.1

150.150.2.2

Page 26: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

26

Subnet calculationSubnet calculation

Number of masked bits (network + subnet)

Page 27: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

27

Boolean subnet calculationsBoolean subnet calculations

Note, suppose your host definition is:

• 199.1.1.100/27

• Subnet mask: 255.255.255.224

• Number of subnets: 23 – 2 = 6

• Number of hosts per subnet: 25 – 2 = 30

• Subnet addresses start at:

0, 32, 64, 96, 128, 160, 192, 224

• Your subnet range is:

97 – 126

96 and 127 are reserved addressesPrivate network ranges

Page 28: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

28

Address Resolution Protocol (ARP)Address Resolution Protocol (ARP)

• Ethernet does not use IP numbers

• Ethernet needs the MAC address

• Address Resolution Protocol ties them together

Page 29: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

29

Ethernet route discoveryEthernet route discovery

• Building Address Tables

Page 30: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

30

Switch routingSwitch routing

Page 31: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

31

Redundant linksRedundant links

• Avoid loops at all costs

- Additional hops

• Spanning Tree Protocol (STP)

Page 32: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

32

ReroutingRerouting

Page 33: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

33

Spanning Tree Protocol rulesSpanning Tree Protocol rules

1. Decide which switch is the root switch

- Based on priority (set manually)

- Based on switch MAC address

2. All ports of root switch are open

3. All ports with shortest route to root switch are open

4. In case an existing route fails: rerun procedure

- Convergence takes about 50 seconds

• Improved version: (Rapid Spanning Tree Protocol)

Page 34: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

34

WAN Routing: Border Gateway Protocol (BGP)WAN Routing: Border Gateway Protocol (BGP)

• Based on Telecom Operator policies

• Each operator has an autonomous system (AS)

• Avoid loops at all costs (based on AS number)

• Note that routers work at OSI Layer 3 – IP numbers

Page 35: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

35

Link state protocol (WAN spanning tree)Link state protocol (WAN spanning tree)

• Distance Vector Protocols

• Shortest Path First

• AKA

Dijkstra’s Algorithm

- Weighted links (Euros)

• Build routing table

- Closest first

- Who is your neighbor?

• List of all routes

- In all routers

Vertex

Page 36: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

36

Dijkstra’s algorithmDijkstra’s algorithm

Graph (V), where V is a set of vertices (vi)

1. The length of a path from any vertex vk to a vertex v0 is l (vk)

- So l (v0) = 0, initialize all other lengths l (vk) to

2. Start from a vertex vj (j=0) and consider all unlabeled neighbors (yi)

3. Replace l (yi) with min{ l (yi), l (vj) + w( {vj, yi} ) }

1. Where w( {vj, yi} ) is the weight of the link between vj and yi

4. Choose the smallest value from all yi and label it vj+1

5. Include the route from v to v1 as shortest path

6. Add all unlabeled neighbors from vj+1 to the set (yi)

7. Increase counter, j=j+1 and repeat procedure from step 4

8. Algorithm is completed when all vertices are included

Page 37: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

37

SPF Scalability – Topology SummarizationSPF Scalability – Topology Summarization

• Divide network in areas

• Router 3 is an intersection

• Topology summarization

Page 38: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

38

SPF Scalability – Route SummarizationSPF Scalability – Route Summarization

• Classless inter domain routing (CIDR)

• Aggregate routes at ISP level

• Example below: all 198.* class C networks are ISP 1

Routing Information Protocol – RIP (hop counting)Open Shortest Path First – OSPFIGRP – Interior Gateway Routing Protocol (Cisco)EIGRP – Enhanced IGRP (Cisco)

Page 39: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

39

Route poisoningRoute poisoning

• In SPF, routers publish information about best route

• What happens if a route fails?

- Remove it from the table

- But…

How to update other routers?

Route poisoning

Route poisoning

Page 40: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

40

Horizon splittingHorizon splitting

• Counting to infinity

Horizon splitting

Page 41: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

41

Virtual LAN introductionVirtual LAN introduction

• A VLAN is essentially a broadcast domain.

• Two machines on different VLANs require a layer 3 device for communication (i.e. a router).

• Two machines on the same VLAN require a layer 2 device for communication (i.e. a switch).

Page 42: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

42

VLAN in real lifeVLAN in real life

• NIKHEF: normal network and guest network (security)

- VLANs are often combined with subnet masks

• ATLAS trigger: redundancy, VLANs and MSTP Jos

Page 43: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

43

Fine grained security at layer 3Fine grained security at layer 3

• Access control lists (ACLs)

Page 44: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

44

OSI Layer 4: Transport ProtocolsOSI Layer 4: Transport Protocols

• Transmission Control Protocol (TCP)

• Routing based on Internet Protocol (IP)}TCP/IP

Page 45: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

45

TCP/IP basicsTCP/IP basics

• Mixing transfer and network layer

• Packages contain source and destination IP address

• Send request and provide reply address

• Most features are symmetric

Page 46: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

46

Source Port Destination Port

Sequence Number

Acknowledgement Number

Length

Reserved

Code bits

Window

Checksum Urgent

Options

Data

Working with acknowledgements

Working with acknowledgements

Page 47: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

47

Working with sessionsWorking with sessions

• Initialize TCP session

- With arbitrary sequence number

- Sessions are synchronized in two directions

• Connection is established, sequence synchronized

- From that moment, sequence = total nr of bytes sent + offset

Page 48: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

48

Acknowledgements in detailAcknowledgements in detail

• Agreement to confirm reception after X bytes.

