introduction to plasma physics - dpgintroduction to plasma physics hartmut zohm max-planck-institut...

30
Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘ Bad Honnef, 22.09.2014

Upload: others

Post on 10-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Introduction to Plasma Physics

Hartmut Zohm

Max-Planck-Institut für Plasmaphysik

85748 Garching

DPG Advanced Physics School‚The Physics of ITER‘

Bad Honnef, 22.09.2014

Page 2: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A simplistic view on a Fusion Power Plant

The ‚amplifier‘ is a thermonuclear plasma burning hydrogen to helium

Centre of the sun: T ~ 15 Mio K, n ≤ 1032 m-3, p ~ 2.5 x 1011 bar

Pin = 50 MW(initiate and controlburn)

Pout = 2-3 GWth(aiming at 1 GW e)

Page 3: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A bit closer look…

Fusion reactor: magnetically confined plasma, D + T → He + n + 17.6 MeV

Centre of reactor: T = 250 Mio K, n = 1020 m-3, p = 8 bar

3.5 MeV 14.1 MeVα-heating wall loading

Pin = 50 MW(initiate and controlburn)

Pout = 2-3 GWth(aiming at 1 GW e)

Page 4: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

What is a plasma?

Plasma = ionised gas

• degree of ionisation ne/(ne+n0), depends on temperature (Saha equation)

• because of Maxwell distribution: ne/(ne+n0) ~ 1 at kBT ~ 1/10 Wion

No impurityseeding

‚cold‘ solid

‚warm‘ liquid

‚hot‘ gas

‚hotter‘ plasma

Page 5: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

Plasmas occur in large large range of n and T

• ideal plasma condition Etherm >> Einteraction in large range

• fusion plasma can be treated as ideal gas of ions and electrons (p = n kBT)

No impurityseeding

Note:1 eV = 11600 K

relativistic: E therm > 511 keV

ideal plasmas

non-ideal, degenerateH not ionised re

lat.

dege

n.

Page 6: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

No impurityseeding

Note:1 eV = 11600 K

Astrophysical plasmas

pulsar magnetosphere

solar wind chromosphere

corona lightning

sun

photosphereionosphere

interstellarmedium white

dwarf

Page 7: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Existence diagram: density n and temperature T

No impurityseeding

n kBT ~ 1 bar

Note:1 eV = 11600 K

lab plasmas

fusion reactor

MagenticallyConfinedFusion plasmas

semiconductorplasmas

Inertially ConfinedFusion plasmas

electron gasIn metals

glow discharge

flame arcs

Page 8: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Quasineutrality

Large number of freely movable charges: charge separation leads to strong electric fields – strong restoring force

• quasineutrality ne = Zni can only be violated on Debye length λD

• on a scale L >> λD, plasmas are always quasineutral

Page 9: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Dynamic shielding – plasma frequency

Displacement of electrons leads to large restoring force - oscillation

• below ωp, electrons can follow oscillating e-field – reflection of wave (cut-off)

• above ωp, electrons can no longer follow - plasma transparent to ω > ωp

Used for density measurement (‘reflectometry’) – cut-off important for heating

Page 10: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Coulomb collisions

Coulomb collisions are the main interaction between plasma particles

• thermodynamic equilibrium through Coulomb collisions

• dissipation by Coulomb collisions – electrical and thermal resistance

Collision frequency decreases with increasing temperature

• mean free path increases with T – ‘collisionless plasma’

• electrical (‘Spitzer’) and thermal conductivity of fusion plasma very high

Page 11: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Thermalisation of a fast particle ensemble

‘Isotropisation’ – collisions randomise velocity components

‘Slowing down’ – collisions transfer energy to Maxwellian bulk

Page 12: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Application: Neutral Beam Heating (NBI)

Page 13: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – single particle picture

Charged particles gyrate perpendicular B, but move freely along B

• cyclotron frequency ωc used for diagnostics and heating (ECRH)

• for kbT ~ 1 keV and B = 2T: rLe ~ 50 µm, rLi ~ 2 mm ⇒ magnetised plasma

Electron Ion

B-field (radii not to scale!)

