introduction to statistical quality control, 4th edition chapter 6 control charts for attributes

48
Introduction to Statistical Q uality Control, 4th Edition Chapter 6 Control Charts for Attributes

Upload: christine-daniels

Post on 22-Dec-2015

234 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

Chapter 6

Control Charts for Attributes

Page 2: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-1. Introduction

• Data that can be classified into one of several categories or classifications is known as attribute data.

• Classifications such as conforming and nonconforming are commonly used in quality control.

• Another example of attributes data is the count of defects.

Page 3: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

• Fraction nonconforming is the ratio of the number of nonconforming items in a population to the total number of items in that population.

• Control charts for fraction nonconforming are based on the binomial distribution.

Page 4: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Recall: A quality characteristic follows a binomial distribution if:

1. All trials are independent.

2. Each outcome is either a “success” or “failure”.

3. The probability of success on any trial is given as p. The probability of a failure is

1-p.

4. The probability of a success is constant.

Page 5: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

• The binomial distribution with parameters n 0 and 0 < p < 1, is given by

• The mean and variance of the binomial distribution are

xnx )p1(px

n)x(p

)p1(npnp 2

Page 6: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Development of the Fraction Nonconforming Control Chart

Assume • n = number of units of product selected at random.

• D = number of nonconforming units from the sample

• p= probability of selecting a nonconforming unit from the sample.

• Then:xnx )p1(p

x

n)xD(P

Page 7: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Development of the Fraction Nonconforming Control Chart

• The sample fraction nonconforming is given as

where is a random variable with mean and variance

n

Dp̂

n

)p1(pp 2

Page 8: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Standard Given• If a standard value of p is given, then the control

limits for the fraction nonconforming are

UCL pp p

nCL p

LCL pp p

n

31

31

( )

( )

Page 9: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

No Standard Given• If no standard value of p is given, then the control

limits for the fraction nonconforming are

where n

)p1(p3pLCL

pCLn

)p1(p3pUCL

m

mn

Dp

m

1ii

m

1ii

Page 10: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Trial Control Limits• Control limits that are based on a preliminary set

of data can often be referred to as trial control limits.

• The quality characteristic is plotted against the trial limits, if any points plot out of control, assignable causes should be investigated and points removed.

• With removal of the points, the limits are then recalculated.

Page 11: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Example • A process that produces bearing housings is

investigated. Ten samples of size 100 are selected.

• Is this process operating in statistical control?

Sample # 1 2 3 4 5 6 7 8 9 10 # Nonconf. 5 2 3 8 4 1 2 6 3 4

Page 12: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Example n = 100, m = 10

Sample # 1 2 3 4 5 6 7 8 9 10 # Nonconf. 5 2 3 8 4 1 2 6 3 4 Fraction Nonconf.

0.05

0.02 0.03 0.08 0.04 0.01 0.02 0.06 0.03 0.04

038.0m

p̂p

m

1ii

Page 13: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Example

Control Limits are:

002.0100

)038.01(038.03038.0LCL

038.0CL

095.0100

)038.01(038.03038.0UCL

Page 14: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Example

109876543210

0.10

0.05

0.00

Sample Number

Prop

ortio

n

P Chart for C1

P=0.03800

3.0SL=0.09536

-3.0SL=0.000

Page 15: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Design of the Fraction Nonconforming Control Chart

• The sample size can be determined so that a shift of some specified amount, can be detected with a stated level of probability (50% chance of detection). If is the magnitude of a process shift, then n must satisfy:

Therefore, n

)p1(pL

)p1(pL

n2

Page 16: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Positive Lower Control Limit • The sample size n, can be chosen so that the lower

control limit would be nonzero:

and

0n

)p1(pLpLCL

2Lp

)p1(n

Page 17: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

Interpretation of Points on the Control Chart for Fraction Nonconforming

• Care must be exercised in interpreting points that plot below the lower control limit.– They often do not indicate a real improvement in

process quality.– They are frequently caused by errors in the inspection

process or improperly calibrated test and inspection equipment.

Page 18: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2. Control Charts for Fraction Nonconforming

The np control chart

• The actual number of nonconforming can also be charted. Let n = sample size, p = proportion of nonconforming. The control limits are:

(if a standard, p, is not given, use )p

)p1(np3npLCL

npCL

)p1(np3npUCL

Page 19: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.2 Variable Sample Size

• In some applications of the control chart for the fraction nonconforming, the sample is a 100% inspection of the process output over some period of time.

