introduction to stochastic-process...

39
Introduction to Stochastic-Process Limits Probability Seminar Yunan Liu Industrial and Systems Engineering North Carolina State University

Upload: others

Post on 26-Aug-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Introduction to Stochastic-Process LimitsProbability Seminar

Yunan LiuIndustrial and Systems Engineering

North Carolina State University

Page 2: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Why Do We Care?

Page 3: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Motivation

• Simpleapproximationsfor complicatedstochastic processes

• Explainstatistical regularity (appropriate scaling)

• Engineeringperspective: applications to service systems

Page 4: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Illustration

Page 5: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Unit Poisson Process

N(t) is a Poisson (counting) process with rate 1

PlotN(t) as a function of timet in [0, T ]

Page 6: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

t

N(t

)

N(t) in [ 0 , T ] for T = 10

Page 7: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

100

t

N(t

)

N(t) in [ 0 , T ] for T = 100

Page 8: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 2 4 6 8 10

x 104

0

1

2

3

4

5

6

7

8

9

10x 10

4

t

N(t

)

N(t) in [0, T] for T = 105

Page 9: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

What’s Going on?

The plotter scales bothtimeandspace.

What we see is a sample path of:

N(t) = 1nN(nt) wheren = 104.

Page 10: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

More Plots

PlotN(t)− t as a function of timet in [0, T ]

Page 11: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

t

N(t

) −

t

N(t) − t in [ 0, T ] for T = 10

Page 12: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 20 40 60 80 100−15

−10

−5

0

5

10

t

N(t

)

N(t) − t in [ 0 , T ] for T = 100

Page 13: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

0 2 4 6 8 10

x 104

−300

−200

−100

0

100

200

300

t

N(t

) −

t

N(t) − t in [ 0, T ] for T = 10 5

Page 14: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

What’s Going on?

The plotter scales bothtimeandspace.

What we see is a sample path of:

N(t) = 1√n(N(nt)− nt) wheren = 104.

Page 15: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

A Little Measure Theory

Page 16: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Measurable Space

B(S) is aσ-algebraof subsets ofS if:

1.S ∈ B(S)

2. If F ∈ B(S) thenF c ∈ B(S)

3. If F1, F2, F3, ... ∈ B(S), then∪iFi ∈ B(S)

(S, B(S)) is a measurable space

Page 17: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Measure

• µ : (S, B(S)) → [0,∞] is ameasureif µ(φ) = 0 and :

µ(∪∞i=1Fi) = Σ∞i=1µ(Fi) ,

where(Fn : n ≥ 1) is a sequence of pairwise disjointsets inB(S).

• µ is aprobability measureif µ(S) = 1.

Page 18: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Measurable Function

h : (S1, B(S1)) → (S2, B(S2)) is measurableif:

h−1(A) = s ∈ S1 : h(s) ∈ A ∈ B(S1),

for A ∈ B(S2).

Page 19: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Random Element

X is measurable

• If S ≡ R, thenX is arandom variable

• If S is a function space (e.g.,D), thenX is astochasticprocess

Page 20: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Stochastic Process Limits

Page 21: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Almost Sure Convergence

X1, X2, X3, ... is a sequence of stochastic processes (e.g., inC).

Xn → X w.p.1⇔ P (‖Xn −X‖T → 0) = 1,∀ T ≥ 0,

where,

||Xn −X||T = sup0≤t≤T |Xn(t)−X(t)| .

We say thatXn converges toX a.s. u.o.c.

Page 22: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Weak Convergence of Probability Measures(S, m) metric space

Pn : n ≥ 1 on (S, m) converges weaklyto P if:

limn→∞

∫S

fdPn =

∫S

fdP, ∀f ∈ C(S).

And we write,

Pn ⇒ P .

Page 23: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Prohorov Topology

P (S) is the space of probability measures onS.

We can define a metricπ onP (S), such that:

π(Pn, P ) → 0 in P (S) ⇔ Pn ⇒ P, .

π is theProhorov metriconP (S).

Page 24: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Probability LawLet X : (Ω, F, P ) → (S, B(S)) be a random element.

Theprobability lawof X is defined as:

PX−1(A) ≡ P (X−1(A)) ≡ P (w ∈ Ω : X(w) ∈ A),

for A ∈ B(S).

Page 25: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Weak Convergence of Random ElementsLet Xn, X : (Ω, F, P ) → (S, B(S)) be random elements.

We say thatXn ⇒ X if

PX−1n ⇒ PX−1

m

E[f (Xn)] → E[f (X)],∀f ∈ C(S).

Page 26: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

A Useful Theorem

Skorohod Representation Theorem

If Xn ⇒ X in (S, m), then there existsXn andX, defined on a common probabilityspacesuch that:

Xn ∼ Xn andX ∼ X ,

and

Xn → X w.p.1.

Page 27: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Proving Limits?