- X bytes is called the window (size)

- In the example below: X = 3000

Page 49: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

49

Error recoveryError recovery

• Re-transmission on “No Data” Acknowledgement

• Timeout trigger re-transmission

• Package reordering

Page 50: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

50

Sliding windows, congestion controlSliding windows, congestion control

• Successful transfer

- Window size increases

- Reduce latency effects

• Failed transfer

- Window size reduces

• Window size updates are asynchronous

Win

dow

siz

e

Time

Slow start

Page 51: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

51

Socket conceptSocket concept

• Multiplexing on different ports

Page 52: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

52

Network Address Translation (NAT)Network Address Translation (NAT)

• Provide internet access to private networks

• Changing IP number and port number

Page 53: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

53

User Datagram Protocol (UDP)User Datagram Protocol (UDP)

• UDP for real-time applications

Source Port

Destination Port

Length ChecksumUDP Header:

Page 54: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

54

Well known applicationsWell known applications

• Running in parallel on different ports

• A socket consists of: (IP number, protocol, port)

Page 55: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

55

Security at layer 4+Security at layer 4+

• Firewalls

- Expensive, inspection at layer 4+ requires a lot of resources

• Protection against internet worms

- Worms spread through vulnerabilities in applications

• Protection against Denial Of Service attacks

- Many requests to the same application make it unresponsive

• Distributed Denial Of Service attacks

- Attack the application from many different machines

- Avoids blocking the attack based on IP address

Page 56: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

56

Firewall typesFirewall types

• First generation

- Packet inspection

- Check IP address and port number and filter

• Second generation

- State full firewall (i.e. state aware)

- Distinguishes between existing and new connections

• Third generation

- Proxy based firewalls

- Application aware

- Inspects traffic on application specific features

Page 57: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

57

CryptographyCryptography

• Cryptography: Dk ( Ek (P) ) = P

- D = Decryption algorithm, E = Encryption algorithm and k = key

- P = Plain text

• Kerckhoff’s principle:

- All algorithms should be public, only keys are secret

• Symmetric (Asymmetric) key algorithms:

- Same (Different) key is used for encryption and decryption

• Examples of symmetric key algorithms

(based on substitutions and permutations):

- (Triple) DES = Data Encryption Standard

- AES = Advanced Encryption Standard

From TanenbaumComputer NetworksISBN 0-13-038488-7

Page 58: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

58

AES algorithm introductionAES algorithm introduction

S box(16 x 16) lookup

Shift rows with increased steps

Multiply with a polynomial Combine with secret key

12

3 4

Page 59: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

59

Asymmetric key algorithmsAsymmetric key algorithms

• Weak point in AES: distribution of the key

- If the key is known, Dk and Ek are known

• Solution: use different keys for Encryption/Decryption

- Still: Dk2 (Ek1 (P) ) = P

• Make Ek1 publicly available

- It should be very difficult to deduce Dk2 from Ek1

• Additional complication

- Part of the information is out in the open (k1)

• Examples of asymmetric key algorithms:

- DSA = Digital Signature Algorithm

- RSA = Rivest, Shamir and Adleman (MIT)

Page 60: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

60

RSA overviewRSA overview

• Choose two large prime numbers (1024 bits or more)

• Compute n = p x q and z = (p - 1) x (q - 1)

• Find a number d smaller than z

- Where d and z should not have a common factor

• Find a number e

- Where e x d = 1 mod z

i.e. 1 + (k x z)

• You need (e, n) to encrypt and (p, n) to decrypt

- See example on next page

• It is extremely difficult to find p and q from n (factorization)

Page 61: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

61

Toy example RSA encryptionToy example RSA encryption

• For p = 3, q = 11, n = 3 x 11 = 33, z = 2 x 10 = 20

• Choose d = 7 (20 and 7 do not have common factors)

• Solve 7 x e = 1 mod 20, so e = 3

• Note: asynchronous cryptography is slow, due to large key sizes

Page 62: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

62

Public Key Infrastructure (PKI)Public Key Infrastructure (PKI)

Page 63: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

63

Public Key Infrastructure (Identification)Public Key Infrastructure (Identification)

• Grid mechanisms

• X.509 Certificates

- Definitions

- Procedures

- Based on RSA

Page 64: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

64

Transport Layer Security (TLS)Transport Layer Security (TLS)

State of the art in secure connections

1. Client contacts server, server sends its certificate

2. Client checks digital signature of the CA

3. Client checks server certificate

• Protection against man in the middle attacks

4. Client proposes encryption method

5. Switch to symmetric encryption (e.g. AES)

6. All kinds of additional measures

Page 65: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

65

Advanced topics, not coveredAdvanced topics, not covered

• Network layer security

- PAP, CHAP

• IPv6 and IPSec

- Successor of IPv4, 128 bit = 5 x 10128 addresses

- Backward compatible

• Optical networks (lambdas)

- Dense Wave Length Division Multiplexing (DWDM)

- Optical Private Networks (OPNs)

- Switching optical networks (ONS boxes)

Page 66: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

66

Advanced topics, not covered - continuedAdvanced topics, not covered - continued

• Application layer

- DNS, P2P, VPN

- Email, HyperText

• Distributed File Systems

- AFS, NFS, etc.

• Unicast versus Multicast

- Time To Live (TTL)

• Grid

Page 67: Introduction to computer networks Sander Klous 01 11 010 001 1101 1110 11001 01011 110110 001101 1111111 0111000 11101010 01001110 110111001 000101101

67Cees de Laat