introduction to phonon and spectroscopy calculations in...

57
Intro to Phonons 2012 1 / 57 Introduction to phonon and spectroscopy calculations in CASTEP Keith Refson STFC Rutherford Appleton Laboratory May 30, 2012

Upload: others

Post on 06-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Intro to Phonons 2012 1 / 57

Introduction to phonon and spectroscopy calculations in CASTEP

Keith RefsonSTFC Rutherford Appleton Laboratory

May 30, 2012

Page 2: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Motivations for ab-initio lattice dynamics I

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 2 / 57

Motivations from experimental spectroscopy:

• Vibrational spectroscopy is sensitive probe ofstructure and dynamics of materials.

• All experimental methods (IR, raman, INS,IXS) provide incomplete information.

• IR and raman have inactive modes• Hard to distinguish fundamental and

overtone (multi-phonon) processes inspectra

• No experimental technique provides com-plete eigenvector information ⇒ modeassignment based on similar materials,chemical intuition, guesswork.

• Hard to find accurate model potentials to de-scribe many systems

• Fitted force-constant models only feasible forsmall, high symmetry systems. 0 1000 2000 3000 4000

Frequency (cm-1

)

0

0.2

0.4

0.6

0.8

Abs

orpt

ion

IR spectrum

Page 3: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Motivations for ab-initio lattice dynamics II

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 3 / 57

Motivations from predictive modelling

• Lattice dynamics calculation can establish stability or otherwise of putativestructure.

• LD gives direct information on interatomic forces.• LD can be used to study phase transitions via soft modes.• Quasi-harmonic lattice dynamics can include temperature and calculate

ZPE and Free energy of wide range of systems.• Electron - phonon coupling is origin of (BCS) superconductivity.

Page 4: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Lattice Dynamics of Crystals

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 4 / 57

Page 5: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

References

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 5 / 57

Books on Lattice Dynamics

• M. T. Dove Introduction to Lattice Dynamics, CUP. - elementaryintroduction.

• J. C. Decius and R. M. Hexter Molecular Vibrations in Crystals - Latticedynamics from a spectroscopic perspective.

• Horton, G. K. and Maradudin A. A. Dynamical properties of solids (NorthHolland, 1974) A comprehensive 7-volume series - more than you’ll need toknow.

• Born, M and Huang, K Dynamical Theory of Crystal Lattices, (OUP, 1954)- The classic reference, but a little dated in its approach.

References on ab-initio lattice dynamics

• K. Refson, P. R. Tulip and S. J Clark, Phys. Rev B. 73, 155114 (2006)• S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561.• Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).• Richard M. Martin Electronic Structure: Basic Theory and Practical

Methods: Basic Theory and Practical Density Functional Approaches Vol 1

Cambridge University Press, ISBN: 0521782856

Page 6: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Monatomic Crystal in 1d (I)

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 6 / 57

Page 7: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Monatomic Crystal (II)

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 7 / 57

Page 8: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Diatomic Crystal - Optic modes

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 8 / 57

More than one atom per unit cell gives rise to optic modes with differentcharacteristic dispersion.

Page 9: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Characterization of Vibrations in Crystals

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 9 / 57

• Vibrational modes in solids take form of waves with wavevector-dependentfrequencies (just like electronic energy levels).

• ω(q) relations known as dispersion curves

• N atoms in prim. cell ⇒ 3N branches.• 3 acoustic branches corresponding to sound propagation as q → 0 and

3N − 3 optic branches.

Page 10: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Formal Theory of Lattice Dynamics

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 10 / 57

• Based on expansion of total energy about structural equilibrium co-ordinates

E = E0 +∑

κ,α

∂E

∂uκ,α.uκ,α +

1

2

κ,α,κ′,α′

uκ,α.Φκ,κ′

α,α′ .uκ′,α′ + ...

where uκ,α is the vector of atomic displacements from equilibrium and

Φκ,κ′

α,α′ (a) is the matrix of force constants Φκ,κ′

α,α′ (a) =∂2E

∂uκ,α∂uκ′,α′

• At equilibrium the forces − ∂E∂uκ,α

are all zero so 1st term vanishes.

• In the Harmonic Approximation the 3rd and higher order terms areassumed to be negligible

• Assume Born von Karman periodic boundary conditions and substitutingplane-wave uκ,α = εmκ,αqexp(iq.Rκ,α − ωt) yields eigenvalue equation:

Dκ,κ′

α,α′ (q)εmκ,αq = ω2m,qεmκ,αq

where frequencies are square roos of eigenvalues. The dynamical matrix

Dκ,κ′

α,α′ (q) =1

MκMκ′

Cκ,κ′

α,α′ (q) =1

MκMκ′

a

Φκ,κ′

α,α′ (a)e−iq.Ra

is the Fourier transform of the force constant matrix.