Page 28: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Continuous Mapping Approach

Simple Continuous-Mapping theorem (CMT)

If Xn ⇒ X in (S, m) andg : (S, m) → (S′, m′)is continuous, then:

g(Xn) ⇒ g(X) in (S′, m′) .

Page 29: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Generalized Continuous Mapping Theorem

Let gn : (S, m) → (S ′, m′) bemeasurablefunctions.

Supposegn(xn) → g(x) wheneverxn → x for x ∈ E ⊆ S such thatP (X ∈ E) = 1

Xn, X random elements in(S, m).

If Xn ⇒ X thengn(Xn) ⇒ g(X)

Page 30: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Proof of Generalized Continuous Mapping TheoremTheorem. Let gn : (S, m) → (S′, m′) bemeasurablefunctions.

Supposegn(xn) → g(x) wheneverxn → x for x ∈ E ⊆ S such thatP (X ∈ E) = 1

If Xn ⇒ X thengn(Xn) ⇒ g(X).

Proof.(Skorohod) ⇒∃Xn ∼ Xn, X ∼ X defined on the same spacesuch that:

Xn → X w.p.1,

whereP (X ∈ E) = 1.

Deterministic Framework: gn(Xn) → g(X) w.p.1

w.p.1 convergence impliesweakconvergence:gn(Xn) ⇒ g(X)

By equality of distributions,

gn(Xn) ⇒ g(X).

Page 31: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Another Useful TheoremDonsker’s Theorem

• Xn : n ≥ 1 IID random variables

• m = E[X1] andV arX1 = σ2 < ∞

Define,

Sn(t) =1√n

(

bntc∑i=1

Xi −mnt), t ≥ 0 .

Then,

Sn ⇒ σB ,

whereB denotes standard Brownian motion.

Page 32: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Example: Renewal ProcessAsymptotics

Page 33: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

A Fundamental Process

Define,

X(t) =

btc∑i=1

ξi, t ≥ 0 ,

whereξi, i ≥ 1 sequence of IID nonnegative random variables.

And the inverse process

Y (t) = sups ≥ 0 : X(s) ≤ t .

Then,Y (t) is a renewal counting process!

Page 34: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Functional SLLN for Renewal Processes

Standard SLLN for X⇓

Xn(t) ≡ 1

nX(nt) → X(t) ≡ mt w.p.1 u.o.c ,

⇓ (CMT)

Y n(t) ≡ 1

nY (nt) → Y (t) ≡ t/m w.p.1 u.o.c ,

wherem = E[ξi] > 0 (finite).

Page 35: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Functional CLT for Renewal ProcessesIf,

Xn(t) =√

n(Xn(t)− X(t)) , t ≥ 0,

Y n(t) =√

n(Y n(t)− Y (t)) , t ≥ 0,

whereX(t) = mt andY (t) = t/m.

Then,

Xn(t) ⇒ X(t) ≡ σB(t)

Y n(t) ⇒ − 1

mX(t/m).

Page 36: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Random-Time Change Theorem

Random-Time Change Theorem

Let Un : n ≥ 1 andVn : n ≥ 1 be two sequences of stochastic processes inD.

If Vn is nondecreasing,Vn ⇒ v (deterministic), andUn ⇒ U , then,

Un(Vn) ⇒ U(v) ,where,

Un(Vn) ≡ Un(Vn(t)), t ≥ 0 ,

and,

U(v) ≡ U(v(t)), t ≥ 0 .

Page 37: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Proof of Functional CLTTheorem. Xn(t) =

√n(Xn(t)− X(t)) andY n(t) =

√n(Y n(t)− Y (t))

Then,

Xn(t) ⇒ X(t) ≡ σB(t) andY n(t) ⇒ − 1mX(t/m)

Proof.

Donsker’s: Xn ⇒ X

FSLLN: Xn(t) → X(t) a.s. u.o.c. andY n(t) → Y (t) a.s. u.o.c

Random-Time Change: Xn(Y n) =√

n[Xn(Y n)− X(Y n)] ⇒ X(Y )

Page 38: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Proof of Functional CLT (Cont’)Theorem. Xn(t) =

√n(Xn(t)− X(t)) andY n(t) =

√n(Y n(t)− Y (t))

Then,

Xn(t) ⇒ X(t) ≡ σB(t) andY n(t) ⇒ − 1mX(t/m)

Proof (Cont’).

Y n =√

n(Y n − Y )

=

√n

m[X(Y n)− X(Y )]

=

√n

m[X(Y n)− Xn(Y n) + Xn(Y n)− X(Y )]

=

√n

m[X(Y n)− Xn(Y n)] +

√n

m[Xn(Y n)− X(Y )]

⇒ − 1

mX(Y ) ,

since we can show that√

n[Xn(Y n)− X(Y )] → 0 a.s. u.o.c.

Page 39: Introduction to Stochastic-Process Limitsyunanliu.wordpress.ncsu.edu/files/2015/09/StochasticProcessLimit.pdf · Introduction to Stochastic-Process Limits Probability Seminar Yunan

Thanks!