Page 14: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – particle drifts

On timescales much longer than 1/ωc, motion of gyrocentre is relevant

For an external force F, a drift perpendicular drift is obtained

Example: Plasma confinement in purely toroidal field

• curved magnetic field leads to vertical drift (centrifugal force)

• resulting E field leads to a net outward drift

Plasma confinement in a purely toroidal field is not possible (see later)

Page 15: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Single particle picture – magnetic mirror

For ‘adiabatic changes of gyromotion (gyro-circles almost closed):

• magnetic moment µ ~ mv⊥2 / B = const. along trajectory

• since total energy is conserved, || energy converted to ⊥ if B increases

plane ofreflection

particleorbit

B

B=Bmin B=Bmax

v⊥,0 , v||,0

Page 16: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Particle orbits: mirror in the Earth’s magnetic field

proton driftelectron drift

B-field line

reflection point

trapped particle orbit

Page 17: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetised plasmas – many body picture

A comprehensive approach deals with a description in 6-d phase space

• ‘kinetic theory’ of distribution function f(v,x,t) – too complicated for today ☺

If thermodynamic equilibrium is assumed (f = Maxwellian), the set ofMagnetoHydroDynamic (MHD) equations can be used:

continuity equation

force (Euler) equation

Ohm’s law

+ equation of state (e.g. adiabatic)

+ Maxwell’s equations

• mostly adequate for motion perpendicular to B, usually not along B

Page 18: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Magnetohydrodynamic (MHD) - equilibrium

In equilibrium, there is no time dependence. If in addition, no flow:

⇒ ⇒

One can identify two contributions to the force balance:

magnetic pressure field line tension

N.B.: these two forces lead to two branches of MHD (Alfvén) waves

Page 19: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Ohm’s law and the ‘frozen fieldlines’

The change of magnetic field is governed by Ohm’s law:

• in ideal MHD, plasma and field lines move together (Alfvén time scale, fast)

• resistivity leads to a diffusion of the magnetic field through the plasma(resistive MHD time scale, arbitrarily slow for arbitrary high conductivity)

Important example: collapse of a star leads to enormous field amplification!

( ) ( )BBvEt

B rrrrr

×∇×∇−××∇=×−∇=∂∂

σµ0

1

( ) BBvt

B rrrr

∆+××∇=∂∂

⇒σµ0

1

Page 20: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Ohm’s law and the ‘frozen fieldlines’

Concept of ‘flux tubes’:

• in ideal MHD, plasma and field lines move together (Alfvén time scale, fast)

• flux tubes move with fluid and cannot intersect – topology conserved

• example: collapse of a neutron star

Page 21: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Emission from pulsars validates high B-fields

Beamed (relativistic) ‚curvature radiation‘ from parallel e- motion

Page 22: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A change of magnetic topology is only possible through reconnection

• opposing field lines reconnect and form new topological objects

• requires finite resistivity in the reconnection region

Example: Coronal Mass Ejection (CME) from the sun

Due to high electrical conductivity, magnetic flux is frozen into plasma

⇒ magnetic field lines and plasma move together

Reconnection in a hot fusion plasma

Page 23: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

A change of magnetic topology is only possible through reconnection

• opposing field lines reconnect and form new topological objects

• requires finite resistivity in the reconnection region

Example: Coronal Mass Ejection (CME) from the sun

Due to high electrical conductivity, magnetic flux is frozen into plasma

⇒ magnetic field lines and plasma move together

Reconnection in a hot fusion plasma

Page 24: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Plasma waves: two fluid equations

After linearisation and Fouriertransform, a 9 x 9 Matrix system is obtained

Matrix is the equivalent of the ‚dielectric tensor‘

Solutions give dispersion relation ω = ω(k)

• neutral gas: e-m waves and sound waves uncoupled

• plasma: sound waves couples to electrostatic wave (charge density)

wave eqn.

ion force balance

electron force balance

Page 25: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in an Unmagnetised Plasma

Electromagnetic wave

ω

k

Page 26: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in a Magnetised Plasma: propagation || to B

right-handed circular polarised wave

left-handed circular polarised wave

electron cyclotron wave

Whistler wave

Magneto-acoustic wave

ion cyclotron wave

Shear Alfvén wave

ω

k

Page 27: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Waves in a Magnetised Plasma: propagation ⊥ to B

k

ωextraordinary wave (X-mode)

ordinary wave (O-mode)

upper hybrid wave

lower hybrid wave

compressional Alfvén wave

Page 28: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

Electron Cyclotron Resonance Heating (ECRH)

Microwave beam absorbed at ω=ωce – good localisation and control

Page 29: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

• In the vicinity of the ion-ion hybrid layer, mode conversion to shorter wavelength waves occurs.

IBW : Ion Bernstein WavePropagates towards the high field side

ICW : Ion Cyclotron WavePropagates towards the low field side

Ion Cyclotron Resonance Heating (ICRH)

Example: ion Bernstein wave, electrostatic ion cyclotron wave

Page 30: Introduction to Plasma Physics - DPGIntroduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School ‚The Physics of ITER‘

‚The Plasma Universe‘

Core plasma

Edge plasma

Charged particle density n [m -3]

Tem

pera

ture

T [K

]

Note:1 eV = 11600 K