Page 11: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Quantum Theory of Lattice Modes

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 11 / 57

• The classical energy expression canbe transformed into a quantum-mechanical Hamiltonian for nuclei.

• In harmonic approximation nuclearwavefunction is separable into prod-uct by mode transformation.

• Each mode satisfies harmonic oscil-lator Schroedinger eqn with energylevels Em,n =

(

n+ 12

)

~ωm for modem.

• Quantum excitations of modesknown as phonons in crystal

• Transitions between levels n1 andn2 interact with photons of energy(n2 − n1) ~ωm, ie multiples of fun-

damental frequency ωm.• In anharmonic case where 3rd-order

term not negligible, overtone fre-quencies are not multiples of funda-mental.

-2 -1 0 1 20

1

2

3

Page 12: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Formal Theory of Lattice Dynamics II

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ReferencesMonatomicCrystal in 1d (I)

MonatomicCrystal (II)

Diatomic Crystal- Optic modes

Characterizationof Vibrations inCrystals

Formal Theory ofLattice Dynamics

Quantum Theoryof Lattice ModesFormal Theory ofLattice DynamicsII

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 12 / 57

• The dynamical matrix is a 3N × 3N matrix at each wavevector q.

• Dκ,κ′

α,α′ (q) is a hermitian matrix ⇒ eigenvalues ω2m,q are real.

• 3N eigenvalues ⇒ modes at each q leading to 3N branches in dispersioncurve.

• The mode eigenvector εmκ,α gives the atomic displacements, and itssymmetry can be characterised by group theory.

• Given a force constant matrix Φκ,κ′

α,α′ (a) we have a procedure for obtaining

mode frequencies and eigenvectors over entire BZ.• In 1970s force constants fitted to experiment using simple models.• 1980s - force constants calculated from empirical potential interaction

models (now available in codes such as GULP)• mid-1990s - development of ab-initio electronic structure methods made

possible calculation of force constants with no arbitrary parameters.

Page 13: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

ab-initio Lattice Dynamics

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 13 / 57

Page 14: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

The Frozen-phonon method

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 14 / 57

The frozen phonon method:

• Create a structure perturbed by guessed eigenvector• evaluate ground-state energy as function of amplitude λ with series of

single-point energy calculations on perturbed configurations.

• Use E0(λ) to evaluate k = d2E0dλ2

• Frequency given by√

k/µ. (µ is reduced mass)• Need to use supercell commensurate with q.• Need to identify eigenvector in advance (perhaps by symmetry).• Not a general method: useful only for small, high symmetry systems or

limited circumstances otherwise.• Need to set this up “by hand” customised for each case.

Page 15: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

The Finite-Displacement method

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 15 / 57

The finite displacement method:

• Displace ion κ′ in direction α′ by small distance ±u.• Use single point energy calculations and evaluate forces on every ion in

system F+κ,α and F+

κ,α for +ve and -ve displacements.• Compute numerical derivative using central-difference formula

dFκ,α

du≈F+κ,α − F−

κ,α

2u=

d2E0

duκ,αduκ′,α′

• Have calculated entire row k′, α′ of Dκ,κ′

α,α′ (q = 0)

• Only need 6Nat SPE calculations to compute entire dynamical matrix.• This is a general method, applicable to any system.• Can take advantage of space-group symmetry to avoid computing

symmetry-equivalent perturbations.• Like frozen-phonon method, works only at q = 0.

Page 16: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

The Supercell method

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 16 / 57

The supercell method is an extension of the finite-displacement approach.

• Relies on short-ranged nature of FCM; Φκ,κ′

α,α′ (a) → 0 as Ra → ∞.

• For non-polar insulators and most metals Φκ,κ′

α,α′ (a) decays as 1/R5 or faster.

• For polar insulators Coulomb term decays as 1/R3

• Can define “cut off” radius Rc beyond which Φκ,κ′

α,α′ (a) is treated as zero.

• In supercell with L > 2Rc then Cκ,κ′

α,α′ (q = 0) = Φκ,κ′

α,α′ (a).

• Method:

1. choose sufficiently large supercell and compute Cκ,κ′

α,α′ (qsupercell = 0)

using finite-displacement method.

2. This object is just the real-space force-constant matrix Φκ,κ′

α,α′ (a).

3. Fourier transform using

Dκ,κ′

α,α′ (q) =1

MκMκ′

a

Φκ,κ′

α,α′ (a)e−iq.Ra

to obtain dynamical matrix of primitive cell at any desired q.

4. Diagonalise Dκ,κ′

α,α′ (q) to obtain eigenvalues and eigenvectors.

• This method is often (confusingly) called the “direct” method.