• Since different numbers of units could be produced in each period, the control chart would then have a variable sample size.

Page 20: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.2 Variable Sample Size

Three Approaches for Control Charts with Variable Sample Size

1. Variable Width Control Limits

2. Control Limits Based on Average Sample Size

3. Standardized Control Chart

Page 21: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.2 Variable Sample Size

Variable Width Control Limits• Determine control limits for each individual

sample that are based on the specific sample size.

• The upper and lower control limits are

in

)p1(p3p

Page 22: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.2 Variable Sample Size

Control Limits Based on an Average Sample Size• Control charts based on the average sample size

results in an approximate set of control limits.• The average sample size is given by

• The upper and lower control limits arem

nn

m

1ii

n

)p1(p3p

Page 23: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.2 Variable Sample Size

The Standardized Control Chart• The points plotted are in terms of standard

deviation units. The standardized control chart has the follow properties:

– Centerline at 0– UCL = 3 LCL = -3– The points plotted are given by:

i

ii

n)p1(p

pp̂z

Page 24: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.4 The Operating-Characteristic Function and Average Run Length Calculations

The OC Function• The number of nonconforming units, D, follows

a binomial distribution. Let p be a standard value for the fraction nonconforming. The probability of committing a Type II error is

)p|nLCLD(P)p|nUCLD(P

)p|LCLp̂(P)p|UCLp̂(P

Page 25: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.4 The Operating-Characteristic Function and Average Run Length Calculations

Example

• Consider a fraction nonconforming process where samples of size 50 have been collected and the upper and lower control limits are 0.3697 and 0.0303, respectively.It is important to detect a shift in the true fraction nonconforming to 0.30. What is the probability of committing a Type II error, if the shift has occurred?

Page 26: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.4 The Operating-Characteristic Function and Average Run Length CalculationsExample• For this example, n = 50, p = 0.30, UCL =

0.3697, and LCL = 0.0303. Therefore, from the binomial distribution,

8594.0

08594.0

)30.0|1D(P)30.0|18D(P

)30.0|515.1D(P)30.0|48.18D(P

)30.0|0303.0(50D(P)30.0|)3697.0(50D(P

)p|nLCLD(P)p|nUCLD(P

Page 27: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.4 The Operating-Characteristic Function and Average Run Length Calculations

• OC curve for the fraction nonconforming control chart with = 20, LCL = 0.0303 and UCL = 0.3697.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.5

1.0

p

Bp

Page 28: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-2.4 The Operating-Characteristic Function and Average Run Length CalculationsARL• The average run lengths for fraction

nonconforming control charts can be found as before:

• The in-control ARL is

• The out-of-control ARL is

1ARL0

1

1ARL1

Page 29: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3. Control Charts for Nonconformities (Defects)

• There are many instances where an item will contain nonconformities but the item itself is not classified as nonconforming.

• It is often important to construct control charts for the total number of nonconformities or the average number of nonconformities for a given “area of opportunity”. The inspection unit must be the same for each unit.

Page 30: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3. Control Charts for Nonconformities (Defects)

Poisson Distribution• The number of nonconformities in a given area can be

modeled by the Poisson distribution. Let c be the parameter for a Poisson distribution, then the mean and variance of the Poisson distribution are equal to the value c.

• The probability of obtaining x nonconformities on a single inspection unit, when the average number of nonconformities is some constant, c, is found using:

!x

ce)x(p

xc

Page 31: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.1 Procedures with Constant Sample Size

c-chart

• Standard Given:

• No Standard Given:

c3cLCL

cCL

c3cUCL

c3cLCL

cCL

c3cUCL

Page 32: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.1 Procedures with Constant Sample Size

Choice of Sample Size: The u Chart• If we find c total nonconformities in a sample of n

inspection units, then the average number of nonconformities per inspection unit is u = c/n.

• The control limits for the average number of nonconformities is

n

u3uLCL

uCLn

u3uUCL

Page 33: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.2 Procedures with Variable Sample Size

Three Approaches for Control Charts with Variable Sample Size

1. Variable Width Control Limits

2. Control Limits Based on Average Sample Size

3. Standardized Control Chart

Page 34: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.2 Procedures with Variable Sample Size

Variable Width Control Limits• Determine control limits for each individual

sample that are based on the specific sample size.

