introduction to ito's lemmapi.math.cornell.edu/~web6720/wendy_slides.pdf · 2015-05-08 ·...

21
Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences May 6, 2015 Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 1 / 21

Upload: others

Post on 23-Feb-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Introduction to Ito’s Lemma

Wenyu Zhang

Cornell UniversityDepartment of Statistical Sciences

May 6, 2015

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 1 / 21

Page 2: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Overview

1 Background

2 Ito Processes

3 Ito’s Lemma

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 2 / 21

Page 3: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Background

Proved by Kiyoshi Ito (not Ito’s theorem on group theory by NoboruIto)

Used in Ito’s calculus, which extends the methods of calculus tostochastic processes

Applications in mathematical finance e.g. derivation of theBlack-Scholes equation for option values

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 3 / 21

Page 4: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Processes

Question

Want to model the dynamics of process X (t) driven by Brownian motionW (t).

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 4 / 21

Page 5: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Processes: Discrete-time Construction

Partition time interval [0,T] into N periods, each of length ∆t = TN ;

tn = n∆t

Xtn+1 = Xtn + µtn∆t + σtn∆Wtn

I drift µI volatility σI fluctuations ∆Wtn = Wtn+1 −Wtn ∼ N(0,∆t)

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 5 / 21

Page 6: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Processes: Discrete-time Construction

Summing the increments,

XT = X0 +N−1∑n=0

µtn∆t +N−1∑n=0

σtn∆Wtn

Continuous-time analogue as N →∞,

XT?−→ X0 +

∫ T

0µtdt +

∫ T

0σtdWt

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 6 / 21

Page 7: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Processes: Discrete-time Construction

Regularity conditions for µt and σt

adapted to FWt

continuous in t

integrability conditions (σt ∈M2 i.e. E(∫ T

0 σ2t dt)<∞)

Riemann-Stieltjes integral

N−1∑n=0

µtn∆t →∫ T

0µtdt

Ito integral

N−1∑n=0

σtn∆WtnL2−→∫ T

0σtdWt

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 7 / 21

Page 8: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Integrals

Question

What is∫ T0 σtdWt?

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 8 / 21

Page 9: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Integrals

Theorem (Existence and Uniqueness of Ito Integral)

Suppose that vt ∈M2 satisfies the following: For all t ≥ 0,A1) vt is a.s. continuousA2) vt is adapted to FW

t

Then, for any T > 0, the Ito integral IT (v) =∫ T0 vtdWt exists and is

unique a.e.

Steps for proof

1 Construct a sequence of adapted stochastic processes vn such that

‖v − vn‖M2 =

√E(∫ T

0 |vn(t)− v(t)|2dt)→ 0

2 Show that ‖IT (vn)− IT (v)‖L2 → 0

3 Show the a.s. uniqueness of the limit IT (v)

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 9 / 21

Page 10: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Integrals: Example

Example (Ito Integral)∫ T

0WtdWt with approximating sums

N−1∑n=0

Wtn∆Wtn

N−1∑n=0

Wtn(Wtn+1 −Wtn) =N−1∑n=0

[1

2(W 2

tn+1−W 2

tn)− 1

2(Wtn+1 −Wtn)2

]

=1

2W 2

T −1

2

N−1∑n=0

(Wtn+1 −Wtn)2

L2−→ 1

2W 2

T −1

2T as N →∞

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 10 / 21

Page 11: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Integrals: Example

Example (Riemann-Stieltjes Integral)∫ T

0GtdGt with G ∈ C1,G (0) = 0

∫ T

0GtdGt =

∫ T

0GtG

′tdt

=1

2G 2T

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 11 / 21

Page 12: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Integral: Properties

Linear in the integrandTime-additiveMartingaleProofFor t < T , increase the partition by an extra point tk = t.

E [IT (vn)− It(vn)|Ft ] = E

[N−1∑n=k

σtn∆Wtn |Ft

]

= E

[N−1∑n=k

E (σtn∆Wtn |Ftn)|Ft

]

= E

[N−1∑n=k

σtnE (∆Wtn |Ftn)|Ft

]= 0

IT (vn) is a martingale. Martingales are preserved under L2 limits.