Page 17: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

First and second derivatives

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 17 / 57

Goal is to calculate the 2nd derivatives of energy to construct FCM or Dκ,κ′

α,α′ (q).

• Energy E = 〈ψ| H |ψ〉 with H = ∇2 + VSCF

• Force F = − dEdλ

= −⟨

dψdλ

∣H |ψ〉 − 〈ψ| H

dψdλ

− 〈ψ| dVdλ

|ψ〉

where λ represents an atomic displacement perturbation.• If 〈ψ|represents the ground state of H then the first two terms vanish

because 〈ψ| H∣

dψdλ

= ǫn 〈ψ|∣

dψdλ

= 0. This is the Hellman-Feynmann

Theorem.• Force constants are the second derivatives of energy

k = d2Edλ2 = − dF

dλ=

dψdλ

dVdλ

|ψ〉+ 〈ψ| dVdλ

dψdλ

− 〈ψ| d2Vdλ2 |ψ〉

• None of the above terms vanishes.• Second derivatives need linear response of wavefunctions wrt perturbation

(⟨

dψdλ

∣).

• In general nth derivatives of wavefunctions needed to compute 2n+ 1th

derivatives of energy. This result is the “2n+ 1 theorem”

Page 18: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Density-Functional Perturbation Theory

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 18 / 57

• In DFPT need first-order KS orbitals φ(1), the linear response to λ.• λ may be a displacement of atoms with wavevector q (or an electric field E.)• If q incommensurate φ(1) have Bloch-like representation:

φ(1)k,q

(r) = e−i(k+q).ru(1)(r) where u(1)(r) has periodicity of unit cell.

⇒ can store u(1)(r) in computer rep’n using basis of primitive cell.• First-order response orbitals are solutions of Sternheimer equation

(

H(0) − ǫ(0)m

) ∣

∣φ(1)m

= −Pcv(1)

∣φ(0)m

Pc is projection operator onto unoccupied states. First-order potential v(1)

includes response terms of Hartree and XC potentials and therefore dependson first-order density n(1)(r) which depends on φ(1).Finding φ(1) is therefore a self-consistent problem just like solving theKohn-Sham equations for the ground state.

• Two major approaches to finding φ(1) are suited to plane-wave basis sets:

• Green’s function (S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561).• Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).

CASTEP uses Gonze’s variational DFPT method.• DFPT has huge advantage - can calculate response to incommensurate q

from a calculation on primitive cell.• Disadvantage of DFPT - lots of programming required.

Page 19: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Fourier Interpolation of dynamical Matrices

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

TheFrozen-phononmethodThe Finite-DisplacementmethodThe SupercellmethodFirst and secondderivativesDensity-FunctionalPerturbationTheory

FourierInterpolation ofdynamicalMatrices

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 19 / 57

• DFPT formalism requires self-consistent iterative solution for every separateq.

• Hundreds of q’s needed for good dispersion curves, thousands for goodPhonon DOS.

• Can take advantage of short-range nature of real-space FCM Φκ,κ′

α,α′ (a).

• Compute Dκ,κ′

α,α′ (q) on a Monkhorst-Pack grid of q vectors.

• Approximation to FCM in p× q × r supercell given by Fourier transform ofdynamical matrices on p× q × r grid.

Φκ,κ′

α,α′ (a) =∑

q

Cκ,κ′

α,α′ (q)eiq.Ra

• Fourier transform using to obtain dynamical matrix of primitive cell at any

desired q, Exactly as with Finite-displacement-supercell method

• Diagonalise mass-weighted Dκ,κ′

α,α′ (q) to obtain eigenvalues and eigenvectors.

• Longer-ranged coulombic contribution varies as 1/R3 but can be handledanalytically.

• Need only DFPT calculations on a few tens of q points on grid to calculate

Dκ,κ′

α,α′ (q) on arbitrarily dense grid (for DOS) or fine (for dispersion) path.

Page 20: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Lattice Dynamics in CASTEP

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 20 / 57

Page 21: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Methods in CASTEP

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 21 / 57

CASTEP can perform ab-initio lattice dynamics using

• Primitive cell finite-displacement at q = 0• Supercell finite-displacement for any q

• DFPT at arbitrary q.• DFPT on M-P grid of q with Fourier interpolation to arbitrary fine set of q.

Full use is made of space-group symmetry to only compute only

• symmetry-independent elements of Dκ,κ′

α,α′ (q)

• q-points in the irreducible Brillouin-Zone for interpolation• electronic k-points adapted to symmetry of perturbation.

Limitations: DFPT currently implemented only for norm-conservingpseudopotentials and non-magnetic systems.