• The upper and lower control limits are

in

u3u

Page 35: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.2 Procedures with Variable Sample Size

Control Limits Based on an Average Sample Size• Control charts based on the average sample size

results in an approximate set of control limits.• The average sample size is given by

• The upper and lower control limits arem

nn

m

1ii

n

u3u

Page 36: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.2 Procedures with Variable Sample Size

The Standardized Control Chart• The points plotted are in terms of standard

deviation units. The standardized control chart has the follow properties:

– Centerline at 0– UCL = 3 LCL = -3– The points plotted are given by:

i

ii

nu

uuz

Page 37: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.3 Demerit Systems

• When several less severe or minor defects can occur, we may need some system for classifying nonconformities or defects according to severity; or to weigh various types of defects in some reasonable manner.

Page 38: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.3 Demerit Systems

Demerit Schemes

1. Class A Defects - very serious2. Class B Defects - serious3. Class C Defects - Moderately serious4. Class D Defects - Minor

• Let ciA, ciB, ciC, and ciD represent the number of units in each of the four classes.

Page 39: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.3 Demerit Systems

Demerit Schemes• The following weights are fairly popular in

practice:– Class A-100, Class B - 50, Class C – 10, Class D - 1

di = 100ciA + 50ciB + 10ciC + ciD

di - the number of demerits in an inspection unit

Page 40: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.3 Demerit Systems

Control Chart Development

• Number of demerits per unit:

where n = number of inspection units

D =

n

Du i

n

1iid

Page 41: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.3 Demerit Systems

Control Chart Development

where and

u

u

ˆ3uLCL

uCL

ˆ3uUCL

DCBA uu10u50u100u

2/1

DC2

B2

A2

u n

uu10u50u100ˆ

Page 42: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.4 The Operating- Characteristic Function

• The OC curve (and thus the P(Type II Error)) can be obtained for the c- and u-chart using the Poisson distribution.

• For the c-chart:

where x follows a Poisson distribution with parameter c (where c is the true mean number of defects).

P x UCL c P X LCL c( | ) ( | )

Page 43: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.4 The Operating- Characteristic Function

• For the u-chart:

)u|nLCLc(P)u|nUCLc(P

)u|LCLx(P)u|UCLx(P

Page 44: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.5 Dealing with Low-Defect Levels

• When defect levels or count rates in a process become very low, say under 1000 occurrences per million, then there are long periods of time between the occurrence of a nonconforming unit.

• Zero defects occur• Control charts (u and c) with statistic

consistently plotting at zero are uninformative.

Page 45: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.5 Dealing with Low-Defect Levels

Alternative• Chart the time between successive occurrences

of the counts – or time between events control charts.

• If defects or counts occur according to a Poisson distribution, then the time between counts occur according to an exponential distribution.

Page 46: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-3.5 Dealing with Low-Defect Levels

Consideration• Exponential distribution is skewed.• Corresponding control chart very asymmetric.• One possible solution is to transform the exponential

random variable to a Weibull random variable using x = y1/3.6 (where y is an exponential random variable) – this Weibull distribution is well-approximated by a normal.

• Construct a control chart on x assuming that x follows a normal distribution.

• See Example 6-6, page 326.

Page 47: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-4. Choice Between Attributes and Variables Control Charts

• Each has its own advantages and disadvantages• Attributes data is easy to collect and several

characteristics may be collected per unit.• Variables data can be more informative since specific

information about the process mean and variance is obtained directly.

• Variables control charts provide an indication of impending trouble (corrective action may be taken before any defectives are produced).

• Attributes control charts will not react unless the process has already changed (more nonconforming items may be produced.

Page 48: Introduction to Statistical Quality Control, 4th Edition Chapter 6 Control Charts for Attributes

Introduction to Statistical Quality Control, 4th Edition

6-5. Guidelines for Implementing Control Charts

1. Determine which process characteristics to control.

2. Determine where the charts should be implemented in the process.

3. Choose the proper type of control chart.4. Take action to improve processes as the result of

SPC/control chart analysis.5. Select data-collection systems and computer

software.