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 12 / 21

Page 13: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito Processes

Xt − X0 =

∫ t

0µsds +

∫ t

0σsdWs

SDE notation:

dXt = µtdt + σtdWt

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 13 / 21

Page 14: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma

Theorem (Ito’s Lemma)

Suppose that f ∈ C2. Then with probability one, for all t ≥ 0,

df (Xt) =∂f

∂x(Xt)dXt +

1

2

∂2f

∂x2(Xt)(dXt)

2

f (Xt)− f (X0) =

∫ t

0f ′(Xs)dXs +

1

2

∫ t

0f ′′(Xs)ds

Explicit statement:

df (Xt) =

(µt∂f

∂x(Xt) +

1

2σ2t∂2f

∂x2(Xt)

)dt + σt

∂f

∂x(Xt)dWt

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 14 / 21

Page 15: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: Idea

Can be obtained heuristically by second order Taylor expansion of fabout Xt

(dXt)2 = (µtdt + σtdWt)

2 term cannot be dropped

I (dWt)2 = dt

drop terms � dt∫ T

0(dt)p = lim

N→∞

N−1∑n=0

(∆t)p

= limN→∞

N

(T

N

)p

= 0 as N →∞ if p > 1

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 15 / 21

Page 16: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: Idea

(dWt)2 = dt since

∫ T

0(dWt)

2 = limN→∞

N−1∑n=0

(∆Wtn)2L2= T =

∫ T

0dt

E

[N−1∑n=0

(∆Wtn)2

]=

N−1∑n=0

E (∆Wtn)2 =N−1∑n=0

∆t = T

E

[N−1∑n=0

(∆Wtn)2 − T

]2= Var

[N−1∑n=0

(∆Wtn)2

]=

N−1∑n=0

Var(∆Wtn)2

=N−1∑n=0

(E (∆W )4 − [E (∆W )2]2) =N−1∑n=0

(3(∆t)2 − (∆t)2)

=2T 2

N→ 0 as N →∞

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 16 / 21

Page 17: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: More details

More rigorously, for bounded continuous g ,

N−1∑n=0

g(Wtn)(∆Wtn)2L2−→∫ T

0g(Wt)dt as N →∞

ProofSince t 7→ g(Wt) is a.s. continuous,

∑N−1n=0 g(Wtn)∆t →

∫ T0 g(Wt)dt.

WTS:

IN =N−1∑n=0

g(Wtn)[(∆Wtn)2 −∆t

] L2−→ 0

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 17 / 21

Page 18: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: More details

1. E (I 2N) = E{∑N−1

n=0 (g(Wtn))2[(∆Wtn)2 −∆t]2}

E{

g(Wtn)g(Wtm)[(∆Wtn)2 −∆t][(∆Wtm)2 −∆t]}

= E{

E(g(Wtn)g(Wtm)[(∆Wtn)2 −∆t][(∆Wtm)2 −∆t]|Ftm

)}= E

{g(Wtn)g(Wtm)[(∆Wtn)2 −∆t]E

[(∆Wtm)2 −∆t|Ftm

]}= 0 since {W 2

t − t} is martingale

2. E (I 2N) ≤ CT 2

N

E (I 2N) ≤ ‖g‖2∞N−1∑n=0

E [(∆Wtn)2 −∆t]2 since g is bounded

= ‖g‖2∞N−1∑n=0

(∆t)2E (W 21 − 1)2 since ∆Wtn ∼

√∆tW1

= CN−1∑n=0

(T

N

)2

=CT 2

N

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 18 / 21

Page 19: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: Example

Example (Ito’s Lemma)

Use Ito’s Lemma, write Zt = W 2t as a sum of drift and diffusion terms.

Zt = f (Xt) with µt = 0, σt = 1,X0 = 0, f (x) = x2

dZt = df (Xt)

= f ′(Xt)dXt +1

2f ′′(Xt)(dXt)

2

= 2WtdWt +1

22(dWt)

2

= 2WtdWt + dt

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 19 / 21

Page 20: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

Ito’s Lemma: Higher dimensions

Ito’s Lemma

If Xt and Yt are Ito processes and f : R2 7→ R is sufficiently smooth, then

df (Xt ,Yt) =∂f

∂xdXt +

∂f

∂ydYt

+1

2

∂2f

∂x2(dXt)

2 +1

2

∂2f

∂y2(dYt)

2 +∂2f

∂x∂y(dXt)(dYt)

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 20 / 21

Page 21: Introduction to Ito's Lemmapi.math.cornell.edu/~web6720/Wendy_slides.pdf · 2015-05-08 · Introduction to Ito’s Lemma Wenyu Zhang Cornell University Department of Statistical Sciences

References

Rene L. Schilling/Lothar Partzsch

Brownian Motion - An Introduction to Stochastic Processes (2012)

CUHK course notes (2013)

Chapter 6: Ito’s Stochastic Calculus

Karl Sigman

Columbia course notes (2007)

Introduction to Stochastic Integration

Wenyu Zhang (Cornell) Ito’s Lemma May 6, 2015 21 / 21