Page 22: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

A CASTEP calculation I - simple DFPT

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 22 / 57

Lattice dynamics assumes atoms at mechanical equilibrium.Golden rule: The first step of a lattice dynamics calculation is a

high-precision geometry optimisation

• Parameter task = phonon selects lattice dynamics calculation.• Iterative solver tolerance is phonon_energy_tol. Value of 1e− 5 ev/ang**2

usually sufficient. Sometimes need to increase phonon_max_cycles

• Need very accurate ground-state as prerequisite for DFPT calculationelec_energy_tol needs to be roughly square of phonon_energy_tol

• Internal defaults in CASTEP are very adequate, but check that MaterialsStudio has not chosen too large a value for elec_energy_tol.

• Dκ,κ′

α,α′ (q) calculated at q-points specified on STANDARD (coarse) set

• Set may either a symmetry-reduced and weighted M-P grid for DOS or ak-space path for dispersion.

• But it is cheaper and almost always better to use an inperpolation

calculation for DOS and dispersion.

Page 23: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Example output

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 23 / 57

=====================================================================+ Vibrational Frequencies ++ ----------------------- ++ ++ Performing frequency calculation at 10 wavevectors (q-pts) ++ ++ Branch number Frequency (cm-1) ++ ================================================================= ++ ++ ----------------------------------------------------------------- ++ q-pt= 1 ( 0.000000 0.000000 0.000000) 0.022727 ++ q->0 along ( 0.050000 0.050000 0.000000) ++ ----------------------------------------------------------------- ++ ++ 1 -4.041829 0.0000000 ++ 2 -4.041829 0.0000000 ++ 3 -3.927913 0.0000000 ++ 4 122.609217 7.6345830 ++ 5 122.609217 7.6345830 ++ 6 165.446374 0.0000000 ++ 7 165.446374 0.0000000 ++ 8 165.446374 0.0000000 ++ 9 214.139992 7.6742825 ++ ----------------------------------------------------------------- +

N.B. 3 Acoustic phonon frequencies should be zero by Acoustic Sum Rule.Post-hoc correction if phonon_sum_rule = T.

Page 24: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

CASTEP phonon calculations II - Interpolation

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 24 / 57

To select set phonon_fine_method = interpolate

Specify “standard” grid of q-points. DFPT Dκ,κ′

α,α′ (q) will be calculated

explicitly on this grid.Golden rule of interpolation: Always include the Γ point (0,0,0) in theinterpolation grid. For even p, q, r use shifted gridphonon_fine_kpoint_mp_offset 0.125 0.125 0.125 to shift one point to Γ

Dκ,κ′

α,α′ (q) interpolated to q-points specified on FINE set, which may be grid for

DOS or a dispersion path.Real-space force-constant matrix is stored in .check file. All fine_kpointparameters can be changed on a continuation run. Interpolation is very fast. ⇒can calculate fine dispersion plot and DOS on a grid rapidly from one DFPTcalculation.Two methods of mapping large supercell dynamical matrix to force constantmatrix.

cumulant method of K. Parlinski (default)cutoff Parameter phonon_force_constant_cutoff applies real-space cutoff to

Φκ,κ′

α,α′ (a). Default is chosen according to MP grid.

Page 25: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

CASTEP phonon calculations III - Supercell

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 25 / 57

• To select set phonon_fine_method = supercell

• Set supercell in .cell file, eg 2× 2× 2 using

%BLOCK phonon_supercell_matrix2 0 00 2 00 0 2%ENDBLOCK phonon_supercell_matrix

• Dκ,κ′

α,α′ (q) interpolated to q-points specified in cell file by one of same

phonon_fine_kpoint keywords as for interpolation.• Cumulant or Cutoff method of interpolation applies as for Interpolation

calculation.• Real-space force-constant matrix is stored in .check file.• As with interpolation, all fine_kpoint parameters can be changed on a

continuation run. Interpolation is very fast. ⇒ can calculate fine dispersionplot and DOS on a grid rapidly from one DFPT calculation.

• Convergence: Need very accurate forces to take their derivative.• Need good representation of any pseudo-core charge density and

augmentation charge for ultrasoft potentials on fine FFT grid. Usually needlarger fine_gmax (or fine_grid_scale) than for geom opt/MD to get goodresults.

Page 26: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Running a phonon calculation

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEPMethods inCASTEPA CASTEPcalculation I -simple DFPT

Example output

CASTEP phononcalculations II -Interpolation

CASTEP phononcalculations III -Supercell

Running a phononcalculation

Examples

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 26 / 57

• Phonon calculations can be lengthy. CASTEP saves partial calculationperiodically in .check file if keywords num_backup_iter n orbackup_interval t . Backup is every n q-vectors or every t seconds.

• Phonon calculations have high inherent parallelism. Because perturbationbreaks symmetry relatively large electronic k -point sets are used.

• Number of k-points varies depending on symmetry of perturbation.• Try to choose number of processors to make best use of k-point parallelism.

If Nk not known in advance choose NP to have as many different primefactors as possible - not just 2!

Page 27: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Examples

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

DFPT withinterpolation -α-quartz

Supercell method- SilverConvergenceissues for latticedynamics

“Scaling” andother cheats

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 27 / 57

Page 28: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

DFPT with interpolation - α-quartz

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

DFPT withinterpolation -α-quartz

Supercell method- SilverConvergenceissues for latticedynamics

“Scaling” andother cheats

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 28 / 57

Γ K M Γ A0

200

400

600

800

1000

1200

1400

Freq

uenc

y [c

m-1

]

Page 29: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Supercell method - Silver

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

DFPT withinterpolation -α-quartz

Supercell method- SilverConvergenceissues for latticedynamics

“Scaling” andother cheats

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 29 / 57

Γ X Γ L WK0

1

2

3

4

5

6

ω (

TH

z)

Ag phonon dispersion3x3x3x4 Supercell, LDA

Page 30: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Convergence issues for lattice dynamics

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

DFPT withinterpolation -α-quartz

Supercell method- SilverConvergenceissues for latticedynamics

“Scaling” andother cheats

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 30 / 57

ab-initio lattice dynamics calculations are very sensitive to convergence issues.A good calculation must be well converged as a function of

1. plane-wave cutoff2. electronic kpoint sampling of the Brillouin-Zone (for crystals)

(under-convergence gives poor acoustic mode dispersion as q → 03. geometry. Co-ordinates must be well converged with forces close to zero

(otherwise calculation will return imaginary frequencies.)4. For DFPT calculations need high degree of SCF convergence of

ground-state wavefunctions.5. supercell size for “molecule in box” calculation and slab thickness for

surface/s lab calculation.6. Fine FFT grid for finite-displacement calculations.

• Accuracies of 25-50 cm−1 usually achieved or bettered with DFT.• need GGA functional e.g. PBE, PW91 for hydrogenous and H-bonded

systems.• When comparing with experiment remember that disagreement may be due

to anharmonicity.• Less obviously agreement may also be due to anharmonicity. There is a

“lucky” cancellation of anharmonic shift by PBE GGA error in OH stretchmodes!

Page 31: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

“Scaling” and other cheats

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

DFPT withinterpolation -α-quartz

Supercell method- SilverConvergenceissues for latticedynamics

“Scaling” andother cheats

LO/TO Splitting

Modelling ofspectra

Intro to Phonons 2012 31 / 57

• DFT usually gives frequencies within a few percent of experiment.Exceptions are usually strongly-correlated systems, e.g. sometransition-metal Oxides where DFT description of bonding is poor.

• Discrepancies can also be due to anharmonicity. A frozen-phononcalculation can test this.

• In case of OH-bonds, DFT errors and anharmonic shift cancel each other!• In solid frquencies may be strongly pressure-dependent. DFT error can

resemble effective pressure. In that case, best comparison with expt. maynot be at experimental pressure.

• Hartree-Fock approximation systematically overestimates vibrationalfrequencies by 5-15%. Commpn practice is to multiply by ”scaling factor”≈ 0.9.

• Scaling not recommended for DFT where error is not systematic. Over- andunder-estimation equally common.

• For purposes of mode assignment, or modelling experimental spectra tocompare intensity it can sometimes be useful to apply a small empirical shifton a per-peak basis. This does not generate an “ab-initio frequency”.

Page 32: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

LO/TO Splitting

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 32 / 57

Page 33: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Two similar structures

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 33 / 57

Zincblende BN Diamond

Page 34: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Zincblende and diamond dispersion

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 34 / 57

Phonon dispersion curves

Γ X Γ L W X0

500

1000

1500ω

(cm

-1)

BN-zincblende

Γ X Γ L W X0

500

1000

1500

2000

ω (

cm-1

)

diamond

Cubic symmetry of Hamiltonian predicts triply degenerate optic mode at Γ inboth cases.2+1 optic mode structure of BN violates group theoretical prediction.Phenomenon known as LO/TO splitting.

Page 35: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

LO/TO splitting

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 35 / 57

• Dipole created by displacement of charges of long-wavelength LO modecreates induced electric field.

• For TO motion E ⊥ q ⇒ E.q = 0• For LO mode E.q 6= 0 and E-field adds additional restoring force.• Frequency of LO mode is upshifted.

• Lyddane-Sachs-Teller relation for cubic case:ω2LO

ω2TO

= ǫ0ǫ∞

• LO frequencies at q = 0 depend on dielectric permittivity

Page 36: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

DFPT with LO/TO splitting in NaCl

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 36 / 57

LO modes can be seen in infrared, INS, IXS experiments, but not raman.

Γ X Γ L W Xq

0

50

100

150

200

250

300ω

(cm

-1)

Exper: G. Raunio et al

NaCl phonon dispersion

(∆) (Σ) (∆) (Q) (Z)

Page 37: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

LO/TO splitting in non-cubic systems

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 37 / 57

Γ K M Γ A0

500

1000

1500

2000

ω (

cm-1

)

In systems with unique axis(trigonal, hexagonal, tetragonal)LO-TO splitting depends on di-

rection of q even at q = 0.

LO frequency varies with anglein α-quartz

0 30 60 90 120 150 180Approach Angle

480

490

500

510

520

530

540

550

Zon

e C

ente

r Fr

eque

ncy

(1/c

m)

Page 38: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

The non-analytic term and Born Charges

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 38 / 57

LO-TO splitting at q → 0 is automatically included in DFPT. At q = 0 exactly,need to add additional non-analytic term to dynamical matrix

Cκ,κ′

α,α′ (q = 0)(NA) =4π

Ω0

γ qγZ∗κ,γα

γ′ qγ′Z∗κ′,γ′α′

γγ′ qγǫ∞γγ′

qγ′

ǫ∞γγ′

is the dielectric permittivity tensor

Z∗κ,βα is the Born Effective Charge tensor

Z∗κ,β,alpha = V

∂Pβ

∂xκ,α=∂Fκ,α

∂Eβ

Z∗ is polarization per unit cell caused by displacement of atom κ in direction αor force exerted on ion by macroscopic electric field.Z∗κ,βα and ǫ∞

γγ′can both be computed via DFPT response to electric field

perturbation.(Fourier interpolation procedure uses a dipole-dipole model for Coulombic tailcorrection of FCM which also depends on Z∗ and ǫ∞. Not included in mostsupercell calculations ⇒ be suspicious of convergence in case of polar systems).

Page 39: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Electric Field response in CASTEP

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 39 / 57

• Can also apply DFPT to electric field perturbation.• Need trick to evaluate position operator. Evaluate ∇kφ. See NMR lecture

for details.• set task = efield or task = phonon+efield

• Convergence controlled by efield_energy_tol

• Computes dielectric permittivity for crystals and polarisability (formolecules)

• Includes lattice contribution for ω → 0 response.• Writes additional file seedname.efield containing ǫγγ′ (ω) in infrared

region.

===============================================================================Optical Permittivity (f->infinity) DC Permittivity (f=0)---------------------------------- ---------------------3.52475 0.00000 0.00000 10.00569 0.00000 0.000000.00000 3.52475 0.00000 0.00000 10.00569 0.000000.00000 0.00000 3.52475 0.00000 0.00000 10.00569

===============================================================================

===============================================================================Polarisabilities (A**3)

Optical (f->infinity) Static (f=0)--------------------- -------------

5.32709 0.00000 0.00000 19.00151 0.00000 0.000000.00000 5.32709 0.00000 0.00000 19.00151 0.000000.00000 0.00000 5.32709 0.00000 0.00000 19.00151

===============================================================================

Page 40: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Ionic and Electronic Dielectric Permittivity

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 40 / 57

• Pure covalent system - Si Z∗ = −0.009,• Ionic system, NaCl. ǫ0 = 6.95, ǫ∞ = 2.70. Z∗(Na) = 1.060,

Z∗(Cl) = −1.058• α-quartz, SiO2:

ǫ∞ =2.44 0.00 0.000.00 2.44 0.000.00 0.00 2.49

ǫ0 =5.01 0.00 0.000.00 4.71 0.150.00 0.15 4.58

(exp: ǫ0 = 4.64/4.43)

Z∗(O1) =

−2.16 −0.03 0.81−0.08 −1.04 0.140.00 0.00 −1.71

Z∗(Si) =

2.98 0.00 0.000.00 3.67 0.260.00 −0.30 3.45

• Note anisotropic tensor character of Z∗.

Page 41: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Example: NaHF2

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 41 / 57

• Unusual bonding, nominally ionic Na+ FHF−,with linear anion.

• Layer structure, R3 space group.• Phase transition to monoclinic form at ≈ 0.4 GPa.

• Phonon spectrum measured at ISIS on TOSCA

• high-resolution neutron powder spectrometer.

• No selection rule absences• Little or no anharmonic overtone contamina-

tion of spectra• No control over (q, ω) path - excellent for

molecular systems but spectra hard to inter-pret if dispersion present.

Page 42: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Dynamical charges in NaHF2

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Two similarstructuresZincblende anddiamonddispersion

LO/TO splitting

DFPT withLO/TO splittingin NaClLO/TO splittingin non-cubicsystems

The non-analyticterm and BornCharges

Electric Fieldresponse inCASTEPIonic andElectronicDielectricPermittivity

Example: NaHF2

Intro to Phonons 2012 42 / 57

• highly anisotropic Z∗

xy z0.34 2.02 (H)

−0.69 −1.52 (F)1.06 1.04 (Na)

• charge density n(1)(r) from DFPTshows electronic response underperturbation

• Charge on F ions moves in responseto H displacement in z direction.

n(1)(r) response to Hx(blue) and Hz (green)

n(1)(r) response to Ex(blue) and Ez (green)

Page 43: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Modelling of spectra

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 43 / 57

Page 44: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Interaction of light with phonons

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 44 / 57

Energy conservation Es = hνs = Ei + δEphonon = hνi + hνphonon

Momentum conservation

• ks = ki + δkphonon

• Typical lattice parameter a0 ≈ 5 ⇒ 0 ≤ kphonon < 0.625 1/A

• For a 5000A photon, k = 0.00125 1/A• =⇒ optical light interacts with phonons only very close to 0 (the “Γ” point).

Page 45: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Powder infrared

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 45 / 57

In a powder infrared absorption experiment, E field of light couples to electric

dipole created by displacement of ions by modes. Depends on Born effectivecharges and atomic displacements.

Infrared intensity Im =∣

κ,b1√Mκ

Z∗κ,a,bum,κ,b

2

α-quartz

400 600 800 1000 1200

Phonon Frequency (cm-1

)

0

0.05

0.1

0.15

IR I

nten

sity

(A

rb. U

nits

)

• Straightforward to compute peak areas.• Peak shape modelling depends on sample and experimental variables.• Multiphonon and overtone terms less straightforward.

Page 46: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Accurate Modelling of powder IR

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 46 / 57

Need to include optical cavity effects of light interation with crystallitesize/shape. Size/shape shift of LO modes by crystallites.See E. Balan, A. M. Saitta, F. Mauri, G. Calas. First-principles modeling of the

infrared spectrum of kaolinite. American Mineralogist, 2001, 86, 1321-1330.

Page 47: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Single-crystal infrared

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 47 / 57

Prediction of reflectivity of optically flat single crystal surface given as functionof q - projected permittivity ǫq(ω)

R(ω) =

ǫ1/2q (ω)− 1

ǫ1/2q (ω) + 1

2

with ǫq defined in terms of ǫ∞ andmode oscillator strength Sm,αβ

ǫq(ω) = q.ǫ∞.q +4π

Ω0

m

q.S.q

ω2m − ω2

= q.ǫ(ω).q

ǫ(ω) is tabulated in the seed.efield

file written from a CASTEP efield re-sponse calculation.Example BiFO3 (Hermet et al, Phys.Rev B 75, 220102 (2007)

Page 48: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Non-resonant raman

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 48 / 57

Raman scattering depends on raman activity tensor

Iramanαβ =

d3E

dεαdεβdQm=dǫαβ

dQm

i.e. the activity of a mode is the derivative of the dielectric permittivity withrespect to the displacement along the mode eigenvector.CASTEP evaluates the raman tensors using hybrid DFPT/finite displacementapproach.Raman calculation is fairly expensive ⇒ and is not activated by default (thoughgroup theory prediction of active modes is still performed)Parameter calculate_raman = true in a task=phonon calculation.Spectral modelling of IR spectrum is relatively simple function of activity.

dΩ=

(2πν)4

c4|eS .I.eL|

2 h(nm + 1)

4πωm

with the thermal population factor

nm =

[

exp

(

~ωm

kBT

)

− 1

]−1

which is implemented in Materials Studio “raman” calculation.

Page 49: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Raman scattering of t-ZrO2

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 49 / 57

Page 50: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Symmetry Analysis

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 50 / 57

+ -------------------------------------------------------------------------- ++ q-pt= 1 ( 0.000000 0.000000 0.000000) 0.000765 ++ q->0 along ( 0.003623 0.000000 0.000000) ++ -------------------------------------------------------------------------- ++ Acoustic sum rule correction < 0.949591 THz applied ++ N Frequency irrep. ir intensity active raman active ++ (THz) ((D/A)**2/amu) ++ ++ 1 -0.000975 a 0.0000000 N N ++ 2 -0.000719 b 0.0000000 N N ++ 3 0.065030 c 0.0000000 N N ++ 4 2.533116 d 0.0000000 N N ++ 5 3.100104 a 150.2988903 Y N ++ 6 3.534759 b 92.9297454 Y N ++ 7 3.818109 e 0.0000000 N Y ++ 8 10.158077 c 1.7805122 Y N ++ 9 11.124650 b 10.9933170 Y N ++ 10 11.421874 d 0.0000000 N N ++ 11 12.097042 f 0.0000000 N Y ++ 12 12.844543 c 2.5718809 Y N ++ 13 13.673018 g 0.0000000 N Y ++ 14 13.673018 g 0.0000000 N Y ++ 15 14.179285 b 22.0325348 Y N ++ 16 17.922800 e 0.0000000 N Y ++ 17 23.317934 c 121.6365963 Y N ++ 18 24.081857 f 0.0000000 N Y ++ .......................................................................... +

Page 51: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Symmetry Analysis

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 51 / 57

+ .......................................................................... ++ Character table from group theory analysis of eigenvectors ++ Point Group = 15, D4h ++ (Due to LO/TO splitting this character table may not contain some symmetry ++ operations of the full crystallographic point group. Additional ++ representations may be also be present corresponding to split LO modes. ++ A conventional analysis can be generated by specifying an additional null ++ (all zero) field direction or one along any unique crystallographic axis ++ in %BLOCK PHONON_GAMMA_DIRECTIONS in <seedname>.cell.) ++ .......................................................................... ++ Rep Mul | E 2 2 2 I m m m ++ | -------------------------------- ++ a B3u 2 | 1 -1 -1 1 -1 1 1 -1 ++ b B2u 4 | 1 -1 1 -1 -1 1 -1 1 ++ c B1u 4 | 1 1 -1 -1 -1 -1 1 1 ++ d Au 2 | 1 1 1 1 -1 -1 -1 -1 ++ e Ag 2 | 1 1 1 1 1 1 1 1 ++ f B3g 2 | 1 -1 -1 1 1 -1 -1 1 ++ g Eg 1 | 2 0 0 -2 2 0 0 -2 ++ -------------------------------------------------------------------------- +

Page 52: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Inelastic Neutron Scattering

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 52 / 57

Thermal neutrons have both energies and momenta of same magnitude asphonons (unlike photons). ⇒ Can interact with phonons at any q.To model spectra need to treat scattering dynamics of incident and emergentradiation.In case of INS interaction is between point neutron and nucleus - scalarquantity b depends only on nucleus – specific properties.

d2σ

dEdΩ=kf

kib2S(Q, ω)

Q is scattering vector and ω is frequency - interact with phonons at samewavevector and frequency.Full measured spectrum includes overtones and combinations and instrumentalgeometry and BZ sampling factors.Need specific spectral modelling software to incorporate effects aspostprocessing step following CASTEP phonon DOS calculation.A-Climax : A. J. Ramirez-Cuesta Comput. Phys. Comm. 157 226 (2004))

Page 53: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

The TOSCA INS Spectrometer

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 53 / 57

• ISIS pulsed neutron source at Rutherford Appleton Laboratory, UK• TOSCA - high-resolution powder spectrometer at ISIS• Little or no anharmonic overtone contamination of spectra• No selection rule absences• Signal is weighted DOS integral over BZ

Page 54: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Dispersion, DOS and Gamma

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 54 / 57

Phonons represented across the Brillouin Zone by

Dispersion Curve ωm(k) on high-symmetry linesPhonon Density of States g(ω) =

dk∑

m δ(ωm(k)− ω)

Γ X R Z Γ M A Z0

200

400

600

800

ω (

cm-1

)

g(r)

Page 55: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

INS of Ammonium Fluoride

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 55 / 57

• NH4F is one of a series of ammonium halidesstudied in the TOSCA spectrometer. Collab.Mark Adams (ISIS)

• Structurally isomorphic with ice ih• INS spectrum modelled using A-CLIMAX

software (A. J. Ramirez Cuesta, ISIS)• Predicted INS spectrum in mostly excellent

agreement with experiment• NH4 libration modes in error by ≈ 5%.• Complete mode assignment achieved.

Page 56: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

Inelastic X-Ray scattering

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 56 / 57

IXS spectrometers at ESRF, Spring-8, APS synchrotrons.

Page 57: Introduction to phonon and spectroscopy calculations in CASTEPftp.nd.rl.ac.uk/KeithRefson/Accelrys/Intro_to_Phonons.pdf · • Vibrational modes in solids take form of waves with

IXS of Diaspore

Motivations forab-initio latticedynamics I

Motivations forab-initio latticedynamics II

Lattice Dynamicsof Crystals

ab-initio LatticeDynamics

Lattice Dynamicsin CASTEP

Examples

LO/TO Splitting

Modelling ofspectra

Interaction oflight withphonons

Powder infraredAccurateModelling ofpowder IR

Single-crystalinfraredNon-resonantramanRaman scatteringof t-ZrO2SymmetryAnalysis

SymmetryAnalysis

Inelastic NeutronScattering

The TOSCA INSSpectrometer

Intro to Phonons 2012 57 / 57

B. Winkler et el., Phys. Rev. Lett 101 065501 (2008)

wave vector [A -1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

ener

gy

[meV

]

355

360

365

370

375

380(0.5, 0, 0) to (0, 0, -0.33)